Assessing Processing Waste from the Sea Urchin (Centrostephanus rodgersii) Fishery as an Organic Fertilizer
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Effect of Sea Urchin Waste Powder Supplement on Weekly Plant Growth
3.2. Plant Nutrient Levels as a Measure of Potting Mix Nutrient Uptake
3.3. Effect of UWP on Flowering and Fruit Production
3.4. Fruit Nutrient Levels as a Measure of Potting Mix Nutrient Uptake
3.5. Fruit Ripeness
3.6. Potting Mix Nutrient Content
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ravindran, R.; Jaiswal, A.K. Exploitation of Food Industry Waste for High-Value Products. Trends Biotechnol. 2016, 34, 58–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verghese, K.; Lockrey, S. National Food Waste Baseline-Final Assessment Report; Australian Government’s Department of Environment and Energy: Canberra, Australia, 2019.
- Knuckey, I.; Sinclair, C.; Surapaneni, A.; Ashcroft, W. Utilisation of seafood processing waste—Challenges and opportunities. In Proceedings of the 3rd Australian New Zealand Soils Conference, University of Sydney, Camperdown, NSW, Australia, 5–9 December 2004. [Google Scholar]
- Lehmann, S. Optimizing Urban Material Flows and Waste Streams in Urban Development through Principles of Zero Waste and Sustainable Consumption. Sustainability 2011, 3, 155–183. [Google Scholar] [CrossRef] [Green Version]
- Datta, S. Fishery By-Products. In Manual on Fish Processing and Value Added Fish Products, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2013; pp. 93–99. [Google Scholar]
- Sen, A.R.; Datta, S.; Mahapatra, B.K.; Sardar, P. Bioactive compounds from fishery resources—A boon for human health. In Proceedings of the International Conference on Aquatic Resources and Sustainable Managemen, Kolkata, India, 17–19 February 2016; Volume 17. [Google Scholar]
- López-Mosquera, M.E.; Fernández-Lema, E.; Villares, R.; Corral, R.; Alonso, B.; Blanco, C. Composting fish waste and seaweed to produce a fertilizer for use in organic agriculture. Procedia Environ. Sci. 2011, 9, 113–117. [Google Scholar] [CrossRef] [Green Version]
- Edmeades, D.C. The long-term effects of manures and fertilisers on soil productivity and quality: A review. Nutr. Cycl. Agroecosyst. 2003, 66, 165–180. [Google Scholar] [CrossRef]
- Reardon, C.L.; Wuest, S.B. Soil amendments yield persisting effects on the microbial communities—A 7-year study. Appl. Soil Ecol. 2016, 101, 107–116. [Google Scholar] [CrossRef] [Green Version]
- Ge, G.; Li, Z.; Fan, F.; Chu, G.; Hou, Z.; Liang, Y. Soil biological activity and their seasonal variations in response to long-term application of organic and inorganic fertilizers. Plant Soil 2010, 326, 31. [Google Scholar] [CrossRef]
- Hammed, T.B.; Oloruntoba, E.O.; Ana, G.R.E.E. Enhancing growth and yield of crops with nutrient-enriched organic fertilizer at wet and dry seasons in ensuring climate-smart agriculture. Int. J. Recycl. Org. Waste Agric. 2019, 8, 81–92. [Google Scholar] [CrossRef] [Green Version]
