Mixture of Alfalfa, Orchardgrass, and Tall Fescue Produces Greater Biomass Yield in Southwest China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Plant Materials
2.2. Soil Properties and Weather Description
2.3. Experimental Design and Field Management
2.4. Soil Sampling and Measurement
2.5. Biomass Yield Determination
2.6. Competitive Indexes Determination
2.7. Statistical Analysis
3. Results
3.1. Biomass Yield of Whole Cropping Systems
3.2. Dynamics of Legume and Grass Biomass Yield Proportions of Mixtures during Early Establishment
3.3. Competitive Indices
4. Discussion
4.1. Biomass Yield and Early Establishment of Different Cropping Systems
4.2. Grasses of Legume–Grass Mixtures Had Lower Competitive Ability Than Legumes in the Following Year
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tahir, M.; Li, C.; Zeng, T.; Xin, Y.; Chen, C.; Javed, H.H.; Yang, W.; Yan, Y. Mixture Composition Influenced the Biomass Yield and Nutritional Quality of Legume-Grass Pastures. Agronomy 2022, 12, 1449. [Google Scholar] [CrossRef]
- Finn, J.A.; Kirwan, L.; Connolly, J.; Sebastià, M.T.; Helgadottir, A.; Baadshaug, O.H.; Bélanger, G.; Black, A.; Brophy, C.; Collins, R.P. Ecosystem function enhanced by combining four functional types of plant species in intensively managed grassland mixtures: A 3-year continental-scale field experiment. J. Appl. Ecol. 2013, 50, 365–375. [Google Scholar] [CrossRef] [Green Version]
- Ojeda, J.J.; Caviglia, O.P.; Agnusdei, M.G.; Errecart, P.M. Forage yield, water-and solar radiation-productivities of perennial pastures and annual crops sequences in the south-eastern Pampas of Argentina. Field Crops Res. 2018, 221, 19–31. [Google Scholar] [CrossRef]
- Albayrak, S.; Mevlüt, T.; YUeKSEL, O.; Yilmaz, M. Forage yield and the quality of perennial legume-grass mixtures under rainfed conditions. Not. Bot. Horti Agrobot. Cluj-Napoca 2011, 39, 114–118. [Google Scholar] [CrossRef] [Green Version]
- McDonald, I.; Baral, R.; Min, D. Effects of alfalfa and alfalfa-grass mixtures with nitrogen fertilization on dry matter yield and forage nutritive value. J. Anim. Sci. Technol. 2021, 63, 305–318. [Google Scholar] [CrossRef]
- Bi, Y.; Zhou, P.; Li, S.; Wei, Y.; Xiong, X.; Shi, Y.; Liu, N.; Zhang, Y. Interspecific interactions contribute to higher forage yield and are affected by phosphorus application in a fully-mixed perennial legume and grass intercropping system. Field Crops Res. 2019, 244, 107636. [Google Scholar] [CrossRef]
- Gierus, M.; Kleen, J.; Loges, R.; Taube, F. Forage legume species determine the nutritional quality of binary mixtures with perennial ryegrass in the first production year. Anim. Feed Sci. Technol. 2012, 172, 150–161. [Google Scholar] [CrossRef]
- Peeters, A.; Parente, G.; Le Gall, A. Temperate legumes: Key-species for sustainable temperate mixtures. In Sustainable Grassland Productivity; Grassland Science in Europe; Artes Gráficas Marcipa: Badajoz, Spain, 2006. [Google Scholar]
