Optimal Nutrient Solution and Dose for the Yield of Nuclear Seed Potatoes under Aeroponics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location and Conditions
2.2. Design
2.3. Aeroponic System
2.4. Nutrient Solutions
2.5. Data Collection
2.6. SPAD Readings of the 4th Leaf
2.7. Nitrogen Balance Index, Chlorophyll, and Flavonoids of the 4th Leaf
2.8. Biometric Characteristics and Biomass of the 4th Leaf
2.9. Nitrate-N Petiole Sap-Test of the 4th Leaf
2.10. Minitubers Production
2.11. Biomass
2.12. Data Analysis
3. Results
3.1. Indexes of the 4th Leaf
3.2. Prognosis Correlations
3.3. Minituber Numbers and Fresh Weight
3.4. Minituber Numbers: Cross Diameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, F. The importance of quality potato seed in increasing potato production in Asia and the pacific region. In Workshop to Commemorate the International Year of Potato; Papademetriou, M.K., Ed.; Food and Agriculture Organization of the United Nations Regional Office for Asia and the Pacific: Bangkok, Thailand, 2008; pp. 46–54. [Google Scholar]
- Oraby, H.; Lachance, A.; Desjardins, Y. A low nutrient solution temperature and the application of stress treatments increase potato mini-tubers production in an aeroponic system. Am. J. Potato Res. 2015, 92, 387–397. [Google Scholar] [CrossRef]
- Furlani, P.R. Instruções Para o Cultivo de Hortaliças de Folhas pela Técnica de Hidroponia NFT; Instituto Agronômico. Boletim Técnico, 168; IAC: Campinas, Brazil, 1998. [Google Scholar]
- Factor, T.L.; Araujo, J.A.C.; Kawakami, F.P.C.; Iunck, V. Potato basic minitubers production in three hydroponic systems. Hort. Bras. 2007, 25, 82–87. [Google Scholar] [CrossRef] [Green Version]
- Souza, C.B.S.; Fontes, P.C.R.; Moreira, M.A.; Cecon, P.R.; Puiatti, M. Produção de minitubérculos de batata semente básica em hidroponia em função de doses de nitrogênio. Rev. Cienc. Agron. 2013, 44, 714–723. [Google Scholar] [CrossRef]
- Silva Filho, J.B. Índices de Nitrogênio na Planta e Produtividade de Tubérculos de Batata-Semente em Sistema Hidropônico de três Fases. Master’s Thesis, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil, 2011. Available online: https://www.locus.ufv.br/bitstream/123456789/4561/1/texto%20completo.pdf (accessed on 10 October 2022).
- Cayambe, J.; Montesdeoca, F.; Lalama, M. Evaluación de soluciones nutritivas dinámicas para la producción de tubérculo-semilha categoría prebásica en dos variedades de papa bajo el sistema aeropónico. Rev. Rumip. 2010, 24, 57–69. [Google Scholar]
- Otazú, V. Manual on Quality Seed Potato Production Using Aeroponics; International Potato Center (CIP): Lima, Perú, 2010. [Google Scholar]
- Bundy, L.G.; Wolkowski, R.P.; Weis, G.G. Nitrogen source evaluation for potato production on irrigated sandy soils. Am. Potato J. 1986, 63, 385–397. [Google Scholar] [CrossRef]