- Golabi, M.H.; Denney, M.; Iyekar, C. Value of composted organic wastes as an alternative to synthetic fertilizers for soil quality improvement and increased yield. Compos. Sci. Util. 2007, 15, 267–271. [Google Scholar] [CrossRef]
- Mahmoud, E.; Abd El-Kader, N.; Robin, P.; Akkal-Corfini, N.; Abd El-Rahman, L. Effects of different organic and inorganic fertilizers on cucumber yield and some soil properties. World J. Agric. Sci. 2009, 5, 408–414. [Google Scholar]
- Álvarez, E.; Fernández-Sanjurjo, M.J.; Seco, N.; Núñez, A. Use of mussel shells as a soil amendment: Effects on bulk and rhizosphere soil and pasture production. Pedosphere 2012, 22, 152–164. [Google Scholar] [CrossRef]
- Garau, G.; Castaldi, P.; Deiana, S.; Campus, P.; Mazza, A.; Deiana, P.; Pais, A. Assessment of the use potential of edible sea urchins (Paracentrotus lividus) processing waste within the agricultural system: Influence on soil chemical and biological properties and bean (Phaseolus vulgaris) and wheat (Triticum vulgare) growth in an amended acidic soil. J. Environ. Manag. 2012, 109, 12–18. [Google Scholar]
- Drozdov, A.L.; Sharmankina, V.V.; Zemnukhova, L.A.; Polyakova, N.V. Chemical composition of spines and tests of sea urchins. Biol. Bull. 2016, 43, 521–531. [Google Scholar] [CrossRef]
- Amarowicz, R.; Synowiecki, J.; Shahidi, F. Chemical composition of shells from red (Strongylocentrotus franciscanus) and green (Strongylocentrotus droebachiensis) sea urchin. Food Chem. 2012, 133, 822–826. [Google Scholar] [CrossRef]
- Ling, S.D.; Keane, J.P. Resurvey of the Longspined Sea Urchin (Centrostephanus rodgersii) and Associated Barren Reef in Tasmania; University of Tasmania: Hobart, Tasmania, 2018. [Google Scholar]
- Bergmann, W. Colour Atlas Nutritional Disorders of Plants: Visual and Analytical Diagnosis; Fischer: Auburn Hills, MI, USA, 1992. [Google Scholar]
- Dumas, J. Procedes de I’analyse organique. Ann. Chim. Phys. 1831, 47, 198–205. [Google Scholar]
- Rayment, G.; Higginson, F.R. Australian Laboratory Handbook of Soil and Water Chemical Methods; Inkata Press Pty Ltd.: Melbourne, ON, Canada, 1992. [Google Scholar]
- Rayment, G.E.; Lyons, D.J. Soil Chemical Methods: Australasia; CSIRO Publishing: Clayton, ON, Canada, 2011; Volume 3. [Google Scholar]
- Su, L.; Diretto, G.; Purgatto, E.; Danoun, S.; Zouine, M.; Li, Z.; Roustan, J.P.; Bouzayen, M.; Giuliano, G.; Chervin, C. Carotenoid accumulation during tomato fruit ripening is modulated by the auxin-ethylene balance. BMC Plant Biol. 2015, 15, 114. [Google Scholar] [CrossRef]
- Clarke, K.; Gorley, R. PRIMER Version 7: User Manual/Tutorial; PRIMER-E: Auckland, New Zealand, 2015; p. 192. [Google Scholar]
- Almeselmani, M.; Pant, R.; Singh, B. Potassium level and physiological response and fruit quality in hydroponically grown tomato. Int. J. Veg. Sci. 2009, 16, 85–99. [Google Scholar] [CrossRef]
- Shabani, E.; Tabatabaei, S.J.; Bolandnazar, S.; Ghasemi, K. Vegetative growth and nutrient uptake of salinity stressed cherry tomato in different calcium and potassium level. Int. Res. J. Appl. Basic Sci. 2012, 3, 1845–1853. [Google Scholar]
