Disentangling the Genetic Diversity of Grass Pea Germplasm Grown under Lowland and Highland Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Genetic Material
2.2. Field Trials
2.2.1. First Year in Field Trials (2019)
2.2.2. Second Year in Field Trials (2020)
2.3. Climatic Conditions
2.4. Data Collection
2.5. Chemical Analysis
2.5.1. β-ODAP Content
2.5.2. Forage Traits
2.6. Data Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Araujo, S.S.; Beebe, S.; Crespi, M.; Delbreil, B.; González, E.M.; Gruber, V.; Lejeune-Henaut, I.; Link, W.; Monteros, M.J.; Prats, E.; et al. Abiotic stress responses in legumes: Strategies used to cope with environmental challenges. Crit. Rev. Plant Sci. 2015, 34, 237–280. [Google Scholar] [CrossRef]
- Hanjra, M.A.; Qureshi, M.E. Global water crisis and future food security in an era of climate change. Food Policy 2010, 35, 365–377. [Google Scholar] [CrossRef]
- Gonçalves, L.; Rubiales, D.; Bronze, M.R.; Vaz Patto, M.C. Grass pea (Lathyrus sativus L.)—A sustainable and resilient answer to climate challenges. Agronomy 2022, 12, 1324. [Google Scholar] [CrossRef]
- Campbell, C.G. Grass Pea, Lathyrus sativus L.; Promoting the Conservation and Use of Underutilized and Neglected Crops. Nr 18; Institute of Plant Genetics and Crop Plant Research: Rome, Italy; International Plant Genetic Resources Institute: Gatersleben, Germany, 1997; p. 92. [Google Scholar]
- Hanbury, C.D.; Siddique, K.H.M.; Galwey, N.W.; Cocks, P.S. Genotype-environment interaction for seed yield and ODAP concentration of Lathyrus sativus L. and L. cicera L. in Mediterranean-type environments. Euphytica 1999, 110, 45–60. [Google Scholar] [CrossRef]
- Vaz Patto, M.C.; Skiba, B.; Pang, E.C.K.; Ochatt, S.J.; Lambein, F.; Rubiales, D. Lathyrus improvement for resistance against biotic and abiotic stresses: From classical breeding to marker assisted selection. Euphytica 2006, 147, 133–147. [Google Scholar] [CrossRef]
- Longvah, T.; Ananthan, R.; Bhaskarachary, K.; Venkaiah, K. Indian Food Composition Table; National Institute of Nutrition: Hyderabad, India, 2017; pp. 1–578. [Google Scholar]
- Castell, A.G.; Cliplef, R.L.; Briggs, C.J.; Campbell, C.G.; Bruni, J.E. Evaluation of lathyrus (Lathyrus sativus L.) as an ingredient in pig starter and grower diets. Can. J. Anim. Sci. 1994, 74, 529–539. [Google Scholar] [CrossRef] [Green Version]
- Fikre, A.; Korbu, L.; Kuo, Y.-H.; Lambein, F. The contents of the neuro-excitatory amino acid β-ODAP (β-N-oxalyl-L-α,β-diaminopropionic acid), and other free and protein amino acids in the seeds of different genotypes of grass pea (Lathyrus sativus L.). Food Chem. 2008, 110, 422–427. [Google Scholar] [CrossRef]
- Hanbury, C.D.; White, C.L.; Mullan, B.P.; Siddique, K.H.M. A review of the use and potential of Lathyrus sativus L. and L. cicera L. grain for animal feed. Anim. Feed. Sci. Technol. 2000, 87, 1–27. [Google Scholar] [CrossRef]
- Lambein, F.; Travella, S.; Kuo, Y.-H.; Van Montagu, M.; Heijde, M. Grass pea (Lathyrus sativus L.): Orphan crop, nutraceutical or just plain food? Planta 2019, 250, 821–838. [Google Scholar] [CrossRef] [Green Version]
- Hillocks, R.J.; Maruthi, M.N. Grass pea (Lathyrus sativus): Is there a case for further crop improvement? Euphytica 2012, 186, 647–654. [Google Scholar] [CrossRef]
- Abd El Moneim, A.M.; Van Dorrestein, B.; Baum, M.; Mulugeta, W. Role of ICARDA in Improving the nutritional Quality and Yield Potential of Grass Pea (Lathyrus sativus) for Subsistence Farmers in Developing Countries: CGIAR-Wide Conference on Agriculture Nutrition; International Food Policy Research Institute: Washington, DC, USA, 1999; pp. 5–6. [Google Scholar]
