Effects of Population Regulation on the Source–Sink System of Hybrid Wheat Jingmai 6
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Experimental Design
2.2. Measurements and Analyses
2.2.1. Population Stems and Tillers Investigation
- Tiller–spike rate (%) = (Spike number at maturity − Basic Seedling)/(maximum total stem number − Basic Seedling) × 100
2.2.2. Canopy Characters
- The spike-to-leaf ratio = The number of spikes per unit land area/the sum of top three leaf area per unit land area during the anthesis stage
- The grain-to-leaf ratio = Number of grains per unit land area/the sum of top three leaf area per unit land area during the anthesis stage
2.2.3. Material Accumulation Dynamics
- Relative proportion of dry matter after anthesis (%) = (Dry matter weight of population at mature − Dry matter weight of population at anthesis)/Dry matter weight of population at mature × 100
- Relative proportion of dry matter pre-anthesis (%) = (Dry matter weight of vegetative organs at anthesis − Dry matter weight of vegetative organs at maturity)/Dry matter weight of vegetative organs at anthesis × 100
- Contribution proportion pre-anthesis (%) = (Dry matter weight of vegetative organs at anthesis − Dry matter weight of vegetative organs at mature)/Grain weight × 100
- Dry matter productivity after anthesis (g/m2) = Dry matter accumulation after anthesis/Total leaf area at anthesis
- Dry matter mass per unit grain before anthesis (mg/grain) = Dry matter weight at anthesis/Total number of grains
- Dry matter mass per unit grain after anthesis (mg/grain) = (Dry matter weight at maturity − Dry matter weight at anthesis)/Total number of grains.
2.2.4. Yield Determination
2.3. Statistical Analysis
3. Results
3.1. Characteristics of Population Structure of Hybrid Wheat
3.1.1. Population Leaf Area Index (LAI) at Anthesis
3.1.2. Dynamics of the Plant Population
3.2. Material Accumulation Characteristics of Hybrid Wheat
3.3. Dry Matter Productivity
3.4. Yield Composition and Source–Sink Relations of Hybrid Wheat
3.5. The Relations of Yield Components to Source–Sink Indicator
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Garcia, A.A.; Wang, S.; Melchinger, A.E.; Zeng, Z.B. Quantitative trait loci mapping and the genetic basis of heterosis in maize and rice. Genetics 2008, 180, 1707–1724. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Lu, K.; Chen, Z.; Mou, T.; Hu, Z. Dominance, overdominance and epistasis condition the heterosis in two heterotic rice hybrids. Genetics 2008, 180, 1725–1742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, G.S.; Zhai, H.L.; Peng, Y.G.; Zhang, L.; Wei, G. Comparative transcriptional profiling and preliminary study on heterosis mechanism of super-hybrid rice. Mol. Plant 2010, 3, 1012–1025. [Google Scholar] [CrossRef] [PubMed]