- Tei, F.; Benincasa, P.; Guiducci, M. Effect of N availability on growth, N uptake, light interception and photosynthetic activity in processing tomato. In Workshop Towards and Ecologically Sound Fertilisation in Field Vegetable Production; ISHS ActaHort. 571: Wageningen, The Netherlands, 2000. [Google Scholar]
- Wang, C.; Wang, C.; Gu, F.; Chen, J.; Yang, H.; Jiang, J.; Du, T.; Zhang, J. Assessing the response of yield and comprehensive fruit quality of tomato grown in greenhouse to deficit irrigation and nitrogen application strategies. Agric. Water Manag. 2015, 161, 9–19. [Google Scholar] [CrossRef]
- Scholberg, J.; McNeal, B.L.; Boote, K.J.; Jones, J.W.; Locascio, S.J.; Olson, S.M. Nitrogen stress effects on growth and nitrogen accumulation by field-grown tomato. Agron. J. 2000, 92, 159–167. [Google Scholar] [CrossRef]
- Guidi, L.; Lorefice, G.; Pardossi, A.; Malorgio, F.; Tognoni, F.; Soldatini, G.F. Growth and photosynthesis of Lycopersicon esculentum (L.) plants as affected by nitrogen deficiency. Biol. Plant. 1997, 40, 235. [Google Scholar] [CrossRef]
- Ozores-Hampton, M.; McAvoy, G. Blossom Drop, Reduced FRUIT Set, and Post-Pollination Disorders in Tomato; Electronic Data Info. Source. HS1195; University of Florida: Gainesville, FL, USA, 2017; p. 9. [Google Scholar]
- Tegeder, M.; Rentsch, D. Uptake and Partitioning of Amino Acids and Peptides. Mol. Plant 2010, 3, 997–1011. [Google Scholar] [CrossRef]
- Çolpan, E.; Zengin, M.; Özbahçe, A. The effects of potassium on the yield and fruit quality components of stick tomato. Hortic. Environ. Biotechnol. 2013, 54, 20–28. [Google Scholar] [CrossRef]
- Besford, R.; Maw, G. Effect of potassium nutrition on tomato plant growth and fruit development. Plant Soil 1975, 42, 395–412. [Google Scholar] [CrossRef]
- Serio, F.; Leo, J.J.; Parente, A.; Santamaria, P. Potassium nutrition increases the lycopene content of tomato fruit. J. Hortic. Sci. Biotechnol. 2007, 82, 941–945. [Google Scholar] [CrossRef]
- Eshu, S.; Rangare, S.B.; Yadav, V.; Rangare, N.R. Physiological disorders in tomato (Solanum lycopersicum Mill.)-an abnormalities. Trends Biosci. 2014, 7, 3779–3785. [Google Scholar]
- Biddinger, E.J.; Liu, C.; Joly, R.J.; Raghothama, K.G. Physiological and molecular responses of aeroponically grown tomato plants to phosphorus deficiency. J. Am. Soc. Hortic. Sci. 1998, 123, 330–333. [Google Scholar] [CrossRef]
- Fujita, K.; Okada, M.; Lei, K.; Ito, J.; Ohkura, K.; Adu-Gyamfi, J.J.; Mohapatra, P.K. Effect of P-deficiency on photoassimilate partitioning and rhythmic changes in fruit and stem diameter of tomato (Lycopersicon esculentum) during fruit growth. J. Exp. Bot. 2003, 54, 2519–2528. [Google Scholar] [CrossRef]
- Uchida, R. Essential nutrients for plant growth: Nutrient functions and deficiency symptoms. In Plant Nutrient Management in Hawaii’s Soils; University of Hawaii: Honolulu, HI, USA, 2000; pp. 31–55. [Google Scholar]
- Hao, X.; Papadopoulos, A.P. Effects of calcium and magnesium on plant growth, biomass partitioning, and fruit yield of winter greenhouse tomato. HortScience 2004, 39, 512–515. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Snapp, S. Potassium and boron nutrition enhance fruit quality in Midwest fresh market tomatoes. Commun. Soil Sci. Plant Anal. 2009, 40, 1937–1952. [Google Scholar] [CrossRef]
