Foliar Application of Protein Hydrolysates on Baby-Leaf Spinach Grown at Different N Levels
Abstract
:1. Introduction
2. Material and Methods
2.1. Plant Growing Conditions, Treatments, and Experimental Design
2.2. Sampling and Measurements
2.2.1. Bio-Morphological Features of Spinach Leaves
2.2.2. Bio-Morphological Features of Spinach Roots
2.3. Chemical Analyses
2.3.1. Inorganic Ion and Nitrogen Concentration
2.3.2. Concentration of Phenols
2.3.3. Ascorbic Acid, De-Hydro-Ascorbic Acid, and Vitamin C Concentration
2.3.4. Concentration of Total Chlorophylls and Carotenoids
2.4. Indices of Nitrogen Nutrition Status and Nitrogen Use Efficiency
2.5. Gas Exchange Measurements
2.6. Statistical Analysis
3. Results
3.1. Yield, Growth, and Morphology of Spinach Leaves
3.2. Growth and Morphology of Spinach Roots
3.3. Biophysical Features and Gas Exchange Measurements of Spinach Leaves
3.4. Nitrogen Nutritional Status and Nitrogen Use Efficiency of Spinach Leaves
3.5. The Mineral Status of Spinach Leaves
3.6. Antioxidant Compounds in Spinach Leaves
4. Discussion
4.1. Effect of Foliar Application of Biostimulants and Nitrogen Nutrition on Growth and Yield
4.2. Effect of Foliar Application of Biostimulants and Nitrogen Nutrition on Mineral Profile, Indices of N Status and N Use Efficiency
4.3. Effect of Foliar Application of Biostimulants and Nitrogen Nutrition on the Bio-Physical and Antioxidant Profile of Spinach Leaves
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Roberts, J.L.; Moreau, R. Functional Properties of Spinach (Spinacia oleracea L.) Phytochemicals and Bioactives. Food Funct. 2016, 7, 3337–3353. [Google Scholar] [CrossRef]
- Roughani, A.; Miri, S.M. Spinach: An Important Green Leafy Vegetable and Medicinal Herb. In Proceedings of the Second International Conference on Medicinal Plants, Organic Farming, Natural and Pharmaceutical In-Gredients, Mashhad, Iran, 22 January 2019. [Google Scholar]
- Jaworska, G. Nitrates, Nitrites, and Oxalates in Products of Spinach and New Zealand Spinach: Effect of Technological Measures and Storage Time on the Level of Nitrates, Nitrites, and Oxalates in Frozen and Canned Products of Spinach and New Zealand Spinach. Food Chem. 2005, 93, 395–401. [Google Scholar] [CrossRef]
- Biemond, H.; Vos, J.; Struik, P. Effects of Nitrogen on Accumulation and Partitioning of Dry Matter and Nitrogen of Vegetables. 3. Spinach. Neth. J. Agric. Sci. 1996, 44, 227–239. [Google Scholar] [CrossRef]
- Smolders, E.; Buysse, J.; Merckx, R. Growth Analysis of Soil-Grown Spinach Plants at Different N-Regimes. In Proceedings of the Optimization of Plant Nutrition: Refereed Papers from the Eighth International Colloquium for the Optimization of Plant Nutrition, Lisbon, Portugal, 31 August–8 September 1992; Fragoso, M.A.C., Van Beusichem, M.L., Houwers, A., Eds.; Springer: Dordrecht, The Netherlands, 1993; pp. 219–226, ISBN 978-94-017-2496-8. [Google Scholar]
- Regulation (EU) 2019/1009 of the European Parliament and of the Council of 5 June 2019 Laying down Rules on the Making Available on the Market of EU Fertilising Products and Amending Regulations (EC) No 1069/2009 and (EC) No 1107/2009 and Repealing Regulation (EC) No 2003/2003 (Text. with EEA Relevance). Off. J. Eur. Union 2019, 170, 1–114.