- Gupta, P.K.; Balyan, H.S.; Gahlaut, V.; Saripalli, G.; Joshi, A.K. Hybrid wheat: Past, present and future. Theor. Appl. Genet. 2019, 132, 2463–2483. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C. Research progress and prospects of two-line hybrid wheat in China. Chin. Sci. Bull. 2022, 67, 3119. [Google Scholar] [CrossRef]
- Gowda, M.; Kling, C.; Würschum, T.; Liu, W.; Maurer, P.; Hahn, V. Hybrid breeding in durum wheat: Heterosis and combining ability. Crop Sci. 2010, 50, 2224–2230. [Google Scholar] [CrossRef]
- Thorwarth, P.; Piepho, H.P.; Zhao, Y.; Ebmeyer, E.; Schacht, J.; Schachschneider, R.; Kazman, E.; Reif, J.C.; Würschum, T.; Longin, C.F.H. Higher grain yield and higher grain protein deviation underline the potential of hybrid wheat for a sustainable agriculture. Plant Breed. 2018, 137, 326–337. [Google Scholar] [CrossRef]
- Longin, C.; Mühleisen, J.; Maurer, H.; Zhang, H.L.; Manje, G.M.; Reif, J. Hybrid breeding in autogamous cereals. Theor. Appl. Genet. 2012, 125, 1087–1096. [Google Scholar] [CrossRef]
- Ni, F.; Qi, J.; Hao, Q.; Lyu, B.; Luo, M.C.; Wang, Y.; Chen, F.; Wang, S.; Zhang, C.; Epstein, L.; et al. Wheat Ms2 encodes for an orphan protein that confers male sterility in grass species. Nat. Commun. 2017, 8, 15121. [Google Scholar] [CrossRef]
- Zhang, H.; Turner, N.C.; Poole, M.L. Source—Sink balance and manipulating sink–source relations of wheat indicate that the yield potential of wheat is sink-limited in high-rainfall zones. Crop Pasture Sci. 2010, 61, 852–861. [Google Scholar] [CrossRef]
- Tian, J.C.; Deng, Z.Y.; Hu, R.B.; Wang, Y.X. Yield components of super wheat cultivars with different types and the path coefficient analysis on grain yield. Acta Agron. Sin. 2006, 32, 1699–1705. [Google Scholar]
- Chen, N.L. Research advances on source-sink interaction of the crops. J. Gansu Agric. Univ. 2019, 54, 1–10. [Google Scholar]
- Wang, Z.M.; Fang, B.T. A review on theoretical models and development of yield analysis in crop production system. J. China Agric. Univ. 2009, 14, 1–7. [Google Scholar]
- Asseng, S.; Kassie, B.T.; Labra, M.H.; Amador, C.; Calderini, D.F. Simulating the impact of source-sink manipulations in wheat. Field Crops Res. 2017, 202, 47–56. [Google Scholar] [CrossRef]
- Zhang, S.Q.; Ye, Z.J.; Ren, L.P.; Gao, X.H.; Wang, Z.; Yang, Y.L.; Mu, L.; Dong, Y.H.; Chen, Z.B. Analysis of authorized hybrid wheat varieties in China since the Tenth Five-Year Plan. Acta Agron. Sin. 2022, 1, 38–43. [Google Scholar]
- Peng, H.X.; Zhang, C.L. Population Dynamics of Wheat and Its Correlation with Yield. Anhui Agric. Sci. Bull. 2017, 23, 46–48. [Google Scholar]