- Sathya, S.; Mani, S.; Mahendran, P.P.; Arulmozhiselvan, K. Effect of application of boron on growth, quality and fruit yield of PKM 1 tomato. Indian J. Agric. Res. 2010, 44, 274–280. [Google Scholar]
- Smit, J.; Combrink, N. The effect of boron levels in nutrient solutions on fruit production and quality of greenhouse tomatoes. South Afr. J. Plant Soil 2004, 21, 188–191. [Google Scholar] [CrossRef] [Green Version]
- Naz, R.M.M.; Muhammad, S.A.; Hamid, A.; Bibi, F. Effect of boron on the flowering and fruiting of tomato. Sarhad J. Agric. 2012, 28, 37–40. [Google Scholar]
- Davis, J.M.; Sanders, D.C.; Nelson, P.V.; Lengnick, L.; Sperry, W.J. Boron improves growth, yield, quality, and nutrient content of tomato. J. Am. Soc. Hortic. Sci. 2003, 128, 441–446. [Google Scholar] [CrossRef]
- Saure, M.C. Blossom-end rot of tomato (Lycopersicon esculentum Mill.)—A calcium- or a stress-related disorder? Sci. Hortic. 2001, 90, 193–208. [Google Scholar] [CrossRef]
- Taylor, M.D.; Locascio, S.J. Blossom-End Rot: A Calcium Deficiency. J. Plant Nutr. 2004, 27, 123–139. [Google Scholar] [CrossRef]
- Camacho-Cristóbal, J.J.; Rexach, J.; González-Fontes, A. Boron in plants: Deficiency and toxicity. J. Integr. Plant Biol. 2008, 50, 1247–1255. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.; Wu, X.; Ullah, A.; Fahad, S.; Muhammad, R.; Yan, L.; Jiang, C. Deficiency and toxicity of boron: Alterations in growth, oxidative damage and uptake by citrange orange plants. Ecotoxicol. Environ. Saf. 2017, 145, 575–582. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.L.; Stanghellini, C.; Challa, H. Effect of electrical conductivity and transpiration on production of greenhouse tomato (Lycopersicon Esculentum L.). Sci. Hortic. 2001, 88, 11–29. [Google Scholar] [CrossRef]
- Sonneveld, C.; Welles, G. Yield and quality of rockwool-grown tomatoes as affected by variations in EC-value and climatic conditions. Plant Soil 1988, 111, 37–42. [Google Scholar] [CrossRef]
- Eltez, R.; Tüzel, Y.; Gül, A.; Tüzel, I.H.; Duyar, H. Effects of different EC levels of nutrient solution on greenhouse tomato growing. In International Symposium on Techniques to Control Salination for Horticultural Productivity; ISHS ActaHort. 573: Antalya, Turkey, 2000. [Google Scholar]
- Sainju, U.M.; Dris, R.; Singh, B. Mineral nutrition of tomato. Food Agric. Environ. 2003, 1, 176–183. [Google Scholar]
- Kang, Y.I.; Park, J.M.; Kim, S.H.; Kang, N.J.; Park, K.S.; Lee, S.Y.; Jeong, B.R. Effects of root zone pH and nutrient concentration on the growth and nutrient uptake of tomato seedlings. J. Plant Nutr. 2011, 34, 640–652. [Google Scholar] [CrossRef]
- Beckles, D. Factors affecting the postharvest soluble solids and sugar content of tomato (Solanum lycopersicum L.) fruit. Postharvest Biol. Technol. 2012, 63, 129–140. [Google Scholar] [CrossRef]
- Kaniszewski, S.; Rumpel, K. Effect of nitrogen fertilization and irrigation on yield, nitrogen status in plants and quality of fruits of direct seeded tomatoes. In II International Symposium on Processing Tomatoes, XXII IHC; ISHS ActaHort. 200: Davis, CA, USA, 1986. [Google Scholar]