- Dahiya, B.S.; Jeswani, L.M. Genotype and environment interactions for neurotoxic principle (BOAA) in grass pea. Indian J. Agric. Sci. 1975, 45, 437–439. [Google Scholar]
- Das, A.; Parihar, A.K.; Barpete, S.; Kumar, S.; Gupta, S. Current perspectives on reducing the β-ODAP content and improving potential agronomic traits in grass pea (Lathyrus sativus L.). Front. Plant Sci. 2021, 12, 703275. [Google Scholar] [CrossRef] [PubMed]
- Basaran, U.; Mut, H.; Onal-Asci, O.; Acar, Z.; Ayan, I. Variability in forage quality of Turkish grass pea (Lathyrus sativus L.) landraces. Turk. J. Field Crops 2011, 16, 9–14. [Google Scholar]
- Upadhyaya, H.D.; Swamy, B.P.M.; Goudar, P.V.K.; Kullaiswamy, B.Y.; Singh, S. Identification of diverse groundnut germplasm through multienvironment evaluation of a core collection for Asia. Field Crops Res. 2005, 93, 293–299. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S.K.; Baek, J.; Carrasquilla-Garcia, N.; Penmetsa, R.V. Genome-wide polymorphism detection in peanut using next-generation restriction-site-associated DNA (RAD) sequencing. Mol. Breed. 2015, 35, 145. [Google Scholar] [CrossRef]
- Yol, E.; Furat, S.; Upadhyaya, H.D.; Uzun, B. Characterization of groundnut (Arachis hypogaea L.) collection using quantitative and qualitative traits in the Mediterranean basin. J. Integr. Agric. 2018, 17, 63–75. [Google Scholar] [CrossRef] [Green Version]
- Tay, J.; Valenzuela, A.; Venegas, F. Collecting and evaluating Chilean germplasm of grasspea (Lathyrus sativus L.). Lathyrus Lathyrism Newsl. 2000, 1, 21. [Google Scholar]
- Abd El-Moneim, A.M.; Dorrestein, B.V.; Baum, M.; Ryan, J.; Bejiga, G. Role of ICARDA in improving the nutritional quality and yield potential of grasspea (Lathyrus sativus L.) for subsistence farmers in dry areas. Lathyrus Lathyrism Newsl. 2001, 2, 55–58. [Google Scholar]
- Kumari, V. Stable genotypes of grasspea for mid hill conditionsof Himachal Pradesh. Indian J. Genet. 2000, 60, 399–402. [Google Scholar]
- Tadesse, W.; Bekele, E. Variation and association of morphological and biochemical characters in grass pea (Lathyrus sativus L.). Euphytica 2003, 130, 315–324. [Google Scholar] [CrossRef]
- Tadesse, W.; Bekele, E. Phenotypic diversity of Ethiopian grass pea (Lathyrus sativus L.) in relation to geographical regions and altitudinal range. Genet. Resour. Crop Evol. 2003, 50, 497–505. [Google Scholar] [CrossRef]
- Tavoletti, S.; Iommarini, L.; Crinò, P.; Granati, E. Collection and evaluation of grasspea (Lathyrus sativus L.) germplasm of central Italy. Plant Breed. 2005, 124, 388–391. [Google Scholar] [CrossRef]
- Sammour, R.H. Genetic diversity in Lathyrus sativus L. germplasm. Res. Rev. BioSci. 2014, 8, 325–336. [Google Scholar]
- Arslan, M.; Oten, M.; Erkaymaz, T.; Tongur, T.; Kilic, M.; Elmasulu, S.; Cinar, A. β-N-oxalyl-L-2,3-diaminopropionic acid, L-homoarginine and asparagine contents in the seeds of different genotypes Lathyrus sativus L. as determined by UHPLC-MS/M. Int. J. Food Prop. 2017, 20, S108–S118. [Google Scholar] [CrossRef] [Green Version]
- Horrocks, R.D.; Vallentine, J.F. Harvested Forages; Academic Press: London, UK, 1999; p. 426. [Google Scholar]
- SAS Institute. SAS/STAT Software 9.1; SAS Institute Inc.: Cary, NC, USA, 2003. [Google Scholar]
- Aravind, J.; Mukesh Sankar, S.; Wankhede, D.P.; Kaur, V. augmentedRCBD: Analysis of Augmented Randomised Complete Block Designs, R Package Version 0.1.5. 2021. Available online: https://aravind-j.github.io/augmentedRCBD/index.html (accessed on 20 August 2022).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022; Available online: https://www.R-project.org/. (accessed on 24 August 2022).
