How Stand Age Affects Soil Nitrification and Nitrogen Gas Emissions in Tropical and Subtropical Tea Plantations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and Soil Sampling
2.2. NO and N2O Fluxes Measurement
2.3. Soil Sampling and Measurements
2.4. Statistical Analyses
3. Results
3.1. Soil Properties
3.2. NO and N2O Emissions
3.3. The Correlation between Nitrification Rate and Nitrogen Oxide Emissions with Soil Properties
4. Discussion
4.1. Effect of Different Stand Ages on Net Nitrification Rate and Nitrogen Gas Emissions in Tea Field Soil
4.2. Effects of Different Moisture on Net Nitrification Rate and Nitrogen Gas Emissions in Tea Field Soils
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Galloway, J.N.; Townsend, A.R.; Erisman, J.W.; Bekunda, M.; Cai, Z.C.; Freney, J.R.; Martinelli, L.A.; Seitzinger, S.P.; Sutton, M.A. Transformation of thenitrogen cycle: Recent trends, questions, and potential solutions. Science 2008, 320, 889–892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuypers, M.M.M.; Marchant, H.K.; Kartal, B. The microbial nitrogen-cycling network. Nat. Rev. Microbiol. 2018, 16, 263–276. [Google Scholar] [CrossRef] [PubMed]
- Hink, L.; Rangin, G.C.; Nicol, G.W.; Prosser, J.I.W. The consequences of niche and physiological differentiation of archaeal and bacterial ammonia oxidisers for nitrous oxide emissions. ISME J. 2018, 12, 1084–1093. [Google Scholar] [CrossRef] [Green Version]
- Pilegaard, K. Processes regulating nitric oxide emissions from soils. Philos. Trans. R. Soc. B 2013, 368, 20130126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coskun, D.; Britto, D.T.; Shi, W.; Kronzucker, H.J. Nitrogen transformations in modern agriculture and the role of biological nitrification inhibition. Nat. Plants 2007, 3, 17074. [Google Scholar] [CrossRef]
- FAO. Food and Agriculture Organization. FAOSTAT Database Collections; FAO: Rome, Italy, 2018; Available online: www.fao.org/faostat/ (accessed on 16 March 2022).
- Yan, P.; Wu, L.; Wang, D.; Fu, J.; Shen, C.; Li, X.; Zhang, L.; Zhang, L.; Fan, L.; Han, W.Y. Soil acidification in Chinese tea plantations. Sci. Total Environ. 2020, 715, 136963. [Google Scholar] [CrossRef]
- Han, W.; Xu, J.; Wei, K.; Shi, Y.; Ma, L. Estimation of N2O emission from tea garden soils, their adjacent vegetable garden and forest soils in eastern China. Environ. Earth Sci. 2013, 70, 2495–2500. [Google Scholar] [CrossRef]
- Han, W.Y.; Kemmitt, S.J.; Brookes, P.C. Soil microbial biomass and activity in Chinese tea gardensof varying stand age and productivity. Soil Biol. Biochem. 2007, 39, 1468–1478. [Google Scholar] [CrossRef]
- Fu, X.Q.; Li, Y.; Su, W.J.; Shen, J.L.; Xiao, R.L.; Tong, C.L.; Wu, J. annual dynamics of N2O emissions from a tea field in southern subtropical China. Plant Soil Environ. 2012, 58, 73–378. [Google Scholar] [CrossRef] [Green Version]
- Zhu, T.B.; Zhang, J.B.; Meng, T.; Zhang, Y.; Yang, J.; Müller, C.; Cai, Z.C. Tea plantation destroys soil retention of NO3− and increases N2O emissions in subtropical China. Soil Biol. Biochem. 2014, 73, 106–114. [Google Scholar] [CrossRef]
- Chen, D.; Li, Y.; Wang, C.; Fu, X.; Liu, X.; Shen, J.; Wang, Y.; Xiao, R.; Liu, D.L.; Wu, J. Measurement and modeling of nitrous and nitric oxide emissions from a tea field in subtropical central China. Nutr. Cycl. Agroecosyst. 2017, 107, 157–173. [Google Scholar] [CrossRef]