- Fraser, P.D.; Truesdale, M.R.; Bird, C.R.; Schuch, W.; Bramley, P.M. Carotenoid biosynthesis during tomato fruit development (evidence for tissue-specific gene expression). Plant Physiol. 1994, 105, 405–413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, K.; Lee, G.; Han, Y.J.; Bunn, J.M. Tomato maturity evaluation using color image analysis. Trans. Am. Soc. Agric. Eng. 1995, 38, 171–176. [Google Scholar] [CrossRef]
Element | Unit | Potting Mix | Total Hoagland mg/Pot | Urchin Waste Powder | Urchin Waste Powder Application Rates (g/Pot) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0.30% | 0.50% | 0.80% | 1% | 2% | 3% | 5% | |||||
12 | 20 | 32 | 40 | 80 | 120 | 200 | |||||
N | g 100 g−1 | 0.0007 ± 0.0001 | 1950 | 0.500 ± 0.070 | 0.060 | 0.100 | 0.160 | 0.200 | 0.400 | 0.600 | 1.00 |
P | g 100 g−1 | 0.0029 ± 0.0002 | 223 | 0.030 ± 0.003 | 0.004 | 0.006 | 0.010 | 0.012 | 0.024 | 0.036 | 0.060 |
K | g 100 g−1 | 0.164 ± 0.005 | 1685 | 0.260 ± 0.030 | 0.031 | 0.052 | 0.083 | 0.104 | 0.208 | 0.312 | 0.520 |
Ca | g 100 g−1 | 0.383 ± 0.010 | 2076 | 40.4 ± 0.670 | 4.85 | 8.08 | 12.9 | 16.1 | 32.3 | 48.5 | 80.8 |
Mg | g 100 g−1 | 0.057 ± 0.001 | 353 | 1.77 ± 0.020 | 0.210 | 0.350 | 0.570 | 0.710 | 1.42 | 2.12 | 3.54 |
Na | g 100 g−1 | 0.012 ± 0.001 | 0.0408 | 1.35 ± 0.160 | 0.160 | 0.270 | 0.430 | 0.540 | 1.08 | 1.62 | 2.70 |
S | g 100 g−1 | 0.0057 ± 0.0013 | 461 | 0.470 ± 0.080 | 0.056 | 0.094 | 0.150 | 0.188 | 0.376 | 0.564 | 0.940 |
Cu | mg kg−1 | 0.870 ± 0.100 | 0.240 | 0.600 ± 0.120 | 0.072 | 0.120 | 0.190 | 0.240 | 0.480 | 0.720 | 1.20 |
Zn | mg kg−1 | 18.1 ± 1.21 | 0.600 | 6.36 ± 2.24 | 0.760 | 1.27 | 2.04 | 2.54 | 5.09 | 7.63 | 12.7 |
Fe | mg kg−1 | 63.3 ± 7.34 | 3.60 | 19.3 ± 5.60 | 2.32 | 3.87 | 6.19 | 7.74 | 15.4 | 23.2 | 38.7 |
Mn | mg kg−1 | 38.3 ± 2.63 | 5.64 | 1.87 ± 0.960 | 0.220 | 0.370 | 0.600 | 0.750 | 1.50 | 2.24 | 3.74 |
Mo | mg kg−1 | n/d | 0.864 | 0.114 ± 0.027 | 0.014 | 0.023 | 0.036 | 0.046 | 0.091 | 0.140 | 0.230 |
B | mg kg−1 | 0.680 ± 0.006 | 3.72 | 38.1 ± 1.86 | 4.57 | 7.62 | 12.2 | 15.2 | 30.5 | 45.7 | 76.2 |
EC | dSm−1 | 0.470 ± 0.06 | 1.70 | 7.64 ± 0.974 | 0.490 | 0.510 | 0.690 | 0.690 | 0.860 | 0.850 | 1.15 |
pH Level | 1:5 Water | 7.30 ± 0.10 | 5.80 | 8.06 ± 0.100 | 7.40 | 7.50 | 7.50 | 7.60 | 7.60 | 7.60 | 7.70 |
Height (cm) | Branches (n°) | CSA (mm) | Width (cm) | Dry Weight (gr) | DMC (%) | |
---|---|---|---|---|---|---|
T1 | 32.9 ± 2.08 a | 15.0 ± 2.71 a | 8.47 ± 0.730 a | 39.7 ± 4.16 a | 5.61 ± 1.29 a | 17.7 ± 1.54 abc |
T2 | 32.0 ± 12.3 a | 15.4 ± 3.40 ab | 8.66 ± 0.800 ab | 43.1 ± 5.53 a | 6.96 ± 2.19 ab | 16.6 ± 1.29 a |
T3 | 37.0 ± 3.94 a | 18.1 ± 3.31 bc | 8.93 ± 0.660 abc | 46.2 ± 6.30 ab | 8.39 ± 2.74 ab | 16.9 ± 1.21 ab |
T4 | 40.0 ± 3.40 ab | 21.0 ± 3.59 bc | 9.40 ± 0.720 abc | 48.1 ± 4.38 ab | 9.58 ± 2.84 b | 17.5 ± 2.14 abc |
T5 | 46.3 ± 5.93 bc | 24.3 ± 4.00 c | 9.83 ± 1.01 bcd | 55.8 ± 7.30 bc | 15.4 ± 4.96 c | 17.8 ± 0.680 bc |
T6 | 46.7 ± 7.57 bc | 27.9 ± 5.02 d | 10.7 ± 0.760 cd | 59.9 ± 6.72 cd | 21.5 ± 7.16 d | 18.0 ± 0.860 cd |