- Yakhin, O.I.; Lubyanov, A.A.; Yakhin, I.A.; Brown, P.H. Biostimulants in Plant Science: A Global Perspective. Front. Plant. Sci. 2017, 7, 2049. [Google Scholar] [CrossRef] [Green Version]
- Cristofano, F.; el-Nakhel, C.; Rouphael, Y. Biostimulant Substances for Sustainable Agriculture: Origin, Operating Mechanisms and Effects on Cucurbits, Leafy Greens, and Nightshade Vegetables Species. Biomolecules 2021, 11, 1103. [Google Scholar] [CrossRef] [PubMed]
- Colla, G.; Rouphael, Y.; Canaguier, R.; Svecova, E.; Cardarelli, M. Biostimulant Action of a Plant-Derived Protein Hydrolysate Produced through Enzymatic Hydrolysis. Front. Plant. Sci. 2014, 5, 448. [Google Scholar] [CrossRef] [Green Version]
- Colla, G.; Nardi, S.; Cardarelli, M.; Ertani, A.; Lucini, L.; Canaguier, R.; Rouphael, Y. Protein Hydrolysates as Biostimulants in Horticulture. Sci. Hortic. 2015, 196, 28–38. [Google Scholar] [CrossRef]
- Lucini, L.; Rouphael, Y.; Cardarelli, M.; Canaguier, R.; Kumar, P.; Colla, G. The Effect of a Plant-Derived Biostimulant on Metabolic Profiling and Crop Performance of Lettuce Grown under Saline Conditions. Sci. Hortic. 2015, 182, 124–133. [Google Scholar] [CrossRef]
- Lucini, L.; Rouphael, Y.; Cardarelli, M.; Bonini, P.; Baffi, C.; Colla, G. A Vegetal Biopolymer-Based Biostimulant Promoted Root Growth in Melon While Triggering Brassinosteroids and Stress-Related Compounds. Front. Plant Sci. 2018, 9, 472. [Google Scholar] [CrossRef] [Green Version]
- Calvo, P.; Nelson, L.; Kloepper, J.W. Agricultural Uses of Plant Biostimulants. Plant Soil 2014, 383, 3–41. [Google Scholar] [CrossRef] [Green Version]
- Colla, G.; Hoagland, L.; Ruzzi, M.; Cardarelli, M.; Bonini, P.; Canaguier, R.; Rouphael, Y. Biostimulant Action of Protein Hydrolysates: Unraveling Their Effects on Plant Physiology and Microbiome. Front. Plant Sci. 2017, 8, 2202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sestili, F.; Rouphael, Y.; Cardarelli, M.; Pucci, A.; Bonini, P.; Canaguier, R.; Colla, G. Protein Hydrolysate Stimulates Growth in Tomato Coupled With N-Dependent Gene Expression Involved in N Assimilation. Front. Plant Sci. 2018, 9, 1233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trevisan, S.; Manoli, A.; Quaggiotti, S. A Novel Biostimulant, Belonging to Protein Hydrolysates, Mitigates Abiotic Stress Effects on Maize Seedlings Grown in Hydroponics. Agronomy 2019, 9, 28. [Google Scholar] [CrossRef] [Green Version]
- Colla, G.; Cardarelli, M.; Bonini, P.; Rouphael, Y. Foliar Applications of Protein Hydrolysate, Plant and Seaweed Extracts Increase Yield but Differentially Modulate Fruit Quality of Greenhouse Tomato. HortScience 2017, 52, 1214–1220. [Google Scholar] [CrossRef]
- Paul, K.; Sorrentino, M.; Lucini, L.; Rouphael, Y.; Cardarelli, M.; Bonini, P.; Reynaud, H.; Canaguier, R.; Trtílek, M.; Panzarová, K.; et al. Understanding the Biostimulant Action of Vegetal-Derived Protein Hydrolysates by High-Throughput Plant Phenotyping and Metabolomics: A Case Study on Tomato. Front. Plant Sci. 2019, 10, 47. [Google Scholar] [CrossRef] [PubMed]
- Paul, K.; Sorrentino, M.; Lucini, L.; Rouphael, Y.; Cardarelli, M.; Bonini, P.; Miras Moreno, M.B.; Reynaud, H.; Canaguier, R.; Trtílek, M.; et al. A Combined Phenotypic and Metabolomic Approach for Elucidating the Biostimulant Action of a Plant-Derived Protein Hydrolysate on Tomato Grown Under Limited Water Availability. Front. Plant Sci. 2019, 10, 493. [Google Scholar] [CrossRef] [PubMed]