- Silva, J.G.; França, M.G.C.; Gomide, F.T.F.; Magalhaes, J.R. Different nitrogen sources affect biomass partitioning and quality of potato production in a hydroponic system. Am. J. Potato Res. 2013, 90, 179–185. [Google Scholar] [CrossRef]
- Stevens, G.; Motavalli, P.; Scharf, P.; Nathan, M.; Dunn, D. Integrated Pest Management: Crop Nutrient Deficiencies and Toxicities; MU Extension, University of Missouri: Columbia, MO, USA, 2002. [Google Scholar]
- Fontes, P.C.R. Nutrição Mineral de Plantas—Avaliação e Diagnose; Arka Editora: Viçosa, Brazil, 2011. [Google Scholar]
- Muñoz-Huerta, R.F.; Guevara-Gonzalez, R.G.; Contreras-Medina, L.M.; Torres-Pacheco, I.; Prado-Olivarez, J.; Ocampo-Velazquez, R. A review of methods for sensing the nitrogen status in plants: Advantages, disadvantages and recent advances. Sensors 2013, 13, 10823–10843. [Google Scholar] [CrossRef]
- Wang, J.; Shen, C.; Liu, N.; Jin, X.; Fan, X.; Dong, C.; Xu, Y. Non-destructive evaluation of the leaf nitrogen concentration by in-field visible/near-infrared spectroscopy in pear orchards. Sensors 2017, 17, 538. [Google Scholar] [CrossRef] [Green Version]
- Lemaire, G.; Jeuffroy, M.H.; Gastal, F. Diagnosis tool for plant and crop N status in vegetative stage: Theory and practices for crop N management. Eur. J. Agron. 2008, 28, 614–624. [Google Scholar] [CrossRef]
- Ulissi, V.; Antonucci, F.; Benincasa, P.; Farneselli, M.; Tosti, G.; Guiducci, M.; Tei, F.; Costa, C.; Pallottino, F.; Pari, L.; et al. Nitrogen concentration estimation in tomato leaves by VIS-NIR non-destructive spectroscopy. Sensors 2011, 11, 6411–6424. [Google Scholar] [CrossRef] [Green Version]
- Morier, T.; Cambouris, A.N.; Chokmani, K. In-season nitrogen status assessment and yield estimation using hyperspectral vegetation indices in a potato crop. Agron. J. 2015, 107, 1295–1309. [Google Scholar] [CrossRef]
- Houlès, V.; Guérif, M.; Mary, B. Elaboration of a nitrogen nutrition indicator for winter wheat based on leaf area index and chlorophyll content for making nitrogen recommendations. Eur. J. Agron. 2007, 27, 1–11. [Google Scholar] [CrossRef]
- Yang, H.; Yang, J.; Lv, Y.; He, J. SPAD values and nitrogen nutrition index for the evaluation of rice nitrogen status. Plant Prod. Sci. 2014, 17, 81–92. [Google Scholar] [CrossRef]
- Tiwari, J.K.; Devi, S.; Ali, N.; Buckseth, T.; Moudgil, V.; Singh, R.K.; Kumar Chakrabarti, S.; Dua, V.K.; Kumar, D.; Kumar, M. Genomics approaches for improving nitrogen use efficiency in potato. In The Potato Genome. Compendium of Plant Genomes; Kumar Chakrabarti, S., Xie, C., Tiwari, J.K., Eds.; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Goffart, J.P.; Olivier, M.; Frankinet, M. Potato crop nitrogen status assessment to improve N fertilization management and efficiency: Past-present-future. Potato Res. 2008, 51, 355–383. [Google Scholar] [CrossRef]