T7 | 53.5 ± 3.10 d | 29.6 ± 4.55 d | 11.2 ± 0.900 e | 68.4 ± 5.02 e | 32.1 ± 4.73 e | 18.2 ± 0.580 d |
T8 | 55.0 ± 4.19 d | 33.9 ± 7.23 e | 11.2 ± 0.550 e | 62.7 ± 4.60 cd | 38.6 ± 4.34 f | 19.0 ± 0.470 d |
p-Value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
A | N (g 100 g−1) | P (g 100 g−1) | K (g 100 g−1) | Ca (g 100 g−1) | Mg (g 100 g−1) | Na (g 100 g−1) |
---|---|---|---|---|---|---|
T1 | 0.080 ± 0.001 a | 0.018 ± 0.001 a | 0.170 ± 0.005 a | 0.160 ± 0.009 a | 0.031 ± 0.002 a | 0.002 ± 0.0004 a |
T2 | 0.090 ± 0.006 a | 0.018 ± 0.002 a | 0.210 ± 0.021 a | 0.260 ± 0.026 a | 0.042 ± 0.002 a | 0.003 ± 0.0001 a |
T3 | 0.110 ± 0.003 a | 0.018 ± 0.001 a | 0.230 ± 0.001 a | 0.310 ± 0.025 ab | 0.050 ± 0.004 ab | 0.003 ± 0.0003 a |
T4 | 0.130 ± 0.008 a | 0.018 ± 0.001 a | 0.260 ± 0.012 ab | 0.310 ± 0.011 ab | 0.053 ± 0.002 ab | 0.003 ± 0.0004 a |
T5 | 0.220 ± 0.010 b | 0.027 ± 0.001 a | 0.360 ± 0.015 bc | 0.500 ± 0.020 bc | 0.076 ± 0.006 bc | 0.004 ± 0.0006 a |
T6 | 0.310 ± 0.011 c | 0.029 ± 0.003 ab | 0.440 ± 0.025 c | 0.680 ± 0.073 cd | 0.098 ± 0.012 c | 0.008 ± 0.0008 b |
T7 | 0.450 ± 0.014 d | 0.040 ± 0.003 b | 0.630 ± 0.027 d | 0.800 ± 0.026 de | 0.135 ± 0.002 d | 0.014 ± 0.0001 c |
T8 | 0.760 ± 0.019 e | 0.076 ± 0.005 c | 1.02 ± 0.033 e | 0.940 ± 0.068 e | 0.182 ± 0.013 e | 0.010 ± 0.0014 b |
p-Value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
B | S (g 100 g−1) | Cu (mg kg−1) | Fe (mg kg−1) | Mn (mg kg−1) | Zn (mg kg−1) | B (mg kg−1) |
T1 | 0.023 ± 0.001 a | 0.170 ± 0.060 a | 3.25 ± 0.300 a | 1.67 ± 0.110 a | 0.950 ± 0.06 a | 2.16 ± 0.090 a |
T2 | 0.032 ± 0.001 ab | 0.160 ±0.050 a | 3.80 ± 0.290 a | 2.89 ± 0160 ab | 1.25 ± 0.120 a | 2.87 ± 0.140 ab |
T3 | 0.036 ± 0.003 ab | 0.120 ± 0.030 a | 4.06 ± 0.330 a | 3.34 ± 0.420 bc | 1.34 ± 0.110 ab | 3.17 ± 0.190 ab |
T4 | 0.035 ± 0.002 ab | 0.100 ± 0.001 a | 3.81 ± 0.070 a | 3.53 ± 0.230 bc | 1.41 ± 0.180 ab | 3.29 ± 0.090 ab |
T5 | 0.053 ± 0.002 bc | 0.240 ± 0.090 a | 6.77 ± 0.550 ab | 4.86 ± 0.270 cd | 2.26 ± 0.270 bc | 4.93 ± 0.110 bc |
T6 | 0.066 ± 0.007 c | 0.350 ± 0.040 a | 8.55 ± 0.700 b | 6.40 ± 0.490 d | 2.78 ± 0.380 c | 6.83 ± 0.740 c |
T7 | 0.076 ± 0.003 c | 0.300 ± 0.030 a | 12.4 ± 0.940 c | 9.86 ± 0.340 e | 4.11 ± 0.200 d | 9.73 ± 0.660 d |
T8 | 0.155 ± 0.013 d | 1.07 ± 0.170 b | 17.6 ± 1.52 d | 13.3 ± 0.460 f | 5.13 ± 0.120 e | 15.9 ± 0.850 e |
p-Value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Flowers (n◦) | Fruits (n◦) | Diameter (cm) | Yield (gr/Plant) | Fresh Weight (gr) | |
---|---|---|---|---|---|
T1 | 5.40 ± 2.50 a | 1.10 ± 0.470 a | 34.3 ± 14.3 a | 23.6 ± 17.6 a | 28.9 ± 4.53 a |
T2 | 5.50 ± 3.10 a | 1.20 ± 0.570 a | 40.1 ± 15.7 ab | 41.1 ± 20.1 ab | 46.4 ± 4.21 ab |
T3 | 9.80 ± 4.96 ab | 1.50 ± 0.710 ab | 47.3 ± 10.0 b | 65.2 ± 22.1 bc | 62.3 ± 7.08 abc |
T4 | 11.4 ± 4.43 ab | 1.60 ± 0.700 ab | 47.1 ± 9.38 bc | 69.2 ± 25.3 bc | 63.1 ± 8.49 abc |
T5 | 17.4 ± 7.69 bc | 2.10 ± 0.740 b | 44.1 ± 11.6 b | 84.9 ± 27.9 c | 68.9 ± 9.71 bc |
T6 | 24.4 ± 9.59 cd | 3.30 ± 1.77 c | 54.9 ± 10.3 cd | 144 ± 45.1 d | 98.5 ± 8.01 c |