- Louarn, G.; Pereira-Lopès, E.; Fustec, J.; Mary, B.; Voisin, A.-S.; de Faccio Carvalho, P.C.; Gastal, F. The amounts and dynamics of nitrogen transfer to grasses differ in alfalfa and white clover-based grass-legume mixtures as a result of rooting strategies and rhizodeposit quality. Plant Soil 2015, 389, 289–305. [Google Scholar] [CrossRef]
- Aponte, A.; Samarappuli, D.; Berti, M.T. Alfalfa–Grass Mixtures in Comparison to Grass and Alfalfa Monocultures. Agron. J. 2019, 111, 628–638. [Google Scholar] [CrossRef]
- Sleugh, B.; Moore, K.J.; George, J.R.; Brummer, E.C. Binary Legume–Grass Mixtures Improve Forage Yield, Quality, and Seasonal Distribution. Agron. J. 2000, 92, 24–29. [Google Scholar] [CrossRef]
- Sanderson, M.; Skinner, R.; Barker, D.; Edwards, G.; Tracy, B.; Wedin, D. Plant species diversity and management of temperate forage and grazing land ecosystems. Crop Sci. 2004, 44, 1132–1144. [Google Scholar] [CrossRef] [Green Version]
- Tilman, D. Plant diversity and composition: Effects on productivity and nutrient dynamics of experimental grasslands. In Biodiversity and Ecosystem Functioning: Synthesis and Perspectives; Tilman, D., Knops, J., Wedin, D., Reich, P., Eds.; Oxford University Press: Oxford, UK, 2002; p. 21. [Google Scholar]
- Sanderson, M.A.; Brink, G.; Stout, R.; Ruth, L. Grass–legume proportions in forage seed mixtures and effects on herbage yield and weed abundance. Agron. J. 2013, 105, 1289–1297. [Google Scholar] [CrossRef] [Green Version]
- Bao, S. Soil Agrochemical Analysis; China Agricultural Press: Beijing, China, 2000; Volume 67, p. 72. [Google Scholar]
- Bremner, J.M. Nitrogen-total. In Methods of Soil Analysis: Part 3 Chemical Methods; Soil Science Society of America: Madison, WI, USA, 1996; Volume 5, pp. 1085–1121. [Google Scholar]
- Willey, R.W. Resource use in intercropping systems. Agric. Water Manag. 1990, 17, 215–231. [Google Scholar] [CrossRef]
- Dhima, K.V.; Lithourgidis, A.S.; Vasilakoglou, I.B.; Dordas, C.A. Competition indices of common vetch and cereal intercrops in two seeding ratio. Field Crops Res. 2007, 100, 249–256. [Google Scholar] [CrossRef]
- Tian, Y.; Sun, W.; Song, M.; Zhao, Y.; Wen, S.; Cui, Y.; Li, X.; Xu, X. Effects of grass-legume mixture on plant production and inorganic nitrogen acquisition. Rhizosphere 2021, 20, 100447. [Google Scholar] [CrossRef]
- Chamkhi, I.; Cheto, S.; Geistlinger, J.; Zeroual, Y.; Kouisni, L.; Bargaz, A.; Ghoulam, C. Legume-based intercropping systems promote beneficial rhizobacterial community and crop yield under stressing conditions. Ind. Crops Prod. 2022, 183, 114958. [Google Scholar] [CrossRef]
- Zhang, J.; Cheng, G.; Yu, F.; Kräuchi, N.; Li, M.-H. Intensity and Importance of Competition for a Grass (Festuca rubra) and a Legume (Trifolium pratense) Vary with Environmental Changes. J. Integr. Plant Biol. 2008, 50, 1570–1579. [Google Scholar] [CrossRef] [PubMed]