- MINITAB. Minitab Package Program. 2019. [Google Scholar]
- Jain, H.K.; Somayajulu, N.; Barat, G.K. Final Technical Report on Investigation in Lathyrus sativus; Indian Agricultural Research Institute: New Delhi, India, 1994. [Google Scholar]
- Pandey, R.L.; Chitale, M.W.; Sharma, R.N.; Geda, A.K. Evaluation and characterization of germplasm of grass pea (Lathyrus sativus). J. Med. Aromat. Plants 1997, 19, 14–16. [Google Scholar]
- Grela, E.R.; Rybiński, W.; Klebaniuk, R.; Matras, J. Morphological characteristics of some accessions of grass pea (Lathyrus sativus L.) grown in Europe and nutritional traits of their seeds. Genet. Resour. Crop Evol. 2010, 57, 693–701. [Google Scholar] [CrossRef]
- De la Rosa, L.; Martin, I. Morphological characterization of Spanish genetic resources of Lathyrus sativus L. Lathyrus Lathyrism Newsl. 2001, 2, 31–34. [Google Scholar]
- Kumari, V. Field evoluation of grasspea (Lathyrus sativus L.) germplasm for its toxicty in the Norhwestern Hills of India. Lathyrus Lathyrism Newsl. 2001, 2, 82–84. [Google Scholar]
- Çakmakçı, S.; Çeçen, S. The possibilities at entering crop rotation system of certain annual legume plants in Antalya. Turk. J. Agric. For. 1999, 23, 119–123. [Google Scholar]
- Seydoşoğlu, S.; Saruhan, V.; Kökten, K.; Karadağ, Y. Determination of yield and yield components of some grasspea (Lathyrus sativus L.) genotypes in ecological conditions of Diyarbakır. J. Agric. Fac. Gaziosmanpasa Univ. 2015, 32, 98–109. [Google Scholar] [CrossRef]
- Öten, M.; Kiremitçi, S.; Erdurmuş, C. The determination of yield characteristics of some grass pea (Lathyrus sativus L.) lines collected from Antalya natural flora. Ege J. Agric. Res. 2017, 54, 17–26. [Google Scholar]
- Grela, E.R.; Rybinski, W.; Matras, J.; Sobolewska, S. Variability in phenotypic and morphological characteristics of some Lathyrus sativus L. and Lathyrus cicera L. accessions and nutritional traits of their seeds. Genet. Resour. Crop Evol. 2012, 59, 1687–1703. [Google Scholar] [CrossRef] [Green Version]
- Ahmadi, J.; Vaezi, B.; Pour-Aboughadareh, A. Assessment of heritability and relationships among agronomic characters in grass pea (Lathyrus sativus L.) under rainfed conditions. Biharean Biol. 2015, 9, 29–34. [Google Scholar]
- Aksu, E.; Dogan, E.; Arslan, M. Agro-morpholoogical performance of grass pea (Lathyrus sativus L.) genotypes with low Β-ODAP content grown under Mediterranean environmental conditions. Fresenius Environ. Bull. 2021, 30, 638–644. [Google Scholar]
- Basaran, U.; Acar, Z.; Karacan, M.; Onar, N. Variation and correlation of morpho-agronomic traits and biochemical contents (protein and β-Odap) in Turkish grass pea (Lathyrus sativus L.) landraces. Turk. J. Field Crops 2013, 18, 166–173. [Google Scholar]
- Kosev, V.I.; Vasileva, V.M. Morphological characterization of grass pea (Lathyrus sativus L.) varieties. J. Agric. Sci.-Sri Lanka 2019, 14, 67–76. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Dubey, D.K. Genetic diversity among induced mutants of grasspea (Lathyrus sativus L.). Lathyrus Lathyrism Newsl. 2003, 3, 15–17. [Google Scholar]