- Ziadi, N.; Zebarth, B.J.; Bélanger, G.; Cambouris, A.N. Soil and plant tests to optimize fertilizer nitrogen management of potatoes. In Sustainable Potato Production: Global Case Studies; He, Z., Larkin, R., Honeycutt, W., Eds.; Springer: Dordrecht/Heidelberg, The Netherlands; New York, NY, USA; London, UK, 2012; pp. 187–207. [Google Scholar] [CrossRef]
- Milagres, C.D.C.; Fontes, P.C.R.; Silveira, M.V.D.; Moreira, M.A.; Lopes, I.P.C. Nitrogen indexes and model to prognostic the potato tubers production. Rev. Ceres 2018, 65, 261–270. [Google Scholar] [CrossRef] [Green Version]
- Hu, D.; Sun, Z.; Li, T.; Yan, H.; Zhang, H. Nitrogen nutrition index and its relationship with N use efficiency, tuber yield, radiation use efficiency, and leaf parameters in potatoes. J. Integr. Agric. 2014, 13, 1008–1016. [Google Scholar] [CrossRef] [Green Version]
- Badoni, A.; Chauhan, J.S. In vitro sterilization protocol for micropropagation of Solanum tuberosum cv. ‘Kufri Himalini.’ Academ. Arena 2010, 2, 24–27. [Google Scholar] [CrossRef]
- Tsoka, O.; Demo, P.; Nyende, A.B.; Ngamau, K. Potato seed tuber production from in vitro and apical stem cutting under aeroponic system. Afr. J. Biotechnol. 2012, 11, 12612–12618. [Google Scholar] [CrossRef] [Green Version]
- Chiipanthenga, M.; Maliro, M.; Demo, P.; Njoloma, J.; Khumar, N. Performance of different potato genotypes under aeroponics system. J. Appl. Hortic. 2013, 15, 142–146. [Google Scholar] [CrossRef]
- Farran, I.; Mingo-Castel, A.M. Potato minituber production using aeroponics: Effects of density and harvest intervals. Amer. J. Potato Res. 2006, 83, 47–53. [Google Scholar] [CrossRef]
- Chang, D.C.; Cho, I.C.; Suh, J.T.; Kim, S.J.; Lee, Y.B. Growth and yield response of three aeroponically grown potato cultivars (Solanum tuberosum L.) to different electrical conductivities of nutrient solution. Am. J. Potato Res. 2011, 88, 450–458. [Google Scholar] [CrossRef]
- Chang, D.C.; Park, C.S.; Kim, S.Y.; Lee, Y.B. Growth and tuberization of hydroponically grown potatoes. Potato Res. 2012, 55, 69–81. [Google Scholar] [CrossRef]
- Tierno, R.; Carrasco, A.; Ritter, E.; Galarreta, J.I.R. Differential growth response and minituber production of three potato cultivars under aeroponics and greenhouse bed culture. Am. J. Potato Res. 2014, 91, 346–353. [Google Scholar] [CrossRef]
- Silva Filho, J.B.; Fontes, P.C.R.; Cecon, P.R.; Ferreira, J.F.S.; McGiffen, M.E., Jr.; Montgomery, J.F. Yield of potato minitubers under aeroponics, optimized for nozzle type and spray direction. Hortscience 2020, 55, 14–22. [Google Scholar] [CrossRef] [Green Version]