T7 | 34.7 ± 5.19 e | 4.30 ± 1.49 d | 57.5 ± 11.9 d | 238 ± 63.2 e | 150 ± 15.0 d |
T8 | 33.0 ± 11.2 de | 8.30 ± 1.34 e | 60.3 ± 9.38 d | 448 ± 74.0 f | 150 ± 6.08 d |
p-Value | <0.001 | <0.001 | <0.001 | <0.01 | <0.001 |
A | N (g 100 g−1) | P (g 100 g−1) | K (g 100 g−1) | Ca (g 100 g−1) | Mg (g 100 g−1) | Na (g 100 g−1) |
---|---|---|---|---|---|---|
T1 | 0.039 ± 0.003 a | 0.017 ± 0.001 a | 0.146 ± 0.004 a | 0.006 ± 0.0003 a | 0.005 ± 0.0003 a | 0.001 ± 0.0001 a |
T2 | 0.062 ± 0.004 ab | 0.029 ± 0.002 a | 0.272 ± 0.023 ab | 0.013 ± 0.002 ab | 0.009 ± 0.001 ab | 0.002 ± 0.0002 a |
T3 | 0.084 ± 0.008 ab | 0.034 ± 0.002 a | 0.359 ± 0.024 b | 0.021 ± 0.001 ab | 0.012 ± 0.001 ab | 0.003 ± 0.0005 ab |
T4 | 0.091 ± 0.005 ab | 0.035 ± 0.003 a | 0.383 ± 0.021 b | 0.024 ± 0.001 ab | 0.012 ± 0.001 ab | 0.002 ± 0.0003 ab |
T5 | 0.128 ± 0.017 b | 0.040 ± 0.003 ab | 0.444 ± 0.019 b | 0.025 ± 0.001 ab | 0.014 ± 0.001 b | 0.003 ± 0.0004 ab |
T6 | 0.264 ± 0.022 c | 0.077 ± 0.008 bc | 0.851 ± 0.046 c | 0.038 ± 0.003 b | 0.027 ± 0.003 c | 0.008 ± 0.001 ab |
T7 | 0.451 ± 0.026 d | 0.110 ± 0.016 c | 1.28 ± 0.080 d | 0.064 ± 0.00 c | 0.041 ± 0.002 d | 0.021 ± 0.011 b |
T8 | 0.873 ± 0.016 e | 0.246 ± 0.012 d | 2.55 ± 0.038 e | 0.116 ± 0.014 d | 0.087 ± 0.002 e | 0.016 ± 0.002 ab |
p-Value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.035 |
B | S (g 100 g−1) | Cu (mg kg−1) | Fe (mg kg−1) | Mn (mg kg−1) | Zn (mg kg−1) | B (mg kg−1) |
T1 | 0.005 ± 0.0003 a | 0.160 ± 0.034 a | 1.72 ± 0.110 a | 0.320 ± 0.020 a | 0.700 ± 0.053 a | 0.670 ± 0.028 a |
T2 | 0.010 ± 0.0005 ab | 0.210 ± 0.040 a | 2.90 ± 0.020 a | 0.570 ± 0.057 ab | 1.26 ± 0.09 ab | 1.26 ± 0.112 ab |
T3 | 0.013 ± 0.0005 ab | 0.240 ± 0.025 a | 3.29 ± 0.240 a | 0.720 ± 0.042 ab | 1.52 ± 0.137 ab | 1.77 ± 0.09 bc |
T4 | 0.015 ± 0.0003 b | 0.260 ± 0.005 a | 3.86 ± 0.060 a | 0.810 ± 0.081 ab | 1.66 ± 0.048 ab | 1.97 ± 0.052 bc |
T5 | 0.018 ± 0.001 b | 0.360 ± 0.050 a | 5.08 ± 0.570 a | 0.930 ± 0.076 b | 2.26 ± 0.254 b | 2.31± 0.028 c |
T6 | 0.034 ± 0.003 c | 0.780 ± 0.014 ab | 9.85 ± 1.24 b | 1.71 ± 0.142 c | 4.66 ± 0.365 c | 3.91 ± 0.209 d |
T7 | 0.053 ± 0.003 d | 1.14 ± 0.208 b | 14.2 ± 1.34 c | 2.86 ± 0.193 d | 7.48 ± 0.57 d | 6.35 ± 0.295 e |
T8 | 0.100 ± 0.002 e | 2.57 ± 0.336 c | 23.6 ± 1.06 d | 5.66 ± 0.136 e | 10.1 ± 0.496 e | 12.0 ± 0.382 f |
p-Value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
L | a | b | Hue Angle | Chroma | Firmness | |
---|---|---|---|---|---|---|
T1 | 46.6 ± 2.98 a | 18.2 ± 2.45 a | 31.0 ± 2.98 a | 1.02 ± 0.090 a | 36.9 ± 2.15 a | 0.670 ± 0.060 a |
T2 | 37.4 ± 0.370 b | 22.7 ± 1.08 abc | 21.3 ± 0.630 bc | 0.760 ± 0.010 b | 31.2 ± 1.18 abc | 0.490 ± 0.020 b |
T3 | 40.1 ± 0.660 b | 25.3 ± 1.25 bc | 25.6 ± 0.890 ab | 0.800 ± 0.030 b | 36.2 ± 1.22 a | 0.460 ± 0.010 b |
T4 | 40.0 ± 0.790 b | 27.0 ± 1.27 c | 25.6 ± 1.29 ab | 0.760 ± 0.020 b | 37.3 ± 1.64 a | 0.490 ± 0.020 b |
T5 | 40.2 ± 1.79 b | 22.6 ± 1.62 abc | 24.3 ± 2.00 bc | 0.810 ± 0.060 b | 33.8 ± 1.55 ab | 0.480 ± 0.030 b |
T6 | 37.9 ± 0.970 b | 22.5 ± 1.60 abc | 21.8 ± 1.65 bc | 0.770 ± 0.020 b | 31.4 ± 2.20 abc | 0.440 ± 0.020 b |