- Rybinski, W.; Szot, B.; Rusinek, R. Estimation of morphological traits and mechanical properties of grass pea seeds (Lathyrus sativus L.) originating from EU countries. Int. Agrophys. 2008, 22, 261–275. [Google Scholar]
- Enneking, D. The nutritive value of grass pea (Lathyrus sativus L.) and allied species, their toxicity to animals and the role of malnutrition in nerulathyrism. Food. Chem. Toxicol. 2011, 49, 694–709. [Google Scholar] [CrossRef]
- Polignano, G.B.; Uggenti, P.; Olita, G.; Bisignano, V.; Alba, V.; Perrino, P. Characterization of grass pea (Lathyrus sativus L.) entries by means of agronomically useful traits. Lathyrus Lathyrism Newsl. 2005, 4, 9–14. [Google Scholar]
- Sharma, R.N.; Kashyap, O.P.; Chitale, M.W.; Pandey, R.L. Genetic analysis for seed attributes over the years in grass pea (Lathyrus sativus L.). Ind. J. Gen. Plant Breed. 1997, 57, 154–157. [Google Scholar]
- Kumar, S.; Bejiga, G.; Ahmed, S.; Nakkoul, H.; Sarker, A. Genetic improvement of grass pea for low neurotoxin (β-ODAP) content. Food Chem. Toxicol. 2011, 49, 589–600. [Google Scholar] [CrossRef] [PubMed]
- Lambein, F.; Khan, J.K.; Kuo, Y.-H.; Campbell, C.G.; Briggs, C.J. Toxins in the seedlings of some varieties of grass pea (Lathyrus sativus). Nat. Toxins 1993, 1, 246–249. [Google Scholar] [CrossRef]
- Abd El-Moneim, A.M.; Cocks, P.S. Adaptation and yield stability of selected lines of Lathyrus spp. under rainfed conditions in West Asia. Euphytica 1992, 66, 89–97. [Google Scholar] [CrossRef]
- Siddique, K.H.M.; Loss, S.P.; Herwig, S.P.; Wilson, J.M. Growth, yield and neurotoxin (ODAP) concentration of three Lathyrus species in Mediterranean type environments of Western Australia. Aust. J. Exp. Agric. 1996, 36, 209–218. [Google Scholar] [CrossRef]
- Dixit, G.P.; Parihar, A.K.; Bohra, A.; Singh, N.P. Achievements and prospects of grass pea (Lathyrus sativus L.) improvement for sustainable food production. Crop J. 2016, 4, 407–416. [Google Scholar] [CrossRef] [Green Version]
- Despande, S.S.; Campbell, C.G. Genotype variation in BOOA, condensed tannins, phenolics and enzyme inhibitors in grass pea (Latyhrus sativus). Can. J. Plant Sci. 1992, 72, 1037–1047. [Google Scholar] [CrossRef]
- Onar, A.N.; Erdoğan, B.Y.; Ayan, I.; Acar, Z. Homoarginine, β-ODAP, and asparagine contents of grass pea landraces cultivated in Turkey. Food Chem. 2014, 143, 277–281. [Google Scholar] [CrossRef]
- Assefa, G.; Ledin, I. Effect of variety, soil type and fertilizer on the establishment, growth, forage yield, quality and voluntary intake by cattle of oats and vetches cultivated in pure stand and mixtures. Anim. Feed. Sci. Technol. 2001, 92, 95–111. [Google Scholar] [CrossRef]
- Van Soest, P.J. Nutritional Ecology of the Ruminant, 2nd ed.; Comstock Publishing Associates: Ithaca, NY, USA, 1994. [Google Scholar]