- Silva Filho, J.B.; Fontes, P.C.R.; Cecon, P.R.; McGiffen, M.E., Jr. Evaluation of “UFV aeroponic system” to produce basic potato seed minitubers. Am. J. Potato Res. 2018, 95, 443–450. [Google Scholar] [CrossRef]
- Grieve, C.M.; Grattan, S.R.; Maas, E.V. Plant Salt Tolerance, In ASCE Manual and Reports on Engineering Practices No. 71 Agricultural Salinity Assessment and Management, 2nd ed.; Wallender, W.W., Tanji, K.K., Eds.; ASCE: Reston, VA, USA, 2017; pp. 405–459. [Google Scholar]
- Westermann, D.T.; Kleinkopf, G.E.; Porter, L.K. Nitrogen fertilizer efficiencies on potatoes. Am. Potato J. 1988, 65, 377–386. [Google Scholar] [CrossRef]
- Vos, J.; Bom, M. Hand-held chlorophyll meter: A promising tool to assess the nitrogen status of potato foliage. Potato Res. 1993, 36, 301–308. [Google Scholar] [CrossRef]
- Fontes, P.C.R. Cultura da batata. In Olericultura Teoria e Prática; Fontes, P.C.R., Ed.; UFV: Viçosa, Brazil, 2005. [Google Scholar]
- Li, L.; Qin, Y.; Liu, Y.; Hu, Y.; Fan, M. Leaf positions of potato suitable for determination of nitrogen content with a SPAD meter. Plant Prod. Sci. 2012, 15, 317–322. [Google Scholar] [CrossRef] [Green Version]
- Hunt, E.R., Jr.; Horneck, D.A.; Spinelli, C.B.; Turner, R.W.; Bruce, A.E.; Gadler, D.J.; Brungardt, J.J.; Hamm, P.B. Monitoring nitrogen status of potatoes using small unmanned aerial vehicles. Precis. Agric. 2018, 19, 314–333. [Google Scholar] [CrossRef]
- Gerendás, J.; Pieper, I. Suitability of the SPAD meter and the petiole nitrate test for nitrogen management in nursery potatoes. In Plant Nutrition—Food Security and Sustainability of Agro-Ecosystems; Horst, W.J., Schenk, M.K., Bürket, A., Claassen, N., Flessa, H., Frommer, W.B., Goldbach, H., Olfs, H.-W., Römheld, V., Sattelmacher, B., et al., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2001; pp. 716–717. [Google Scholar]
- Zhou, G.; Yin, X. Assessing nitrogen nutritional status, biomass and yield of cotton with NDVI, SPAD and petiole sap nitrate concentration. Exp. Agric. 2018, 54, 531–548. [Google Scholar] [CrossRef]
- Llanderal, A.; García-Caparrós, P.; Contreras, J.I.; Segura, M.L.; Lao, M.T. Evaluation of the nutrients variability in sap of different petiole samples in tomato plant. Commun. Soil Sci. Plant Anal. 2018, 49, 745–750. [Google Scholar] [CrossRef]
- Beukema, H.P.; Van Der Zaag, D.E. Introduction to Potato Production; Pudoc: Wageningen, The Netherlands, 1990. [Google Scholar]
- Mäck, G.; Schjoerring, J.K. Effect of NO3- supply on N metabolism of potato plants (Solanum tuberosum L.) with special focus on the tubers. Plant Cell Environ. 2002, 25, 999–1009. [Google Scholar] [CrossRef]
- Krauss, A.; Marschner, H. Influence of nitrogen nutrition, daylength and temperature on contents of gibberellic and abscisic acid and on tuberization in potato plants. Potato Res. 1982, 25, 13–21. [Google Scholar] [CrossRef]