- Zhang, S.Q. Advances on Yield Formation of Hybrid Wheat. Chin. Agric. Sci. Bull. 2019, 6, 1–5. [Google Scholar]
- Zhao, W.C.; Wang, H. Study on the Dry Matter Accumulation and Its Heterosis of Hybrid Wheat. J. Triticeae Crops 2002, 4, 35–38. [Google Scholar]
- Chen, X.J.; Yang, B.A.; Fan, J.L.; Zhang, F.Y.; Cheng, Z.J.; Wang, J.H.; Zang, J.W. Advances in Utilization of Heterosis in Wheat. Seed 2022, 41, 66–73. [Google Scholar]
- Xu, X.X.; Zhang, Y.H.; Li, J.P.; Zhang, M.; Zhou, X.N.; Zhou, S.L.; Wang, Z.M. Optimizing single irrigation scheme to improve water use efficiency by manipulating’ winter wheat sink-source relationships in Northern China Plain. PLoS ONE 2018, 13, e0193895. [Google Scholar] [CrossRef]
- Zhang, S.Q.; Chen, Z.B.; Wang, Z.; Ren, L.P.; Gao, X.H.; Ye, Z.J.; Zhang, F.T. Analysis of Population Structure and Yield Formation in Two-Line Hybrid Wheat. Acta Agron. Sin. 2017, 5, 45–49. [Google Scholar]
- Li, W.C.; Ma, S.M.; Wang, Y.F.; Liu, S.D. Analysis of the coordinating activity among major agronomic traits and yield structure in hybrid wheat. J. Agric. Univ. Hebei 2008, 31, 14–29. [Google Scholar]
- Pang, H.X.; He, B.R. Study on Source-sink Characteristics of High Spike Weight Wheat. J. Triticeae Crops 2005, 25, 135–137. [Google Scholar]
- Liang, Y.; Li, D.Q.; Chen, Y.X.; Cheng, J.P.; Zhao, G.; Fahima, T.; Yan, J. Dynamic analysis of nutrient accumulation of nitrogen and phosphorus in the sink-source organ of wheat after anthesis. J. Henan Agric. Univ. 2019, 53, 512–518. [Google Scholar]
- Qi, Z.G. Analysis of Yield Components of Hybrid Wheat. J. Hebei Nomal Univ. 2005, 29, 399–403. [Google Scholar]
- Zhang, B.J.; Feng, B.L.; Jiang, J.Y.; Yang, H.X.; Liu, S.H. Study on Density Effect and Photosynthetic Distribution of Hybrid Wheat Yield. J. Triticeae Crops 1998, 3, 42–44. [Google Scholar]
- Zadoks, J.C.; Chang, T.T.; Konzak, C.F. A decimal code for the growth stages of cereals. Weed Res. 1974, 14, 415–421. [Google Scholar] [CrossRef]
- Shi, L.H.; Ji, X.H.; Zhu, X.Q.; Li, H.S.; Peng, H.; Liu, Z.B. A preliminary study on optimizing nitrogen fertilization amount at different phases to enhance the storage capacity of super hybrid rice. Sci. Agric. Sin. 2010, 43, 1274–1281. [Google Scholar]
- Zhao, H.X.; Zhang, P.; Wang, Y.Y.; Ning, T.Y.; Xu, C.L.; Wang, P. Canopy morphological changes and water use efficiency in winter wheat under different irrigation treatments. J. Integr. Agric. 2020, 19, 1105–1116. [Google Scholar] [CrossRef]
- Xu, F.X.; Xiong, H.; Zhu, Y.C.; Xie, R.; Wang, G.X. The effects of cultivation density on the percent of head milled rice and source to sink ratios of mid-season hybrid rice in eastern and southern Sichuan province. Chin. J. Plant Ecol. 2005, 29, 829–835. [Google Scholar]