- Ball, D.M.; Collins, M.; Lacefield, G.D.; Martin, N.P.; Mertens, D.A.; Olson, K.E.; Putnam, D.H.; Undersander, D.J.; Wolf, M.W. Understanding Forage Quality; American Farm Bureau Federation Publication: Park Ridge, IL, USA, 2001. [Google Scholar]
- Basaran, U.; Asci, O.O.; Mut, H.; Acar, Z.; Ayan, I. Some quality traits and neurotoxin β-N-oxalyl-L-α,β- diaminopropionic acid (β-ODAP) contents of Lathyrus sp. cultivated in Turkey. Afr. J. Biotechnol. 2011, 10, 4072–4080. [Google Scholar]
- Kiraz, A.B. Determination of relative feed value of some legume hays harvested at flowering stage. Asian J. Anim. Vet. Adv. 2011, 6, 525–530. [Google Scholar] [CrossRef] [Green Version]
- Karadag, Y.; Yavuz, M. Seed yields and biochemical compounds of grasspea (Lathyrus sativus L.) lines grown in semi-arid regions of Turkey. Afr. J. Biotechnol. 2010, 9, 8343–8348. [Google Scholar]
- Surmen, M.; Yavuz, T.; Cankaya, N. Effects of phosphorus fertilization and harvesting stages on forage yield and quality of common vetch. J. Food Agric. Environ. 2011, 9, 353–355. [Google Scholar]
- Aydin, N.; Mut, Z.; Mut, H.; Ayan, I. Effect of autumn and spring sowing dates on hay yield and quality of oat (Avena sativa L.) genotypes. J. Anim. Vet. Adv. 2010, 9, 1539–1545. [Google Scholar] [CrossRef]
Characteristics | Values | Evaluation | |
---|---|---|---|
Antalya | Isparta | ||
pH | 7.30 | 7.66 | Slightly alkaline |
Lime (%) | 21.6 | 28.7 | Too limy |
EC micromhos/cm (25 °C) | 485 | 375 | Slightly salted |
Texture | Clay-loam | Clay-loam | |
Organic material, (%) | 2.3 | 1.54 | Enough |
P ppm (Olsen) | 5 | 23.5 | 20–25 |
K ppm | 275 | 176.2 | 200–320 |
Antalya (Lowland) | Isparta (Highland) | ||||
---|---|---|---|---|---|
Agronomic Traits | Mean | S.E. † | Mean | S.E. † | Differences # |
First flowering (day) | 99.15 | 0.51 | 187.8 | 0.76 | ★★ |
50% flowering (day) | 107.06 | 0.54 | 192.9 | 0.76 | ★★ |
Plant height (cm) | 64.40 | 0.73 | 39.7 | 1.30 | ★★ |
Number of pods | 23.77 | 0.55 | 22.0 | 1.34 | ns |
Number of branches | 9.65 | 0.21 | 3.9 | 0.15 | ★★ |
Pod height (cm) | 3.53 | 0.22 | 3.19 | 0.05 | ★★ |
Pod width (cm) | 1.29 | 0.01 | 1.03 | 0.01 | ★★ |
Stem diameter (mm) | 1.81 | 0.01 | 4.1 | 0.07 | ★★ |
Hundred seed weight (g) | 13.15 | 0.18 | 14.3 | 0.48 | ★ |
Biological yield (g) | 10.30 | 0.21 | 20.8 | 1.68 | ★★ |
Seed yield (g) | 3.01 | 0.09 | 6.0 | 0.56 | ★★ |
Forage and quality traits | Mean | S.E. † | Mean | S.E. † | Differences # |
Beta-ODAP | 0.38 | 0.01 | 0.35 | 0.01 | ★ |
Raw protein | 24.00 | 0.12 | 21.06 | 0.18 | ★★ |
Acid detergent fiber | 8.20 | 0.03 | 8.43 | 0.08 | ★ |
Neutral detergent fiber | 13.98 | 0.13 | 15.72 | 0.27 | ★★ |
Total digestible nutrients | 90.66 | 0.04 | 90.47 | 0.10 | ns |
Dry matter intake | 8.45 | 0.07 | 7.83 | 0.12 | ★★ |
Digestible dry matter | 82.45 | 0.02 | 82.33 | 0.06 | ns |
Relative feed values | 539.95 | 4.7 | 499.86 | 8.0 | ★★ |
Isparta (Highland) | Antalya (Lowland) | |||||||
---|---|---|---|---|---|---|---|---|
PC Axis | ||||||||
PC1 | PC2 | PC3 | PC4 | PC1 | PC2 | PC3 | PC4 | |