- Krauss, A. Interaction of nitrogen nutrition, phytohormone and tuberization. In Potato Physiology; Li, P., Ed.; Academic Press: Orlando, FL, USA, 1985; Chapter 6; pp. 209–231. [Google Scholar]
- Stallknecht, G.F. Tuber initiation in Solanum tuberosum: Effect of phytohormones and induced changes in nucleic acid and protein metabolism. In Potato Physiology; Li, P., Ed.; Academic Press: London, UK, 1985; Chapter 7; pp. 231–260. [Google Scholar] [CrossRef]
- Ferreira, J.F.S.; Liu, X.; Suarez, D.L. Fruit yield and survival of five commercial strawberry cultivars under field cultivation and salinity stress. Sci. Hortic. 2019, 243, 401–410. [Google Scholar] [CrossRef]
- Serio, F.; Elia, A.; Signore, A.; Santamaria, P. Influence of nitrogen form on yield and nitrate content of subirrigated early potato. J. Sci. Food Agric. 2004, 84, 1428–1432. [Google Scholar] [CrossRef]
- Cao, W.; Tibbitts, T.W. Study of various NH4+/NO3− mixtures for enhancing growth of potatoes. J. Plant Nut. 1993, 16, 1691–1704. [Google Scholar] [CrossRef]
- Lima, R.E.M.; Farias, L.F.L.; Ferreira, J.F.S.; Suarez, D.L.; Bezerra, M.A. Translocation of photoassimilates in melon vines and fruits under salinity using 13C isotope. Sci. Hortic. 2020, 274, 109659. [Google Scholar] [CrossRef]
- Bhagia, S.; Ferreira, J.F.S.; Kothari, N.; Nunez, A.; Liu, X.; Dias, N.S.; Suarez, D.L.; Kumar, R.; Wyman, C.E. Sugar yield and composition of tubers from Jerusalem Artichoke (Helianthus tuberosus) irrigated with saline waters. Biotechnol. Bioeng. 2018, 115, 1475–1484. [Google Scholar] [CrossRef]
- Dias, N.S.; Ferreira, J.F.S.; Liu, X.; Suarez, D.L. Jerusalem artichoke (Helianthus tuberosus, L.) maintains high inulin, tuber yield, and antioxidant capacity under moderately-saline irrigation waters. Ind. Crops Prod. 2016, 94, 1009–1024. [Google Scholar] [CrossRef]
Treatments | SALTS |
---|---|
Otazú’s Nutrient Solution | |
1 (20% of standard N concentration) | MgSO4 7H2O, NH4NO3, Ca(H2PO4)2 H2O, KNO3, and KCl |
2 (50% of standard N concentration) | MgSO4 7H2O, NH4NO3, Ca(H2PO4)2 H2O, KNO3, and KCl |
3 (100% of standard N concentration) | MgSO4 7H2O (SI = 44), NH4NO3 (SI = 104), Ca(H2PO4)2 H2O, and KNO3 (SI = 74) |
4 (150% of standard N concentration) | MgSO4 7H2O, NH4NO3 (SI = 104), Ca(H2PO4)2 H2O, KNO3 (SI = 74), and NaNO3 (SI = 100) |
Modified Furlani’s Nutrient Solution | |
1 (20% of standard N concentration) | KH2PO4, MgSO4 7H2O, NH4NO3, (NH4)2SO4, K2SO4, Ca(NO3)2 4H2O, CaCl2 2H2O, and KCl |
2 (50% of standard N concentration) | KH2PO4, MgSO4 7H2O, NH4NO3, (NH4)2SO4 (SI = 68.3), K2SO4, Ca(NO3)2 4H2O (SI = 53), CaCl2 2H2O (SI = 82), and KNO3 (SI = 74) |
3 (100% of standard N concentration) | KH2PO4 (SI = 8.4), MgSO4 7H2O (SI = 44), NH4NO3 (SI = 104), (NH4)2SO4 (SI = 68.3), Ca(NO3)2 4H2O (SI = 53), NaNO3 (SI = 100), KCl (116.2), and KNO3 (SI = 74) |