- Wendling, M.; Büchi, L.; Amossé, C.; Jeangros, B.; Walter, A.; Charles, R. Specific interactions leading to transgressive overyielding in cover crop mixtures. Agric. Ecosyst. Environ. 2017, 241, 88–99. [Google Scholar] [CrossRef]
- Wendling, M.; Charles, R.; Herrera, J.; Amossé, C.; Jeangros, B.; Walter, A.; Büchi, L. Effect of species identity and diversity on biomass production and its stability in cover crop mixtures. Agric. Ecosyst. Environ. 2019, 281, 81–91. [Google Scholar] [CrossRef] [Green Version]
- Cardinale, B.J.; Wright, J.P.; Cadotte, M.W.; Carroll, I.T.; Hector, A.; Srivastava, D.S.; Loreau, M.; Weis, J.J. Impacts of plant diversity on biomass production increase through time because of species complementarity. Proc. Natl. Acad. Sci. USA 2007, 104, 18123–18128. [Google Scholar] [CrossRef] [PubMed]
- Tilman, D.; Isbell, F.; Cowles, J.M. Biodiversity and ecosystem functioning. Annu. Rev. Ecol. Evol. Syst. 2014, 45, 471–493. [Google Scholar] [CrossRef]
- Woodfield, D.R.; Caradus, J.R. Factors Affecting white Clover Persistence in New Zealand Pastures; New Zealand Grassland Association: Dunedin, New Zealand, 1996; Volume 58, pp. 229–235. [Google Scholar]
- Polley, H.W.; Collins, H.P.; Fay, P.A. Biomass production and temporal stability are similar in switchgrass monoculture and diverse grassland. Biomass Bioenergy 2020, 142, 105758. [Google Scholar] [CrossRef]
- Bork, E.W.; Gabruck, D.T.; McLeod, E.M.; Hall, L.M. Five-Year Forage Dynamics Arising from Four Legume–Grass Seed Mixes. Agron. J. 2017, 109, 2789–2799. [Google Scholar] [CrossRef]
- Li, L.; Sun, J.; Zhang, F.; Li, X.; Yang, S.; Rengel, Z. Wheat/maize or wheat/soybean strip intercropping: I. Yield advantage and interspecific interactions on nutrients. Field Crops Res. 2001, 71, 123–137. [Google Scholar] [CrossRef]
- Mushagalusa, G.N.; Ledent, J.F.; Draye, X. Shoot and root competition in potato/maize intercropping: Effects on growth and yield. Environ. Exp. Bot. 2008, 64, 180–188. [Google Scholar] [CrossRef]
- Doubi, B.T.S.; Kouassi, K.I.; Kouakou, K.L.; Koffi, K.K.; Baudoin, J.-P.; Zoro, B.I.A. Existing competitive indices in the intercropping system of Manihot esculenta Crantz and Lagenaria siceraria (Molina) Standley. J. Plant Interact. 2016, 11, 178–185. [Google Scholar] [CrossRef] [Green Version]
- Sollenberger, L.E.; Templeton, W.C., Jr.; Hill, R.R., Jr. Orchardgrass and perennial ryegrass with applied nitrogen and in mixtures with legumes. Grass Forage Sci. 1984, 39, 263–270. [Google Scholar] [CrossRef]
- Tracy, B.F.; Sanderson, M.A. Forage productivity, species evenness and weed invasion in pasture communities. Agric. Ecosyst. Environ. 2004, 102, 175–183. [Google Scholar] [CrossRef]
Specie Name | Variety Name | Biological Characteristics | |
---|---|---|---|
Legumes | Alfalfa | Xibuzhixing | Fall dormancy class 7 |
White clover | Ladino | Large-leaf type, prefers warm, humid climates | |
Red clover | Duoli | Suitable for warm and humid climates | |