- Dannenmann, M.; Butterbach-Bahl, K.; Gasche, R.; Willibald, G.; Papen, H. Dinitrogen emissions and the N2:N2O emission ratio of a Rendzic Leptosol as influenced by pH and forest thinning. Soil Biol. Biochem. 2008, 40, 2317–2323. [Google Scholar] [CrossRef]
- IPCC (Intergovernmental Panel on Climate Change). Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: New York, NY, UK, 2014. [Google Scholar]
- Stehfest, E.; Bouwman, L. N2O and NO emission from agricultural fields and soils under natural vegetation: Summarizing available measurement data and modeling of global annual emissions. Nutr. Cycl. Agroecosyst. 2006, 74, 207–228. [Google Scholar] [CrossRef]
- Li, Y.; Zheng, X.; Fu, X.; Wu, Y. Is green tea still ‘green’? Geo-Geogr. Environ. 2016, 3, e00021. [Google Scholar] [CrossRef]
- Yao, Z.; Wei, Y.; Liu, C.; Zheng, X.; Xie, B. Organically fertilized tea plantation stimulates N2O emissions and lowers NO fluxes in subtropical China. Biogeosciences 2015, 12, 5915–5928. [Google Scholar] [CrossRef] [Green Version]
- Yao, Z.; Zheng, X.; Liu, C.; Wang, R.; Xie, B.; Butterbach-Bahl, K. Stand age amplifies greenhouse gas and NO releases following conversion of rice paddy to tea plantations in subtropical China. Agric. Forest Meteorol. 2018, 248, 386–396. [Google Scholar] [CrossRef]
- Tokuda, S.; Hayatsu, M. Nitrous oxide production from strongly acid tea field soils. Soil Sci. Plant Nutr. 2000, 46, 835–844. [Google Scholar] [CrossRef]
- Butterbach-Bahl, K.; Baggs, E.M.; Dannenmann, M.; Kiese, R.; Zechmeister-Boltenstern, S. Nitrous oxide emissions from soils: How well do we understand the processes and their controls? Philos. Trans. R Soc. B Biol. Sci. 2013, 368, 20130122. [Google Scholar] [CrossRef]
- Zheng, N.; Yu, Y.; Wang, J.; Chapman, S.J.; Yao, H.; Zhang, Y. The conversion of subtropical forest to tea plantation changes the fungal community and the contribution of fungi to N2O production. Environ. Pollut. 2020, 265, 115106. [Google Scholar] [CrossRef] [PubMed]
- Kamau, D.M.; Spiertz, J.H.J.; Oenema, O. Carbon and nutrient stocks of tea plantations differing in age, genotype and plant population density. Plant Soil. 2008, 307, 29–39. [Google Scholar] [CrossRef]
- Wang, S.; Yao, X.; Ye, S. Soil aggregate-related organic carbon and relevant enzyme activities as affected by tea (Camellia sinensis L.) planting age in hilly region of southern Guangxi, China. Appl. Soil Ecol. 2020, 150, 103444. [Google Scholar] [CrossRef]
- Frostegård, Å.; Vick, S.H.W.; Lim, N.Y.N.; Bakken, L.R.; Shapleigh, J.P. Linking meta-omics to the kinetics of denitrification intermediates reveals pH-dependent causes of N2O emissions and nitrite accumulation in soil. ISME J. 2022, 16, 26–37. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, J.; Chapman, S.J.; Yao, H.; Zheng, N.; Müller, C. Tea plantation affects soil nitrogen transformations in subtropical China. J. Soil Sediment. 2020, 21, 441–451. [Google Scholar] [CrossRef]
- Wang, S.; Li, T.; Zheng, Z. Distribution of microbial biomass and activity within soil aggregates as affected by tea plantation age. Catena 2017, 153, 1–8. [Google Scholar] [CrossRef]
- Chen, P.F.; Liu, Y.Z.; Mo, C.Y.; Jiang, Z.H.; Yang, J.P.; Lin, J.D. Microbial mechanism of biochar addition on nitrogen leaching and retention in tea soils from different plantation ages. Sci. Total Environ. 2020, 757, 143817. [Google Scholar] [CrossRef] [PubMed]
- Yao, Z.X.; Li, Y.C.; Li, Y.F.; Chen, Z.H. Effects of different tea plantation ages on soil microbial community structure and diversity. Ying Yong Sheng Tai Xue Bao = Chin. J. Appl. Ecol. 2020, 31, 2749–2758. [Google Scholar] [CrossRef]