- Rouphael, Y.; Giordano, M.; Cardarelli, M.; Cozzolino, E.; Mori, M.; Kyriacou, M.C.; Bonini, P.; Colla, G. Plant- and Seaweed-Based Extracts Increase Yield but Differentially Modulate Nutritional Quality of Greenhouse Spinach through Biostimulant Action. Agronomy 2018, 8, 126. [Google Scholar] [CrossRef] [Green Version]
- Caruso, G.; de Pascale, S.; Cozzolino, E.; Giordano, M.; el-Nakhel, C.; Cuciniello, A.; Cenvinzo, V.; Colla, G.; Rouphael, Y. Protein Hydrolysate or Plant Extract-Based Biostimulants Enhanced Yield and Quality Performances of Greenhouse Perennial Wall Rocket Grown in Different Seasons. Plants 2019, 8, 208. [Google Scholar] [CrossRef] [Green Version]
- Rouphael, Y.; Colla, G.; Giordano, M.; el-Nakhel, C.; Kyriacou, M.C.; de Pascale, S. Foliar Applications of a Legume-Derived Protein Hydrolysate Elicit Dose-Dependent Increases of Growth, Leaf Mineral Composition, Yield and Fruit Quality in Two Greenhouse Tomato Cultivars. Sci. Hortic. 2017, 226, 353–360. [Google Scholar] [CrossRef]
- Carillo, P.; Colla, G.; Fusco, G.M.; Dell’Aversana, E.; el-Nakhel, C.; Giordano, M.; Pannico, A.; Cozzolino, E.; Mori, M.; Reynaud, H.; et al. Morphological and Physiological Responses Induced by Protein Hydrolysate-Based Biostimulant and Nitrogen Rates in Greenhouse Spinach. Agronomy 2019, 9, 450. [Google Scholar] [CrossRef] [Green Version]
- Di Mola, I.; Cozzolino, E.; Ottaiano, L.; Giordano, M.; Rouphael, Y.; Colla, G.; Mori, M. Effect of Vegetal- and Seaweed Extract-Based Biostimulants on Agronomical and Leaf Quality Traits of Plastic Tunnel-Grown Baby Lettuce under Four Regimes of Nitrogen Fertilization. Agronomy 2019, 9, 571. [Google Scholar] [CrossRef] [Green Version]
- Di Mola, I.; Ottaiano, L.; Cozzolino, E.; Senatore, M.; Giordano, M.; el-Nakhel, C.; Sacco, A.; Rouphael, Y.; Colla, G.; Mori, M. Plant-Based Biostimulants Influence the Agronomical, Physiological, and Qualitative Responses of Baby Rocket Leaves under Diverse Nitrogen Conditions. Plants 2019, 8, 522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Mola, I.; Cozzolino, E.; Ottaiano, L.; Nocerino, S.; Rouphael, Y.; Colla, G.; El-Nakhel, C.; Mori, M. Nitrogen Use and Uptake Efficiency and Crop Performance of Baby Spinach (Spinacia oleracea L.) and Lamb’s Lettuce (Valerianella locusta L.) Grown under Variable Sub-Optimal N Regimes Combined with Plant-Based Biostimulant Application. Agronomy 2020, 10, 278. [Google Scholar] [CrossRef] [Green Version]
- Johnson, C.M.; Stout, P.R.; Broyer, T.C.; Carlton, A.B. Comparative Chlorine Requirements of Different Plant Species. Plant Soil 1957, 8, 337–353. [Google Scholar] [CrossRef]
- Bergersen, F.J. Measurement of Nitrogen Fixation by Direct Means; John Wiley and Sons: Chichester, UK, 1980; pp. 65–110. [Google Scholar]
- Gil-Izquierdo, A.; Gil, M.I.; Ferreres, F.; Tomás-Barberán, F.A. In Vitro Availability of Flavonoids and Other Phenolics in Orange Juice. J. Agric. Food Chem. 2001, 49, 1035–1041. [Google Scholar] [CrossRef] [PubMed]
- Zapata, S.; Dufour, J.-P. Ascorbic, Dehydroascorbic and Isoascorbic Acid Simultaneous Determinations by Reverse Phase Ion Interaction HPLC. J. Food Sci. 1992, 57, 506–511. [Google Scholar] [CrossRef]
- Sumanta, N.; Haque, C.I.; Nishika, J.; Suprakash, R. Spectrophotometric Analysis of Chlorophylls and Carotenoids from Commonly Grown Fern Species by Using Various Extracting Solvents. Available online: https://www.researchgate.net/publication/269699354_Spectrophotometric_Analysis_of_Chlorophylls_and_Carotenoids_from_Commonly_Grown_Fern_Species_by_Using_Various_Extracting_Solvents (accessed on 25 May 2020).