4 (150% of standard N concentration) | KH2PO4 (SI = 8.4), MgSO4 7H2O (SI = 44), NH4NO3, (NH4)2SO4, Ca(NO3)2 4H2O, NaNO3, and KNO3 |
Nutrient | Otazú’s Nutrient Solution | |||||||
---|---|---|---|---|---|---|---|---|
Up to 21 DAT | 22 to 61 DAT | |||||||
20% | 50% | 100% | 150% | 20% | 50% | 100% | 150% | |
mmolc L−1 | ||||||||
Nitrate | 1.96 | 4.9 | 9.80 | 14.70 | 1.52 | 3.80 | 7.60 | 11.40 |
Ammonium | 0.88 | 2.2 | 4.40 | 6.60 | 0.44 | 1.10 | 2.20 | 3.30 |
Phosphorus | 2.60 | 2.6 | 2.60 | 2.60 | 2.60 | 2.60 | 2.60 | 2.60 |
Potassium | 5.40 | 5.40 | 5.40 | 5.40 | 5.40 | 5.40 | 5.40 | 5.40 |
Calcium | 1.30 | 1.30 | 1.30 | 1.30 | 1.30 | 1.30 | 1.30 | 1.30 |
Magnesium | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Sulfur | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
µmol L−1 | ||||||||
Iron (Chelated) | 151.97 | 151.97 | 151.97 | 151.97 | 151.97 | 151.97 | 151.97 | 151.97 |
Manganese | 8.74 | 8.74 | 8.74 | 8.74 | 8.74 | 8.74 | 8.74 | 8.74 |
Boron | 98.15 | 98.15 | 98.15 | 98.15 | 98.15 | 98.15 | 98.15 | 98.15 |
Zinc | 2.75 | 2.75 | 2.75 | 2.75 | 2.75 | 2.75 | 2.75 | 2.75 |
Copper | 2.83 | 2.83 | 2.83 | 2.83 | 2.83 | 2.83 | 2.83 | 2.83 |
Molybdenum | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 |
EC (dS m−1) | 1.10 | 1.26 | 1.60 | 2.12 | 1.00 | 1.15 | 1.35 | 1.80 |
Modified Furlani’s Nutrient Solution | ||||||||
Up to 21 DAT | 22 to 61 DAT | |||||||
20% | 50% | 100% | 150% | 20% | 50% | 100% | 150% | |
mmolc L−1 | ||||||||
Nitrate | 2.49 | 6.21 | 12.43 | 18.65 | 1.99 | 4.97 | 9.94 | 14.92 |
Ammonium | 0.34 | 0.86 | 1.71 | 2.56 | 0.27 | 0.69 | 1.37 | 2.05 |
Phosphorus | 1.26 | 1.26 | 1.26 | 1.26 | 1.58 | 1.58 | 1.58 | 1.58 |
Potassium | 4.68 | 4.68 | 4.68 | 4.68 | 5.85 | 5.85 | 5.85 | 5.85 |
Calcium | 3.55 | 3.55 | 3.55 | 3.55 | 3.55 | 3.55 | 3.55 | 3.55 |
Magnesium | 1.56 | 1.56 | 1.56 | 1.56 | 1.56 | 1.56 | 1.56 | 1.56 |
Sulfur | 1.63 | 1.63 | 1.63 | 1.63 | 2.04 | 2.04 | 2.04 | 2.04 |
µmol L−1 | ||||||||
Iron (Chelated) | 35.84 | 35.84 | 35.84 | 35.84 | 35.84 | 35.84 | 35.84 | 35.84 |
Manganese | 7.29 | 7.29 | 7.29 | 7.29 | 7.29 | 7.29 | 7.29 | 7.29 |
Boron | 27.78 | 27.78 | 27.78 | 27.78 | 27.78 | 27.78 | 27.78 | 27.78 |
Zinc | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |
Copper | 0.31 | 0.31 | 0.31 | 0.31 | 0.31 | 0.31 | 0.31 | 0.31 |
Molybdenum | 0.63 | 0.63 | 0.63 | 0.63 | 0.63 | 0.63 | 0.63 | 0.63 |
EC (dS m−1) | 1.93 | 2.00 | 2.11 | 2.72 | 1.85 | 2.00 | 2.30 | 2.65 |
Nitrate-N Petiole Sap-Test (mg L−1) | ||
---|---|---|
Indexes at 21 DAT | NS1 | NS2 |
SPAD readings | 0.51 ** | 0.47 ** |
Nitrogen Balance Index, NBI | 0.57 *** | 0.31 |
Chlorophyll Index | 0.46 ** | −0.03 |
Flavonol Index | −0.47 ** | −0.36 * |
4th Leaf Thickness (mm) | −0.45 ** | −0.29 |
4th Leaf Area (cm2) | 0.75 *** | 0.48 ** |
4th Leaf length (cm) | 0.62 *** | 0.30 |