- Liu, F.; Zhu, Q.; Zhou, Z.; Liao, K.; Lai, X. Soil nitrate leaching of tea plantation and its responses to seasonal drought and wetness scenarios. Agric. Water Manag. 2022, 260, 107325. [Google Scholar] [CrossRef]
- Lan, T.; Liu, R.; Deng, O.; Chen, D. Stimulation of heterotrophic nitrification and N2O production, inhibition of autotrophic nitrification in soil by adding readily degradable carbon. J. Soil Sediment. 2019, 20, 81–90. [Google Scholar] [CrossRef]
- Kachenchart, B.; Jones, D.L.; Gajaseni, N.; Edwards-Jones, G.; Limsakul, A. Seasonal nitrous oxide emissions from different land uses and their controlling factors in a tropical riparian ecosystem. Agric. Ecosyst. Environ. 2012, 158, 15–30. [Google Scholar] [CrossRef]
- Johansson, C.; Rodhe, H. Emission of NO in a tropical savanna and a cloud forest during the dry season. J. Geophys. Res. 1988, 93, 7180–7192. [Google Scholar] [CrossRef]
- del-Prado, A.; Merino, P.; Estavillo, J.M.; Pinto, M.; González-Murua, C. N2O and NO emissions from different N sources and under a range of soil water contents. Nutr. Cycl. Agroecosyst. 2006, 74, 229–243. [Google Scholar] [CrossRef]
- Yu, J.; Lin, S.; Shaaban, M.; Ju, W.; Fang, L. Nitrous oxide emissions from tea garden soil following the addition of urea and rapeseed cake. J. Soil Sediment. 2020, 20, 3330–3339. [Google Scholar] [CrossRef]
- Wang, J.; Tu, X.; Zhang, H.; Cui, J.; Ni, K.; Chen, J.; Cheng, Y.; Zhang, J.B.; Chang, S.X. Effects of ammonium-based nitrogen addition on soil nitrification and nitrogen gas emissions depend on fertilizer-induced changes in pH in a tea plantation soil. Sci. Total Environ. 2020, 747, 141340. [Google Scholar] [CrossRef]
- Bao, S.D. Agricultural and Chemistry Analysis of Soil; Agriculture Press: Beijing, China, 2005. [Google Scholar]
- Medinets, S.; Skiba, U.; Rennenberg, H.; Butterbach-Bahl, K. A review of soil NO transformation: Associated processes and possible physiological significance on organisms. Soil Biol. Biochem. 2015, 80, 92–117. [Google Scholar] [CrossRef] [Green Version]
- Qiao, C.; Xu, B.; Han, Y.; Wang, J.; Wang, X.; Liu, L.; Liu, W.; Wan, S.; Tan, H.; Liu, Y.; et al. Synthetic nitrogen fertilizers alter the soil chemistry, production and quality of tea. A meta-analysis. Agron. Sustain Dev. 2018, 38, 10. [Google Scholar] [CrossRef] [Green Version]
- He, J.Z.; Hu, H.W.; Zhang, L.M. Current insights into the autotrophic thaumarchaeal ammonia oxidation in acidic soils. Soil Biol. Biochem. 2012, 55, 146–154. [Google Scholar] [CrossRef]
- Yokoyama, K.; Jinnai, K.; Sakiyama, Y.; Touma, M. Contribution of fungi to acetylene-tolerant and high ammonia availability-dependent nitrification potential in tea field soils with relatively neutral pH. Appl. Soil Ecol. 2012, 62, 37–41. [Google Scholar] [CrossRef]
- Yang, X.; Ni, K.; Shi, Y.; Yi, X.; Ji, L.; Ma, L.; Ruan, J. Heavy nitrogen application increases soil nitrification through ammonia-oxidizing bacteria rather than archaea in acidic tea (Camellia sinensis L.) plantation soil. Sci. Total Environ. 2020, 717, 137248. [Google Scholar] [CrossRef]
- Xue, D.; Yao, H.Y.; Huang, C.Y. Study on soil microial properties and enzyme activities in tea gardens. J. Soil Water Conserv. 2005, 2, 84–87. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, B.; Tian, Y.; Zhang, H.; Cheng, Y.; Zhang, J.B. A soil management strategy for ameliorating soil acidification and reducing nitrification in tea plantations. Eur. J. Soil Biol. 2018, 88, 36–40. [Google Scholar] [CrossRef]