- Moll, R.H.; Kamprath, E.J.; Jackson, W.A. Analysis and Interpretation of Factors Which Contribute to Efficiency of Nitrogen Utilization1. Agron. J. 1982, 74, 562–564. [Google Scholar] [CrossRef]
- Sinclair, T.R.; Muchow, R.C. Radiation Use Efficiency. Adv. Agron. 1999, 65, 215–265. [Google Scholar]
- Żelawski, W.; Walker, R.B. Photosynthesis, Respiration, and Dry Matter Production. In Modern Methods in Forest Genetics; Miksche, J.P., Ed.; Springer: Berlin/Heidelberg, Germany, 1976; pp. 89–119. [Google Scholar]
- Long, S.P.; Zhu, X.-G.; Naidu, S.L.; Ort, D.R. Can Improvement in Photosynthesis Increase Crop Yields? Plant Cell Environ. 2006, 29, 315–330. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.-G.; Song, Q.; Ort, D.R. Elements of a Dynamic Systems Model of Canopy Photosynthesis. Curr. Opin. Plant Biol. 2012, 15, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Gastal, F.; Lemaire, G. N Uptake and Distribution in Crops: An Agronomical and Ecophysiological Perspective. J. Exp. Bot. 2002, 53, 789–799. [Google Scholar] [CrossRef] [Green Version]
- Lemaire, G.; Gastal, F. N Uptake and Distribution in Plant Canopies. In Diagnosis of the Nitrogen Status in Crops; Lemaire, G., Ed.; Springer: Berlin/Heidelberg, Germany, 1997; pp. 3–43. ISBN 978-3-642-60684-7. [Google Scholar]
- Teixeira, E.I.; Moot, D.J.; Brown, H.E. Defoliation Frequency and Season Affected Radiation Use Efficiency and Dry Matter Partitioning to Roots of Lucerne (Medicago sativa L.) Crops. Eur. J. Agron. 2008, 28, 103–111. [Google Scholar] [CrossRef] [Green Version]
- Meinzer, F.C.; Zhu, J. Nitrogen Stress Reduces the Efficiency of the C4CO2 Concentrating System, and Therefore Quantum Yield, in Saccharum (Sugarcane) Species. J. Exp. Bot. 1998, 49, 1227–1234. [Google Scholar] [CrossRef] [Green Version]
- Dinh, T.H.; Watanabe, K.; Takaragawa, H.; Nakabaru, M.; Kawamitsu, Y. Photosynthetic Response and Nitrogen Use Efficiency of Sugarcane under Drought Stress Conditions with Different Nitrogen Application Levels. Plant Prod. Sci. 2017, 20, 412–422. [Google Scholar] [CrossRef] [Green Version]
- Conversa, G.; Elia, A. Growth, Critical N Concentration and Crop N Demand in Butterhead and Crisphead Lettuce Grown under Mediterranean Conditions. Agronomy 2019, 9, 681. [Google Scholar] [CrossRef] [Green Version]
- Taiz, L.; Zeiger, E. Plant Physiology, 3rd ed.; Sinauer Associates Inc.: Sunderland, MA, USA, 2002; ISBN 978-0-87893-823-0. [Google Scholar]
- Evans, J.R.; Terashima, I. Photosynthetic Characteristics of Spinach Leaves Grown with Different Nitrogen Treatments. Plant Cell Physiol. 1988, 29, 157–165. [Google Scholar] [CrossRef]
- Xu, Z.; Jiang, Y.; Zhou, G. Response and Adaptation of Photosynthesis, Respiration, and Antioxidant Systems to Elevated CO2 with Environmental Stress in Plants. Front. Plant Sci. 2015, 6, 701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albrizio, R.; Steduto, P. Photosynthesis, Respiration and Conservative Carbon Use Efficiency of Four Field Grown Crops. Agric. For. Meteorol. 2003, 116, 19–36. [Google Scholar] [CrossRef]