4th Leaf Width (cm) | 0.37 * | 0.13 |
4th Leaflet Numbers | 0.48 ** | 0.40 * |
4th Leaf Dry Weight (g) | 0.65 *** | 0.13 |
Nutrient Solution (NS) | Equation | 2 | Maximum |
---|---|---|---|
SPAD | or Minimum Point | ||
NS1 | 0.95 | 10.48, 39.47 | |
NS2 | 0.99 | 19.46, 40.59 | |
4LA (cm2) | |||
NS1 | 0.99 | 13.81, 196.87 | |
NS2 | 0.99 | 12.30, 188.61 | |
NS1 | 0.99 | ||
NS2 | 0.83 | ||
(cm) | |||
NS1 | 0.99 | 12.18, 22.83 | |
NS2 | 0.99 | 14.77, 22.23 | |
(g) | |||
NS1 | 0.98 | 13.71, 0.48 | |
NS2 | 0.89 | 13.89, 0.46 | |
(mm) | |||
NS1 | 0.98 | 13.75, 0.26 | |
NS2 | 0.80 |
SPAD | NBI | CHL | FLV | LT | 4LA | LL | LW | LFN | 4LDW | NO3− | |
---|---|---|---|---|---|---|---|---|---|---|---|
∑FW | 0.15 | 0.08 | 0.08 | −0.15 | −0.28 | 0.49 ** | 0.44 ** | 0.17 | 0.28 | 0.49 ** | 0.38 * |
∑TN | 0.11 | 0.08 | 0.11 | −0.12 | −0.33 * | 0.38 * | 0.38 * | 0.10 | 0.14 | 0.37 * | 0.28 |
RDW | 0.17 | 0.23 | 0.14 | −0.20 | −0.08 | 0.32 | 0.22 | 0.11 | 0.20 | 0.32 | 0.35 * |
SDW | 0.39 * | 0.21 | 0.12 | −0.22 | −0.13 | 0.37 * | 0.41 * | 0.08 | 0.41 * | 0.43 ** | 0.51 ** |
LDW | 0.36 * | 0.36 * | 0.25 | −0.26 | −0.26 | 0.48 ** | 0.45 ** | 0.17 | 0.37 * | 0.50 ** | 0.64 ** |
TODW | 0.37 * | 0.33 * | 0.22 | −0.26 | −0.22 | 0.48 ** | 0.45 ** | 0.16 | 0.39 * | 0.50 ** | 0.62 ** |
SPAD | NBI | CHL | FLV | LT | 4LA | LL | LW | LFN | 4LDW | NO3− | |
---|---|---|---|---|---|---|---|---|---|---|---|
∑FW | −0.12 | −0.03 | −0.08 | −0.07 | 0.07 | 0.24 | 0.27 | −0.25 | 0.17 | 0.28 | 0.04 |
∑TN | −0.18 | −0.08 | −0.07 | 0.02 | 0.16 | 0.14 | 0.18 | −0.23 | 0.12 | 0.16 | −0.03 |
RDW | 0.07 | −0.23 | 0.05 | 0.19 | −0.11 | 0.19 | 0.04 | −0.44 ** | 0.22 | 0.12 | 0.30 |
SDW | 0.34 * | 0.11 | 0.15 | −0.15 | −0.17 | 0.37 * | 0.12 | −0.27 | 0.29 | 0.30 | 0.47 ** |
LDW | 0.33 | −0.07 | 0.12 | −0.01 | −0.19 | 0.30 | 0.18 | −0.34 * | 0.27 | 0.18 | 0.39 * |
TODW | 0.33 | −0.04 | 0.13 | −0.04 | −0.19 | 0.34 * | 0.17 | −0.35 * | 0.29 | 0.24 | 0.44 ** |
Ø (mm) | NS1: Otazú (2010) | NS2: Modified Furlani (1998) | |||||||
---|---|---|---|---|---|---|---|---|---|
20% | 50% | 100% | 150% | 20% | 50% | 100% | 150% | ||
33 DAT | |||||||||
23–30 | 1.11bB | 2.44aAB | 1.22bcB | 3.00aA | 1.78abA | 2.67aA | 1.56bcA | 2.00aA | |
16–23 | 1.56bB | 3.33aA | 3.11aAB | 2.22abAB | 3.22aAB | 2.78aAB | 4.33aA | 2.00aB | |
10–16 | 4.22aA | 1.89aB | 2.78abAB | 1.22bcB | 2.89aA | 1.22abA | 2.78abA | 1.33aA | |
8–10 | 0.89bA | 0.00bA | 0.44cA | 0.11cA | 0.33bA | 0.11bA | 0.00cA | 0.33aA | |
6–8 | 0.67bA | 0.00bA | 0.00cA | 0.11cA | 0.11bA | 0.11bA | 0.00cA | 0.67aA | |
40 DAT | |||||||||
23–30 | 0.00bA | 1.22cA | 0.89cA | 1.56bA | 0.44bA | 2.56bcA | 2.33bcA | 0.44bA | |
16–23 | 1.44bB | 6.78bA | 7.56bA | 3.67bAB | 2.22bB | 6.22bA | 5.11bAB | 3.56abAB | |
10–16 | 6.56aD | 18.78aB * | 26.11aA * | 13.00aC* | 9.33aBC | 13.56aA | 11.22aAB | 6.44aC | |