- Liu, M.; Wu, X.; Li, C.; Li, M.; Tang, Y. Dry matter and nitrogen accumulation, partitioning, and translocation in synthetic-derived wheat cultivars under nitrogen deficiency at the post-jointing stage. Field Crops Res. 2020, 248, 107720. [Google Scholar] [CrossRef]
- Qingrong, G.; Lanzhen, S.; Baoshen, L. Accumulation, transportation and distribution of dry matter after anthesis in hybrid wheat. Acta Agron. Sin. 2000, 26, 163–170. [Google Scholar]
- Li, N.; Duan, L.S.; Li, J.M.; Zhai, Z.X.; Li, Z.H. Effect of sowing date and planting density on flag leaf photosynthe sis, storage capacity after anthesis and yield in different spike type cultivars. J. Triticeae Crops 2010, 30, 296–302. [Google Scholar]
- Guo, W.S.; Zhu, X.H.; Yan, L.L.; Feng, C.N.; Peng, Y.X.; Zhang, X.B.; Xu, G.H. Study on Dry Matter Accumulation Characteristics of Hybrid Wheat. J. Triticeae Crops 1997, 2, 30–33. [Google Scholar]
- Li, S.R. Effects of Dry Matter Accumulation and Distribution on Source-sink Relationships in Wheat under Different Planting Patterns. Acta Agric. Boreali-Sin. 2008, 23, 87–90. [Google Scholar]
- Fan, G.Q.; Yang, W.Y.; Yong, T.W. Effects of Different Preceding Crop on Growth and Yield Development of Winter Wheat after Flowering. J. Sichuan Agric. Univ. 2009, 27, 137–140. [Google Scholar]
- Xiao, K.; Gu, J.T. Preliminary Study on Photosynthetic Characteristics of Hybrid Wheat. Acta Agron. Sin. 1997, 4, 425–431. [Google Scholar]
- Ke, Y.Y.; Chen, X.; Ni, Q.Q.; Zhang, L.L.; Wei, F.Z.; Li, J.C. Research Progress of Dry Matter Accumulation and Distribution Pattern in Wheat. Barley Cereal Sci. 2021, 38, 1–7. [Google Scholar]
- Wei, H.Y.; Ling, Q.H.; Zhang, H.C.; Guo, W.S.; Yang, J.C.; Chen, D.H.; Leng, S.H.; Lu, W.P.; Xing, Z.P. The quality of crop population and its key regulation technology. J. Yangzhou Univ. 2018, 39, 1–9. [Google Scholar]
- Zhang, H.P.; Richards, R.; Riffkin, P.; Berger, J.; Christy, B.; Acuña, T.B.; Merry, A. Wheat grain number and yield: The relative importance of physiological traits and source-sink balance in southern Australia. Eur. J. Agron. 2019, 110, 125935. [Google Scholar] [CrossRef]
- Ballesteros-Rodríguez, E.; Martínez-Rueda, C.G.; Morales-Rosales, E.J.; Estrada-Campuzano, G.; González, G.F.; Kaschuk, G. Changes in Number and Weight of Wheat and Triticale Grains to Manipulation in Source-Sink Relationship. Int. J. Agron. 2019, 2019, 7173841. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.L.; Liu, M.; Li, C.S.; Davidjackmchugh, A.; Li, M.; Xiong, T.; Liu, Y.B.; Tang, Y.L. Source-sink relations and responses to sink-source manipulations during grain filling in wheat. J. Integr. Agric. 2022, 21, 1593–1605. [Google Scholar]