- Han, R.; Khalid, M.; Juan, J.; Huang, D. Exogenous Glycine Inhibits Root Elongation and Reduces Nitrate-N Uptake in Pak Choi (Brassica campestris Ssp. Chinensis L.). PLoS ONE 2018, 13, e0204488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahroof, S.; Qureshi, U.S.; Chughtai, S.; Shah, M.-A.-S.; John, S.; Qureshi, A. Effect of Different Growth Stimulants on Growth and of Different Growth Stimulants on Growth and Flower Quality of Zinnia (Zinnia elegans) Var. Benery’s Giant. Int. J. Biosci. 2017, 11, 25–34. [Google Scholar]
- Ceccarelli, A.V.; Miras-Moreno, B.; Buffagni, V.; Senizza, B.; Pii, Y.; Cardarelli, M.; Rouphael, Y.; Colla, G.; Lucini, L. Foliar Application of Different Vegetal-Derived Protein Hydrolysates Distinctively Modulates Tomato Root Development and Metabolism. Plants 2021, 10, 326. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Hernández, J.M.; Benítez-García, I.; Mazorra-Manzano, M.A.; Ramírez-Suárez, J.C.; Sánchez, E. Strategies for Production, Characterization and Application of Protein-Based Biostimulants in Agriculture: A Review. Chil. J. Agric. Res. 2020, 80, 274–289. [Google Scholar] [CrossRef]
- Pillet, P.-E.; Elliot, M.C. Some Aspects of the Control of Root Growth and Georeaction: The Involvement of Indoleacetic Acid and Abscisic Acid [Maize]. Plant Physiol. 1981, 67, 1047–1050. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Overvoorde, P.; Fukaki, H.; Beeckman, T. Auxin Control of Root Development. Cold Spring Harb. Perspect. Biol. 2010, 2, a001537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halpern, M.; Bar-Tal, A.; Ofek, M.; Minz, D.; Muller, T.; Yermiyahu, U. Chapter Two—The Use of Biostimulants for Enhancing Nutrient Uptake. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2015; Volume 130, pp. 141–174. [Google Scholar]
- Ertani, A.; Cavani, L.; Pizzeghello, D.; Brandellero, E.; Altissimo, A.; Ciavatta, C.; Nardi, S. Biostimulant Activity of Two Protein Hydrolyzates in the Growth and Nitrogen Metabolism of Maize Seedlings. J. Plant Nutr. Soil Sci. 2009, 172, 237–244. [Google Scholar] [CrossRef]
- Ertani, A.; Pizzeghello, D.; Altissimo, A.; Nardi, S. Use of Meat Hydrolyzate Derived from Tanning Residues as Plant Biostimulant for Hydroponically Grown Maize. J. Plant Nutr. Soil Sci. 2013, 176, 287–295. [Google Scholar] [CrossRef]
- Yaronskaya, E.; Vershilovskaya, I.; Poers, Y.; Alawady, A.E.; Averina, N.; Grimm, B. Cytokinin Effects on Tetrapyrrole Biosynthesis and Photosynthetic Activity in Barley Seedlings. Planta 2006, 224, 700–709. [Google Scholar] [CrossRef] [PubMed]
- Radin, J.W. Amino Acid Interactions in the Regulation of Nitrate Reductase Induction in Cotton Root Tips. Plant Physiol. 1977, 60, 467–469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Cai, X.; Xu, C.; Wang, S.; Dai, S.; Wang, Q. Nitrate Accumulation and Expression Patterns of Genes Involved in Nitrate Transport and Assimilation in Spinach. Molecules 2018, 23, 2231. [Google Scholar] [CrossRef] [Green Version]