T7 | 35.2 ± 0.320 b | 19.6 ± 0.830 ab | 17.7 ± 0.630 c | 0.740 ± 0.010 b | 26.4 ± 0.970 c | 0.400 ± 0.020 b |
T8 | 36.8 ± 1.19 b | 18.7 ± 0.770 a | 19.2 ± 1.30 bc | 0.790 ± 0.040 b | 27.0 ± 0.960 bc | 0.490 ± 0.030 b |
p-Value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
A | N (mg kg−1) | P (mg kg−1) | K (g 100 g−1) | Ca (g 100 g−1) | Mg (g 100 g−1) | Na (g 100 g−1) |
---|---|---|---|---|---|---|
T1 | 9.00 ± 2.00 | 12.0 ± 0.700 | 0.066 ± 0.004 a | 0.496 ± 0.019 a | 0.050 ± 0.002 | 0.010 ± 0.001 a |
T2 | 10.0 ± 3.00 | 13.0 ± 0.300 | 0.058 ± 0.006 a | 0.501 ± 0.012 a | 0.044 ± 0.001 | 0.017 ± 0.004 ab |
T3 | 7.00 ± 1.00 | 11.0 ± 0.300 | 0.047 ± 0.005 ab | 0.523± 0.024 ab | 0.041 ± 0.002 | 0.014 ± 0.001 ab |
T4 | 9.00 ± 2.00 | 12.0 ± 0.300 | 0.058 ± 0.010 a | 0.527 ± 0.014 ab | 0.043 ± 0.002 | 0.017 ± 0.002 ab |
T5 | 8.00 ± 3.00 | 14.0 ± 0.700 | 0.039 ± 0.004 abc | 0.625 ± 0.040 b | 0.048 ± 0.002 | 0.022 ± 0.004 ab |
T6 | 11.0 ± 1.00 | 14.0 ± 2.30 | 0.021 ± 0.005 cd | 0.589 ± 0.018 ab | 0.045 ± 0.002 | 0.025 ± 0.003 ab |
T7 | 18.0 ± 6.00 | 13.0 ± 1.90 | 0.015 ± 0.004 d | 0.559 ± 0.018 ab | 0.042 ± 0.003 | 0.032 ± 0.009 b |
p-Value | ns | ns | <0.01 | 0.010 | ns | ns |
B | S (g 100 g−1) | Cu (mg kg−1) | Fe (mg kg−1) | Mn (mg kg−1) | Zn (mg kg−1) | B (mg kg−1) |
T1 | 0.003 ± 0.001 a | 12.1 ± 0.980 | 54.5 ± 1.86 a | 47.7 ± 2.23 a | 20.4 ± 1.66 | 0.520 ± 0.009 |
T2 | 0.004 ± 0.001 ab | 7.70 ± 0.840 | 43.5 ± 4.89 ab | 41.4 ± 2.71 ab | 13.5 ± 0.620 | 0.520 ± 0.030 |
T3 | 0.004 ± 0.001 ab | 7.23 ± 1.14 | 38.2 ± 1.16 bc | 39.9 ± 0.340 ab | 14.0 ± 0.720 | 0.540 ± 0.030 |
T4 | 0.004 ± 0.001 ab | 9.78 ± 0.440 | 37.4 ± 1.49 bc | 39.8 ± 1.19 ab | 15.0 ± 0.230 | 0.530 ± 0.019 |
T5 | 0.004 ± 0.001 ab | 12.5 ± 0.430 | 37.5 ± 2.00 bc | 41.8 ± 0.390 ab | 16.1 ± 0.920 | 0.550 ± 0.003 |
T6 | 0.008 ± 0.001 bc | 12.1 ± 1.92 | 37.3 ± 1.75 bc | 41.7 ± 2.38 ab | 17.3 ± 1.86 | 0.520 ± 0.010 |
T7 | 0.009 ± 0.002 c | 11.1 ± 1.61 | 30.3 ± 2.35 bc | 35.1 ± 2.31 b | 19.0 ± 3.20 | 0.507 ± 0.017 |
p-Value | 0.005 | 0.026 | <0.001 | 0.017 | ns | ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campus, P.; Swarts, N.D.; Mundy, C.; Keane, J.P.; Gardner, C. Assessing Processing Waste from the Sea Urchin (Centrostephanus rodgersii) Fishery as an Organic Fertilizer. Agronomy 2022, 12, 2919. https://doi.org/10.3390/agronomy12122919
Campus P, Swarts ND, Mundy C, Keane JP, Gardner C. Assessing Processing Waste from the Sea Urchin (Centrostephanus rodgersii) Fishery as an Organic Fertilizer. Agronomy. 2022; 12(12):2919. https://doi.org/10.3390/agronomy12122919
Chicago/Turabian StyleCampus, Paolo, Nigel D. Swarts, Craig Mundy, John P. Keane, and Caleb Gardner. 2022. "Assessing Processing Waste from the Sea Urchin (Centrostephanus rodgersii) Fishery as an Organic Fertilizer" Agronomy 12, no. 12: 2919. https://doi.org/10.3390/agronomy12122919
APA StyleCampus, P., Swarts, N. D., Mundy, C., Keane, J. P., & Gardner, C. (2022). Assessing Processing Waste from the Sea Urchin (Centrostephanus rodgersii) Fishery as an Organic Fertilizer. Agronomy, 12(12), 2919. https://doi.org/10.3390/agronomy12122919