Grasses | Orchardgrass | Amba | Early maturing, hardy, and heat-labile |
Tall fescue | Meishijia | Suitable for cold, warm, and humid climates with slight heat resistance | |
Perennial ryegrass | Kaidi | Prefers cool and humid climates, not heat-resistant |
Month | Average Temperature (°C) | Rainfall (mm) | ||||
---|---|---|---|---|---|---|
2017 | 2018 | 2019 | 2017 | 2018 | 2019 | |
January | 8 | 6 | 7 | 16 | 3 | 5 |
February | 10 | 8 | 7 | 3 | 1 | 14 |
March | 14 | 15 | 13 | 11 | 26 | 28 |
April | 15 | 18 | 19 | 24 | 69 | 45 |
May | 21 | 23 | 20 | 62 | 122 | 146 |
June | 22 | 25 | 24 | 152 | 235 | 7 |
July | 26 | 27 | 24 | 289 | 358 | 294 |
August | 27 | 27 | 25 | 66 | 85 | 32 |
September | 23 | 22 | 20 | 145 | 110 | 205 |
October | 18 | 17 | 18 | 46 | 37 | 9 |
November | 12 | 12 | 11 | 9 | 11 | 13 |
December | 8 | 6 | 8 | 5 | 4 | 3 |
Legume–grass Mixtures | Species | Seeding Rate (kg ha−1)/Mixed Ratio (%) |
---|---|---|
L:G 3:7 | ||
M1 | O | 5.25/35 |
TF | 13.13/35 | |
WC | 2.25/30 | |
M2 | O | 5.25/35 |
TF | 13.13/35 | |
A | 6.75/30 | |
M3 | O | 5.25/35 |
TF | 13.13/35 | |
A | 3.36/15 | |
WC | 1.13/15 | |
M4 | O | 5.25/35 |
TF | 13.13/35 | |
WC | 1.13/15 | |
RC | 2.25/15 | |
M5 | O | 3.45/23.30 |
PR | 4.14/23.30 | |
TF | 8.63/23.30 | |
A | 3.36/15 | |
WC | 1.13/15 | |
M6 | O | 3.45/23.30 |
PR | 4.14/23.30 | |
TF | 8.63/23.30 | |
WC | 1.13/15 | |
RC | 2.25/15 | |
M7 | O | 3.45/23.30 |
PR | 4.14/23.30 | |
TF | 8.63/23.30 | |
A | 2.25/10 | |
WC | 0.75/10 | |
RC | 1.50/10 |
Year | Cuttings | Monocultures | Legume–Grass Mixtures | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
WC | A | RC | O | PR | TF | M1 | M2 | M3 | M4 | M5 | M6 | M7 | |||
2018 | First cut | 4.6 cd | 4.5 cde | 4.0 e | 4.2 de | 5.6 a | 3.1 f | 4.9 bc | 4.8 bcd | 3.1 f | 4.2 de | 4.9 bcd | 3.9 e | 5.2 abc | |
Second cut | 3.8 de | 3.1 f | 3.0 f | 3.1 f | 4.4 bc | 2.9 f | 3.0 f | 4.0 cde | 3.5 df | 4.2 bcd | 4.0 cde | 4.6 ab | 5.0 a | ||
Third cut | 4.2 b | 1.7 e | 3.1 d | 2.7 d | 1.4 e | 2.8 d | 3.0 d | 4.4 a | 3.8 bc | 3.6 c | 3.1 d | 2.6 d | 3.0 d | ||
Total | 12.6 a | 9.4 gh | 10.1 f | 9.9 fg | 11.4 de | 8.8 h | 10.9 e | 13.3 b | 10.6 ef | 11.8 cd | 11.8 cd | 11.2 de | 13.2 b | ||
2019 | First cut | 4.5 a | 3.2 bc | 2.8 bc | 1.6 e | - | 1.9 e | 3.0 c | 4.5 a | 2.3 d | 3.4 bc | 2.9 c | 3.0 c | 3.6 b | |
Second cut | 3.1 b | 2.2 f | 2.6 c | 2.3 def | - | 2.6 cde | 2.7 cd | 4.0 a | 2.2 ef | 3.2 b | 3.0 bc | 2.9 bc | 3.8 a | ||
Third cut | 4.1 a | 1.4 e | 2.8 c | 1.5 e | - | 1.9 d | 1.8 de | 4.1 a | 3.1 b | 3.2 b | 3.8 a | 3.0 bc | 3.8 a | ||
Total | 11.7 b | 6.7 fg | 8.2 d | 5.4 h | - | 6.4 g | 7.4 ef | 12.6 a | 7.8 e | 9.8 c | 9.6 cd | 9.0 cd | 11.2 bc | ||
Average | 12.1 b | 8.0 f | 9.1 e | 7.7 f | 5.7 g | 7.6 f | 9.2 e | 12.9 a | 9.2 e | 10.9 c | 10.8 c | 10.1 d | 12.2 b | ||
ANOVA | Treatment | 0.001 | |||||||||||||
Year | 0.001 | ||||||||||||||
T × Y | 0.001 |
Year | Cuttings | Legume–Grass Mixtures | ||||||
---|---|---|---|---|---|---|---|---|