- Shao, L.; Liu, Z.; Li, H.; Zhang, Y.; Dong, M.; Guo, X.; Zhang, H.; Huang, B.; Ni, R.; Li, G. The impact of global dimming on crop yields is determined by the source-sink imbalance of carbon during grain filling. Glob. Chang. Biol. 2021, 27, 689–708. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.B.; Qin, Z.L.; Sun, H.; Liao, X.Z.; Gao, J.G.; Wang, Y.B.; Hou, Q.L.; Chen, X.C.; Tian, L.P.; Zhang, L.P.; et al. Yield-related agronomic traits evaluation for hybrid wheat and relations of ethylene and polyamines biosynthesis to filling at the mid-grain filling stage. J. Integr. Agric. 2020, 19, 2407–2418. [Google Scholar] [CrossRef]
- Yang, W.B.; Qin, Z.L.; Sun, H.; Hou, Q.L.; Gao, J.G.; Chen, X.C.; Zhang, L.P.; Wang, Y.B.; Zhao, C.P.; Zhang, F.T. Analysis of combining ability for stem-related traits and its correlations with lodging resistance heterosis in hybrid wheat. J. Integr. Agric. 2022, 21, 26–35. [Google Scholar] [CrossRef]
- Yang, H.; Xiao, Y.; He, P.; Ai, D.; Zou, Q.; Hu, J.; Liu, Q.; Huang, X.; Zheng, T.; Fan, G. Straw mulch-based no-tillage improves tillering capability of dryland wheat by reducing asymmetric competition between main stem and tillers. Crop J. 2022, 10, 864–878. [Google Scholar] [CrossRef]
- Wang, Y.F.; Jiang, D.; Yu, Z.W.; Cao, W.X. Effects of nitrogen rates on grain yield and protein content of wheat and its physiological basis. Sci. Agric. Sin. 2003, 36, 513–520. [Google Scholar]
- Pannu, R.K.; Chavan, A.K. Effect of different management practices on dry matter accumulation and mobilization of preanthesis assimilates in late sown wheat (Triticum aestivum L.). Environ. Ecol. 2016, 34, 196–199. [Google Scholar]
- Fu, L.I.; Yan, D.; Gao, L.F.; Liu, P.; Zhao, G.Y.; Jia, J.Z.; Ren, Z.L. TaIAA15 genes regulate plant architecture in wheat. J. Integr. Agric. 2022, 5, 1243–1252. [Google Scholar] [CrossRef]
- Zhao, D.; Yang, L.; Xu, K.; Cao, S.; Tian, Y.; Yan, J.; He, Z.; Xia, X.; Song, X.; Zhang, Y. Identification and validation of genetic loci for tiller angle in bread wheat. Theor. Appl. Genet. 2020, 133, 3037–3047. [Google Scholar] [CrossRef] [PubMed]
Treatments | Basic Seedling (×104 ha−1) | Total Population | Top 3 Leaves |
---|---|---|---|
A1 | 75.0 | 3.53 ± 0.18 d | 2.75 ± 0.20 b |
A2 | 150.0 | 3.84 ± 0.07 c | 2.71 ± 0.16 b |
A3 | 225.0 | 4.06 ± 0.13 b | 2.79 ± 0.23 b |
A4 | 300.0 | 4.27 ± 0.09 b | 3.35 ± 0.17 a |
A5 | 375.0 | 4.75 ± 0.26 a | 3.73 ± 0.31 a |
A6 | 450.0 | 4.53 ± 0.11 a | 3.31 ± 0.22 a |
Treatments | Basic Seedling (×104 ha−1) | Growth Stage | The Tiller–spikeRate | ||||
---|---|---|---|---|---|---|---|
Overwintering Period | Regreening Period | Raising Period | Jointing Period | Maturity Period | |||