- Dan, X.; Meng, L.; He, M.; He, X.; Zhao, C.; Chen, S.; Zhang, J.; Cai, Z.; Müller, C. Regulation of nitrogen acquisition in vegetables by different impacts on autotrophic and heterotrophic nitrification. Plant Soil 2022, 474, 581–594. [Google Scholar] [CrossRef]
- Chen, H.H.; Li, X.C.; Hu, F.; Shi, W. Soil nitrous oxide emissions following crop residue addition: A meta-analysis. Glob. Change Biol. 2013, 19, 2956–2964. [Google Scholar] [CrossRef] [PubMed]
- Weier, K.L.; Doran, J.W.; Power, J.F.; Walters, D.T. Denitrification and the dinitrogen nitrous oxide ratio as affected by soil water, available carbon, and nitrate. Soil Sci. Soc. Am. J. 1993, 57, 66–72. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Li, T.; Zheng, Z.; Zhang, X.; Chen, H.Y. Soil organic carbon and nutrients associated with aggregate fractions in a chronosequence of tea plantations. Ecol. Indic. 2019, 101, 444–452. [Google Scholar] [CrossRef]
- Li, Z.; Xia, S.; Zhang, R.; Zhang, R.; Chen, F.; Liu, Y. N2O emissions and product ratios of nitrification and denitrification are altered by K fertilizer in acidic agricultural soils. Environ. Pollut. 2020, 265, 115065. [Google Scholar] [CrossRef]
- Nieder, R.; Benbi, D.K.; Scherer, H.W. Fixation and defixation of ammonium in soils: A review. Biol. Fertil. Soils 2010, 47, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Ji, C.; Li, S.; Geng, Y.; Zou, J. Decreased N2O and NO emissions associated with stimulated denitrification following biochar amendment in subtropical tea plantations. Geoderma 2020, 365, 114223. [Google Scholar] [CrossRef]
- Tang, S.; Zhou, J.; Pan, W.; Tang, R.; Ma, Q.; Xu, M.; Qi, T.; Ma, Z.; Fu, H.; Wu, L. Impact of N application rate on tea (Camellia sinensis) growth and soil bacterial and fungi communities. Plant Soil 2022, 475, 343–359. [Google Scholar] [CrossRef]
- Lu, S.; Liu, X.; Ma, Z.; Liu, Q.; Wu, Z.; Zeng, X.; Shi, X.; Gu, Z. Vertical segregation and phylogenetic characterization of ammonia-oxidizing bacteria and archaea in the sediment of a freshwater aquaculture pond. Front. Microbiol. 2016, 6, 1539. [Google Scholar] [CrossRef]
- Li, P.P.; Han, Y.L.; He, J.Z.; Zhang, S.Q.; Zhang, L.M. Soil aggregate size and long-term fertilization effects on the function and community of ammonia oxidizers. Geoderma 2019, 338, 107–117. [Google Scholar] [CrossRef]
- Yu, J.; Meixner, F.X.; Sun, W.; Mamtimin, B.; Wang, G.; Qi, X.; Xia, C.; Xie, W. Nitric oxide emissions from black soil, northeastern China: A laboratory study revealing significantly lower rates than hitherto reported. Soil Biol. Biochem. 2010, 42, 1784–1792. [Google Scholar] [CrossRef]
- Loick, N.; Dixon, E.R.; Abalos, D.; Vallejo, A.; Matthews, G.P.; McGeough, K.L.; Well, R.; Watson, C.J.; Laughlin, R.J.; Cardenas, L.M. Denitrification as a source of nitric oxide emissions from incubated soil cores from a UK grassland soil. Soil Biol. Biochem. 2016, 95, 1–7. [Google Scholar] [CrossRef]
- Cai, Z.; Zhang, J.; Zhu, T.; Cheng, Y. Stimulation of NO and N2O emissions from soils by SO2 deposition. Glob. Change Biol. 2012, 18, 2280–2291. [Google Scholar] [CrossRef]