M1 | M2 | M3 | M4 | M5 | M6 | M7 | ||
2018 | First cut | 1.25 a | 1.23 ab | 0.76 c | 1.04 ab | 1.11 b | 0.92 bc | 1.20 a |
Second cut | 1.00 b | 1.17 ab | 1.09 ab | 1.19 ab | 1.15 ab | 1.31 a | 1.39 a | |
Third cut | 1.16 bc | 1.21 b | 1.22 ab | 1.13 a | 0.98 d | 1.07 bcd | 0.99 cd | |
Average | 1.08 | 1.19 | 1.16 | 1.17 | 1.07 | 1.19 | 1.19 | |
2019 | First cut | 1.60 a | 1.48 ab | 0.84 c | 1.38 ab | 1.34 ab | 1.24 b | 1.59 a |
Second cut | 1.71 bc | 1.54 bc | 0.96 d | 1.66 bc | 1.39 c | 1.79 b | 2.21 a | |
Third cut | 1.94 ab | 1.65 c | 1.51 c | 2.16 a | 1.85 b | 2.12 a | 2.05 ab | |
Average | 1.75 | 1.56 | 1.10 | 1.73 | 1.53 | 1.72 | 1.95 |
Year | Legume–Grass Mixtures | Cuttings | |||||
---|---|---|---|---|---|---|---|
First Cut | Second Cut | Third Cut | |||||
Legume | Grass | Legume | Grass | Legume | Grass | ||
2018 | M1 | 1.25 bc | 0.81 d | 0.40 c | 2.51 b | 0.42 d | 2.52 a |
M2 | 2.92 a | 0.35 d | 2.81 a | 0.36 b | 7.96 a | 0.13 d | |
M3 | 1.39 b | 0.73 d | 2.01 b | 0.51 b | 4.19 b | 0.24 cd | |
M4 | 1.00 c | 1.02 d | 0.51 c | 3.57 b | 1.39 d | 0.74 bc | |
M5 | 0.21 d | 5.14 c | 0.17 c | 6.47 ab | 1.82 cd | 0.61 bcd | |
M6 | 0.08 d | 13.55 a | 0.11 c | 15.67 a | 1.19 d | 0.84 b | |
M7 | 0.12 d | 8.47 b | 0.25 c | 4.72 ab | 3.47 bc | 0.29 bcd | |
SEM | 0.2130 | 1.0744 | 0.2273 | 1.5849 | 0.5726 | 0.1775 | |
2019 | M1 | 2.16 d | 0.52 a | 1.54 cd | 0.65 a | 0.97 c | 1.04 a |
M2 | 3.58 abc | 0.28 bc | 2.68 b | 0.39 b | 3.84 b | 0.26 bc | |
M3 | 4.46 abc | 0.23 bc | 4.09 a | 0.24 c | 6.30 a | 0.16 c | |
M4 | 5.10 ab | 0.20 bc | 2.79 b | 0.36 bc | 3.44 b | 0.29 bc | |
M5 | 2.56 d | 0.44 ab | 2.72 b | 0.37 bc | 3.37 b | 0.30 b | |
M6 | 5.87 a | 0.18 c | 2.30 bc | 0.44 b | 3.97 b | 0.25 bc | |
M7 | 3.33 cd | 0.34 abc | 1.13 d | 0.59 a | 3.78 b | 0.26 bc | |
SEM | 0.3607 | 0.0354 | 0.2198 | 0.0320 | 0.3429 | 0.0638 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Tahir, M.; Li, C.; Chen, C.; Xin, Y.; Zhang, G.; Cheng, M.; Yan, Y. Mixture of Alfalfa, Orchardgrass, and Tall Fescue Produces Greater Biomass Yield in Southwest China. Agronomy 2022, 12, 2425. https://doi.org/10.3390/agronomy12102425
Liu X, Tahir M, Li C, Chen C, Xin Y, Zhang G, Cheng M, Yan Y. Mixture of Alfalfa, Orchardgrass, and Tall Fescue Produces Greater Biomass Yield in Southwest China. Agronomy. 2022; 12(10):2425. https://doi.org/10.3390/agronomy12102425
Chicago/Turabian StyleLiu, Xianjun, Muhammad Tahir, Changhua Li, Chen Chen, Yafen Xin, Guijie Zhang, Mingjun Cheng, and Yanhong Yan. 2022. "Mixture of Alfalfa, Orchardgrass, and Tall Fescue Produces Greater Biomass Yield in Southwest China" Agronomy 12, no. 10: 2425. https://doi.org/10.3390/agronomy12102425
APA StyleLiu, X., Tahir, M., Li, C., Chen, C., Xin, Y., Zhang, G., Cheng, M., & Yan, Y. (2022). Mixture of Alfalfa, Orchardgrass, and Tall Fescue Produces Greater Biomass Yield in Southwest China. Agronomy, 12(10), 2425. https://doi.org/10.3390/agronomy12102425