A1 | 75.0 | 304.5 ± 12.7 f | 301.5 ± 13.4 d | 1368.8 ± 103.9 c | 862.5 ± 55.3 c | 562.5 ± 22.5 b | 37.7 ± 3.6 a |
A2 | 150.0 | 592.5 ± 34.6 e | 577.5 ± 25.3 c | 1862.5 ± 99.8 b | 1293.8 ± 90.4 b | 575.0 ± 14.7 b | 24.8 ± 2.7 b |
A3 | 225.0 | 852.0 ± 25.1 d | 798.0 ± 25.8 b | 2150.0 ± 93.6 a | 1582.5 ± 97.3 a | 637.5 ± 37.7 a | 21.4 ± 2.5 b |
A4 | 300.0 | 1042.5 ± 76.4 c | 981.0 ± 41.3 b | 2198.8 ± 78.5 a | 1635.0 ± 62.5 a | 682.8 ± 31.0 a | 20.2 ± 2.0 b |
A5 | 375.0 | 1297.5 ± 119.6 b | 1231.5 ± 51.4 a | 2225.0 ± 85.7 a | 1627.5 ± 76.1 a | 664.6 ± 23.4 a | 15.7 ± 2.1 c |
A6 | 450.0 | 1434.0 ± 78.5 a | 1342.5 ± 65.9 a | 2000.0 ± 104.6 a | 1642.5 ± 88.7 a | 645.3 ± 27.8 a | 12.6 ± 1.4 c |
Treatments | Basic Seedling (×104 ha−1) | Overwintering Period | Jointing Period | Booting Period | Anthesis Period | Maturity Period | Dry Matter after Anthesis | Relative Proportion of Dry Matter Pre-Anthesis | Relative Proportion of Dry Matter after Anthesis |
---|---|---|---|---|---|---|---|---|---|
A1 | 75.0 | 552.4 ± 23.4 d | 1221.0 ± 76.5 d | 3488.0 ± 124.5 d | 6124.5 ± 223.9 c | 10831.5 ± 477.8 b | 4707.0 ± 204.2 ab | 56.5 ± 0.5 c | 43.5 ± 0.6 a |
A2 | 150.0 | 724.5 ± 56.9 b | 2313.0 ± 145.3 c | 5008.0 ± 223.1 c | 6937.7 ± 304.2 c | 11481.8 ± 689.1 b | 4544.1 ± 178.9 b | 60.4 ± 1.1 b | 39.6 ± 1.2 b |
A3 | 225.0 | 732.1 ± 45.6 b | 3880.5 ± 155.8 b | 6288.0 ± 245.3 b | 8374.5 ± 563.2 b | 12844.5 ± 783.9 b | 4470.0 ± 198.4 b | 65.2 ± 0.9 a | 34.8 ± 0.3 c |
A4 | 300.0 | 679.4 ± 51.1 c | 3964.5 ± 126.7 b | 6656.0 ± 378.5 b | 8991.0 ± 365.4 b | 14154.8 ± 798.3 a | 5163.8 ± 205.3 a | 63.5 ± 1.3 ab | 36.5 ± 0.8 bc |
A5 | 375.0 | 866.6 ± 76.3 a | 4059.0 ± 98.2 b | 8040.0 ± 357.2 a | 10281.0 ± 643.7 a | 15204.0 ± 899.4 a | 4923.0 ± 177.4 a | 67.6 ± 1.9 a | 32.4 ± 0.3 c |
A6 | 450.0 | 695.0 ± 45.2 c | 5176.5 ± 195.1 a | 8064.0 ± 403.6 a | 10631.3 ± 732.2 a | 15795.0 ± 766.2 a | 5165.0 ± 161.2 a | 67.3 ± 2.4 a | 32.7 ± 0.5 c |
Treatments | Reserve Per-Anthesis | Dry Matter Productivity after Anthesis (g/m2 leaf) | ||
---|---|---|---|---|
Transportation Amount (kg ha−1) | Transfer Percentage (%) | Contribution Proportion (%) | ||
A1 | 788.4 ± 36.5 c | 12.9 ± 0.4 b | 14.3 ± 0.4 c | 133.3 ± 5.2 a |
A2 | 988.3 ± 39.6 b | 14.2 ± 0.8 a | 17.9 ± 1.7 b | 118.3 ± 4.6 b |
A3 | 1303.2 ± 65.3 a | 15.6 ± 1.0 a | 22.6 ± 1.4 a | 110.1 ± 4.4 b |
A4 | 973.4 ± 41.2 b | 10.8 ± 0.4 c | 15.9 ± 1.2 b | 120.9 ± 6.5 b |
A5 | 1155.2 ± 54.9 a | 11.2 ± 0.2 c | 19.0 ± 1.9 b | 103.6 ± 1.7 c |
A6 | 829.3 ± 29.9 c | 7.8 ± 0.9d | 13.8 ± 0.54 c | 114.0 ± 2.13 b |
Treatments | Basic Seedling (×104 ha−1) | Spikes (×104 ha−1) | Grain No. per Spike | Grain Weight (mg/Kernel) | Grain Yield (kg ha−1) |
---|---|---|---|---|---|