- Chen, C.F.; Lin, J.Y. Estimating the gross budget of applied nitrogen and phosphorus in tea plantations. Sustain. Environ. Res. 2016, 26, 124–130. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Y.; Wang, J.; Chang, S.X.; Cai, Z.C.; Müller, C.; Zhang, J.B. Nitrogen deposition affects both net and gross soil nitrogen transformations in forest ecosystems: A review. Environ. Pollut. 2019, 244, 608–616. [Google Scholar] [CrossRef] [PubMed]
Soil | Stand Age | pH | SOM (g kg−1) | TN (g kg−1) | AP (mg kg−1) | AK (mg kg−1) | CEC (cmol kg−1) |
---|---|---|---|---|---|---|---|
Changsha Hunan | 5 | 5.31 ± 0.00 a | 5.35 ± 0.24 c | 0.54 ± 0.0 6 c | 10.89 ± 0.67 c | 80.83 ± 0.23 b | 8.26 ± 0.15 c |
15 | 4.24 ± 0.01 b | 18.00 ± 1.15 b | 2.00 ± 0.10 b | 293.10 ± 5.33 a | 233.94 ± 24.44 a | 13.10 ± 0.14 b | |
30 | 3.90 ± 0.01 c | 28.57 ± 0.35 a | 2.90 ± 0.25 a | 192.79 ± 24.64 b | 138.39 ± 25.37 b | 15.70 ± 0.75 a | |
Baisha Hainan | 5 | 5.07 ± 0.04 a | 5.29 ± 0.83 b | 0.60 ± 0.09 b | 161.24 ± 4.00 ab | 116.70 ± 11.30 a | 2.98 ± 0.19 c |
15 | 4.80 ± 0.01 b | 10.45 ± 0.12 a | 1.25 ± 0.04 a | 124.51 ± 34.63 b | 145.40 ± 16.83 a | 8.14 ± 0.16 a | |
30 | 4.34 ± 0.01 c | 8.65 ± 1.55 a | 1.15 ± 0.01 a | 206.45 ± 4.00 a | 171.49 ± 22.37 a | 7.41 ± 0.07 b |
Treatment | NO | N2O | ||||
---|---|---|---|---|---|---|
pH | NH4+-N | NO3−-N | pH | NH4+-N | NO3−-N | |
C5L | −0.931 ** | −0.956 ** | 0.881 ** | −0.575 * | −0.621 ** | 0.579 * |
C5H | −0.732 ** | −0.787 ** | 0.439 | −0.572 * | −0.711 ** | 0.685 ** |
C15L | −0.258 | −0.535 * | 0.440 | 0.184 | −0.132 | 0.005 |
C15H | −0.333 | −0.493 * | 0.572 * | −0.218 | −0.337 | 0.511 * |
C30L | −0.740 ** | −0.725 ** | 0.669 ** | −0.867 ** | −0.910 ** | 0.831 ** |
C30H | −0.952 ** | −0.906 ** | −0.076 | −0.532 * | −0.591 ** | 0.314 |
B5L | −0.110 | −0.108 | 0.337 | 0.081 | 0.209 | −0.019 |
B5H | 0.394 | 0.468 | −0.140 | −0.741 ** | −0.639 ** | 0.872 ** |
B15L | −0.634 ** | −0.688 ** | 0.644 ** | 0.254 | 0.355 | −0.033 |
B15H | 0.377 | 0.361 | 0.142 | −0.909 ** | −0.935 ** | 0.699 ** |
B30L | 0.293 | −0.069 | −0.570 * | 0.104 | −0.077 | −0.345 |
B30H | −0.477 * | −0.706 ** | 0.417 | 0.507 * | 0.655 ** | −0.596 ** |
Analysis of Variance | NO | N2O | Net Nitrification Rate |
---|---|---|---|
Moisture | 392.99 *** | 1995.31 *** | 53.73 *** |
Stand age | 197.64 *** | 192.06 *** | 42.04 *** |
Region | 620.08 *** | 153.35 *** | 1.05 |
Moisture × Stand age | 96.51 *** | 175.40 *** | 40.49 *** |
Moisture×Region | 360.09 *** | 145.25 *** | 4.62 * |
Stand age×Region | 145.50 *** | 345.54 *** | 159.47 *** |
Moisture × Stand age × Region | 28.22 *** | 352.65 *** | 6.86 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, R.; Hu, Y.; Hu, T.; Zhao, Y.; Wu, Y.; Meng, L. How Stand Age Affects Soil Nitrification and Nitrogen Gas Emissions in Tropical and Subtropical Tea Plantations. Agronomy 2022, 12, 2521. https://doi.org/10.3390/agronomy12102521
Tang R, Hu Y, Hu T, Zhao Y, Wu Y, Meng L. How Stand Age Affects Soil Nitrification and Nitrogen Gas Emissions in Tropical and Subtropical Tea Plantations. Agronomy. 2022; 12(10):2521. https://doi.org/10.3390/agronomy12102521
Chicago/Turabian StyleTang, Ruijie, Yujie Hu, Tianyi Hu, Yan Zhao, Yanzheng Wu, and Lei Meng. 2022. "How Stand Age Affects Soil Nitrification and Nitrogen Gas Emissions in Tropical and Subtropical Tea Plantations" Agronomy 12, no. 10: 2521. https://doi.org/10.3390/agronomy12102521
APA StyleTang, R., Hu, Y., Hu, T., Zhao, Y., Wu, Y., & Meng, L. (2022). How Stand Age Affects Soil Nitrification and Nitrogen Gas Emissions in Tropical and Subtropical Tea Plantations. Agronomy, 12(10), 2521. https://doi.org/10.3390/agronomy12102521