Eigenvalues | 3.89 | 1.87 | 1.53 | 1.10 | 3.36 | 1.79 | 1.53 | 1.24 |
Explained proportion of variation, % | 35.4 | 17.1 | 13.9 | 10.0 | 30.6 | 16.3 | 14.0 | 11.3 |
Cumulative proportion of variation, % | 35.4 | 52.5 | 66.4 | 76.4 | 30.6 | 46.9 | 60.9 | 72.2 |
Traits | Eigenvectors | |||||||
First flowering (day) | −0.000 | −0.640 | 0.233 | −0.013 | 0.293 | 0.562 | −0.155 | −0.108 |
50% flowering (day) | −0.005 | −0.669 | 0.148 | −0.103 | 0.291 | 0.563 | −0.154 | −0.061 |
Plant height (cm) | 0.169 | 0.032 | 0.182 | −0.700 | 0.265 | 0.249 | 0.424 | 0.034 |
Number of pods | 0.413 | 0.114 | −0.036 | −0.273 | 0.114 | 0.091 | 0.644 | 0.345 |
Number of branches | 0.364 | 0.035 | −0.034 | −0.016 | 0.278 | −0.163 | 0.406 | 0.037 |
Pod height (cm) | −0.104 | −0.152 | −0.690 | 0.109 | 0.307 | −0.182 | 0.181 | −0.502 |
Pod width (cm) | −0.035 | −0.225 | −0.624 | −0.396 | 0.374 | −0.231 | −0.023 | −0.457 |
Stem diameter (mm) | 0.329 | −0.069 | −0.096 | 0.396 | 0.291 | 0.092 | −0.246 | 0.298 |
Hundred seed weight (g) | 0.341 | −0.222 | 0.016 | 0.304 | 0.351 | −0.257 | −0.169 | −0.084 |
Biological yield (g) | 0.465 | 0.001 | −0.109 | 0.054 | 0.382 | −0.216 | −0.231 | 0.375 |
Seed yield (g) | 0.463 | 0.012 | −0.042 | −0.055 | 0.284 | −0.253 | −0.127 | 0.407 |
Isparta (Highland) | Antalya (Lowland) | ||||
---|---|---|---|---|---|
PC Axis | |||||
PC1 | PC2 | PC3 | PC1 | PC2 | |
Eigenvalues | 4.57 | 1.89 | 1.02 | 4.22 | 1.83 |
Explained proportion of variation, % | 57.2 | 23.7 | 12.9 | 52.9 | 23.0 |
Cumulative proportion of variation, % | 57.2 | 80.9 | 93.7 | 52.9 | 75.9 |
Traits | Eigenvectors | ||||
Beta-ODAP | 0.007 | −0.086 | −0.963 | −0.151 | −0.007 |
Raw protein | 0.311 | 0.253 | −0.252 | 0.307 | −0.001 |
Acid detergent fiber | −0.372 | 0.440 | −0.040 | −0.393 | 0.369 |
Neutral detergent fiber | −0.398 | −0.341 | −0.055 | −0.368 | −0.422 |
Total digestible nutrients | 0.372 | −0.440 | 0.040 | 0.382 | −0.424 |
Dry matter intake | 0.402 | 0.353 | 0.022 | 0.382 | 0.418 |
Digestible dry matter | 0.371 | −0.440 | 0.040 | 0.382 | −0.424 |
Relative feed values | 0.411 | 0.328 | 0.023 | 0.394 | 0.389 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arslan, M.; Yol, E.; Türk, M. Disentangling the Genetic Diversity of Grass Pea Germplasm Grown under Lowland and Highland Conditions. Agronomy 2022, 12, 2426. https://doi.org/10.3390/agronomy12102426
Arslan M, Yol E, Türk M. Disentangling the Genetic Diversity of Grass Pea Germplasm Grown under Lowland and Highland Conditions. Agronomy. 2022; 12(10):2426. https://doi.org/10.3390/agronomy12102426
Chicago/Turabian StyleArslan, Mehmet, Engin Yol, and Mevlüt Türk. 2022. "Disentangling the Genetic Diversity of Grass Pea Germplasm Grown under Lowland and Highland Conditions" Agronomy 12, no. 10: 2426. https://doi.org/10.3390/agronomy12102426
APA StyleArslan, M., Yol, E., & Türk, M. (2022). Disentangling the Genetic Diversity of Grass Pea Germplasm Grown under Lowland and Highland Conditions. Agronomy, 12(10), 2426. https://doi.org/10.3390/agronomy12102426