A1 | 75.0 | 562.5 ± 20.8 b | 29.5 ± 0.5 a | 38.0 ± 0.2 a | 5495.4 ± 113.7 b |
A2 | 150.0 | 637.5 ± 13.8 a | 27.3 ± 0.4 b | 40.9 ± 0.1 a | 5773.2 ± 151.2 a |
A3 | 225.0 | 682.8 ± 14.7 a | 27.7 ± 1.1 b | 40.3 ± 0.4 a | 6137.2 ± 223.5 a |
A4 | 300.0 | 664.6 ± 15.4 a | 26.2 ± 0.2 b | 39.3 ± 0.5 a | 6078.2 ± 160.6 a |
A5 | 375.0 | 645.3 ± 19.1 a | 26.1 ± 0.6 b | 40.4 ± 0.3 a | 5993.1 ± 125.7 a |
A6 | 450.0 | 639.6 ± 17.4 a | 25.9 ± 0.5 b | 40.3 ± 0.2 a | 5797.5 ± 178.3 a |
Treatments | Basic Seedling (×104 ha−1) | (×107 ha−1) Sink Capacity (×107 Grain ha−1) | The Spike to Leaf Ratio (Spikes/m2 leaf) | The Grain to Leaf Ratio (Grain/m2 Leaf) | Dry Matter Mass per Unit Grain Pre-Anthesis (mg/Grain) | Dry Matter Mass per Unit Grain after Anthesis (mg/Grain) |
---|---|---|---|---|---|---|
A1 | 75.0 | 16.6 ± 1.2 a | 204.3 ± 7.6 b | 6436.6 ± 91.0 b | 36.9 ± 1.9 c | 28.4 ± 0.5 a |
A2 | 150.0 | 17.4 ± 0.9 a | 228.2 ± 11.3 a | 7721.4 ± 122.5 a | 48.1 ± 2.7 b | 25.7 ± 1.3 b |
A3 | 225.0 | 18.9 ± 2.2 a | 223.9 ± 9.5 a | 7630.2 ± 104.3 a | 47.6 ± 2.1 b | 27.3 ± 0.5 b |
A4 | 300.0 | 17.4 ± 1.1 a | 178.0 ± 7.1 c | 6079.5 ± 86.2 b | 59.0 ± 2.3 a | 28.3 ± 0.3 a |
A5 | 375.0 | 16.9 ± 1.5 a | 194.7 ± 6.0 b | 6282.6 ± 79.3 b | 63.0 ± 3.0 a | 30.6 ± 2.1 a |
A6 | 450.0 | 16.6 ± 1.3 a | 194.4 ± 5.2 b | 6134.6 ± 106.9 b | 63.0 ± 2.1 a | 30.1 ± 1.7 a |
Grain Yield | Spikes | Grain No. per Spike | Grain Weight | Sink Capacity | The Spike to Leaf Ratio | The Grain to Leaf Ratio | |
---|---|---|---|---|---|---|---|
Grain yield | 1.000 | ||||||
Spikes | 0.898 ** | 1.000 | |||||
Grain no. per spike | 0.056 | −0.727 | 1.000 | ||||
Grain weight | 0.186 | 0.117 | −0.158 | 1.000 | |||
Sink capacity | 0.764 ** | 0.736 ** | 0.071 | 0.059 | 1.000 | ||
The spike to leaf ratio | 0.193 | 0.168 | 0.547 | 0.483 | 0.320 | 1.000 | |
The grain to leaf ratio | 0.017 | 0.005 | 0.463 * | 0.559 | 0.474 | 0.952 ** | 1.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, W.; Wang, Z.; Ren, L.; Ye, Z.; Gao, X.; Gao, J.; Lou, H.; Du, B.; Chen, Z.; Zhang, S. Effects of Population Regulation on the Source–Sink System of Hybrid Wheat Jingmai 6. Agronomy 2022, 12, 2530. https://doi.org/10.3390/agronomy12102530
Yang W, Wang Z, Ren L, Ye Z, Gao X, Gao J, Lou H, Du B, Chen Z, Zhang S. Effects of Population Regulation on the Source–Sink System of Hybrid Wheat Jingmai 6. Agronomy. 2022; 12(10):2530. https://doi.org/10.3390/agronomy12102530
Chicago/Turabian StyleYang, Weibing, Zheng Wang, Liping Ren, Zhijie Ye, Xinhuan Gao, Jiangang Gao, Hongyao Lou, Bing Du, Zhaobo Chen, and Shengquan Zhang. 2022. "Effects of Population Regulation on the Source–Sink System of Hybrid Wheat Jingmai 6" Agronomy 12, no. 10: 2530. https://doi.org/10.3390/agronomy12102530