8–10 | 2.33bB | 4.22bcAB | 7.00bA * | 3.22bAB | 2.67bA | 3.33bcA | 2.89bcA | 2.67abA | |
6–8 | 1.00bA | 1.56cA | 1.67cA | 1.00bA | 0.78bA | 0.11cA | 0.00cA | 0.67bA | |
47 DAT | |||||||||
23–30 | 0.00bA | 0.00dA | 0.67cA | 0.11bA | 0.00bA | 0.00cA | 0.00bA | 0.00bA | |
16–23 | 1.00bA | 1.56cdA | 1.67cA | 2.22bA | 1.22bA | 1.78cA | 1.89bA | 0.44bA | |
10–16 | 9.78aB | 19.11aA | 21.89aA * | 9.67aB | 10.22aBC | 16.56aA | 13.56aAB | 5.89aC | |
8–10 | 3.11bB | 12.11bA | 13.00bA * | 4.56bB | 4.11bB | 9.67bA | 4.44bB | 3.89abB | |
6–8 | 2.00bA | 4.67cA | 3.56cA | 1.33bA | 1.33bA | 4.56cA | 1.67bA | 2.89abA | |
54 DAT | |||||||||
23–30 | 0.11bA | 0.00bA | 0.00bA | 0.00aA | 0.00bA | 0.00cA | 0.00bA | 0.00aA | |
16–23 | 0.00bA | 0.22bA | 1.44bA | 0.11aA | 0.11bA | 0.11cA | 0.00bA | 0.00aA | |
10–16 | 1.56bB | 3.56aB | 7.00aA | 1.22aB | 3.56aBC | 6.78bA * | 5.89aAB | 1.44aC | |
8–10 | 2.78abB | 4.44aAB | 6.33aA | 1.78aB | 4.00aB | 10.67aA * | 4.78aB | 0.33aC | |
6–8 | 4.67aB | 3.89aB | 8.33aA * | 1.89aB | 5.33aAB | 7.67bA * | 3.44aBC | 1.22aC | |
61 DAT | |||||||||
23–30 | 0.00aA | 0.00aA | 0.22aA | 0.00aA | 0.11aA | 0.00aA | 0.22aA | 0.00aA | |
16–23 | 0.44aA | 0.11aA | 0.67aA | 0.00aA | 0.22aA | 0.22aA | 0.00aA | 0.00aA | |
10–16 | 3.56aA | 0.33aA | 7.89aA | 0.00aA | 3.44aA | 2.56aA | 2.67aA | 0.00aA | |
8–10 | 2.89aA | 0.38aA | 3.67aA | 0.00aA | 3.44aA | 3.11aA | 2.22aA | 0.00aA | |
6–8 | 2.44aA | 1.44aA | 4.00aA | 0.00aA | 4.44aA | 3.56aA | 3.67aA | 0.33aA | |
Harvest ∑ | |||||||||
23–30 | 1.22cA | 3.67cA | 3.00dA | 4.67bA | 2.33cA | 5.22dA | 4.11cA | 2.44bA | |
16–23 | 4.44bcB | 12.00cAB | 14.44cA | 8.22bAB | 7.00bcA | 11.11cdA | 11.33bcA | 6.00bA | |
10–16 | 25.67aC | 43.67aB | 65.67aA * | 25.11aC * | 29.44aB | 40.67aA | 36.11aAB | 15.11aC | |
8–10 | 12.00bC | 21.11bB | 30.44bA * | 9.67bC | 14.56bB | 26.89bA | 14.33bB | 7.22abB | |
6–8 | 10.78bAB | 11.56cAB | 17.56cA * | 4.33bB | 12.00bAB | 16.00cA | 8.78bcAB | 5.78bB |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva Filho, J.B.; Fontes, P.C.R.; Ferreira, J.F.S.; Cecon, P.R.; Crutchfield, E. Optimal Nutrient Solution and Dose for the Yield of Nuclear Seed Potatoes under Aeroponics. Agronomy 2022, 12, 2820. https://doi.org/10.3390/agronomy12112820
Silva Filho JB, Fontes PCR, Ferreira JFS, Cecon PR, Crutchfield E. Optimal Nutrient Solution and Dose for the Yield of Nuclear Seed Potatoes under Aeroponics. Agronomy. 2022; 12(11):2820. https://doi.org/10.3390/agronomy12112820
Chicago/Turabian StyleSilva Filho, Jaime B., Paulo Cezar Rezende Fontes, Jorge F. S. Ferreira, Paulo R. Cecon, and Elizabeth Crutchfield. 2022. "Optimal Nutrient Solution and Dose for the Yield of Nuclear Seed Potatoes under Aeroponics" Agronomy 12, no. 11: 2820. https://doi.org/10.3390/agronomy12112820