- Shahidi, F.; Ambigaipalan, P. Phenolics and Polyphenolics in Foods, Beverages and Spices: Antioxidant Activity and Health Effects—A Review. J. Funct. Foods 2015, 18, 820–897. [Google Scholar] [CrossRef]
- Yang, X.; Cui, X.; Zhao, L.; Guo, D.; Feng, L.; Wei, S.; Zhao, C.; Huang, D. Exogenous Glycine Nitrogen Enhances Accumulation of Glycosylated Flavonoids and Antioxidant Activity in Lettuce (Lactuca sativa L.). Front. Plant Sci. 2017, 8, 2098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feduraev, P.; Skrypnik, L.; Riabova, A.; Pungin, A.; Tokupova, E.; Maslennikov, P.; Chupakhina, G. Phenylalanine and Tyrosine as Exogenous Precursors of Wheat (Triticum aestivum L.) Secondary Metabolism through PAL-Associated Pathways. Plants 2020, 9, 476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Treatment | Yield | Fresh Weight | Dry Weight | Number | Area | Height | Dry Matter | Specific Leaf Area | h° | L* | Chlorophyll | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
a | b | Total | |||||||||||
(kg m−2) | (g) | (g) | (no.) | (cm2) | (mm) | (g kg−1) | (cm2 g−1 dw) | (-) | (-) | (µg g−1 dw) | |||
Nitrogen level (N) | |||||||||||||
N2 | 0.71 c (2) | 0.75 c | 0.07 c | 4.3 c | 13.8 c | 52.40 b | 101.5 a | 181.2 c | 113.5 b | 70.8 a | 431.9 b | 100.3 b | 532.7 b |
N8 | 1.85 b | 1.95 b | 0.16 b | 5.0 b | 39.2 b | 125.3 a | 82.7 b | 246.4 a | 124.3 a | 67.1 b | 675.2 a | 186.9 a | 857.6 a |
N14 | 2.82 a | 2.98 a | 0.26 a | 5.9 a | 56.7 a | 124.8 a | 86.8 b | 222.5 b | 127.7 a | 66.1 b | 714.7 a | 170.8 a | 885.3 a |
Biostimulant (B) | |||||||||||||
Control | 1.70 a | 1.79 a | 0.16 a | 5.0 ab | 34.9 a | 98.8 a | 92.0 a | 211.3 a | 122.3 a | 67.7 a | 597.8 a | 142.0 b | 739.9 b |
Legume-PH | 1.89 a | 2.00 a | 0.17 a | 5.2 a | 38.6 a | 102.5 a | 86.9 a | 225.3 a | 121.7 a | 67.9 a | 638.1 a | 172.8 a | 807.4 a |
Meat-PH | 1.79 a | 1.89 a | 0.16 a | 4.9 b | 36.3 a | 101.2 a | 92.2 a | 213.6 a | 121.4 a | 68.4 a | 585.9 a | 143.2 b | 728.4 b |
Significance (1) | |||||||||||||
N | *** | *** | *** | *** | *** | *** | *** | *** | * | *** | *** | *** | *** |
B | ns | ns | ns | * | ns | ns | Ns | ns | ns | ns | ns | * | * |
N * B | * | * | * | * | * | ** | Ns | ns | ns | ns | ns | ns | ns |
Treatment | Fresh Weight | Dry Weight | Dry Matter | Length | Diameter | Root/ Shoot |
---|---|---|---|---|---|---|
(g) | (g) | (g kg−1) | (cm) | (mm) | (-) | |
Nitrogen level (N) | ||||||
N2 | 0.31 ab (2) | 0.02 a | 66.8 a | 230.8 a | 0.38 b | 0.29 a |
N8 | 0.26 b | 0.02 a | 72.6 a | 190.8 b | 0.44 ab | 0.12 b |
N14 | 0.36 a | 0.02 a | 68.4 a | 166.2 b | 0.45 a | 0.09 b |
Biostimulant (B) | ||||||
Control | 0.33 a | 0.02 a | 68.8 a | 190.4 ab | 0.44 a | 0.16 a |
Legume-PH | 0.32 a | 0.02 a | 69.6 a | 210.9 a | 0.41 b | 0.18 a |
Meat-PH | 0.29 a | 0.02 a | 69.4 a | 186.6 b | 0.43 a | 0.17 a |
Significance (1) | ||||||
N | * | ns | ns | ** | * | *** |
B | ns | ns | ns | * | * | ns |
N * B | ns | * | ns | ns | ns | ns |
Treatment | Photosynthetic Rate (An) | Stomatal Conductance to H2O (gs) | Intercellular [CO2] (Ci) | Transpiration Rate (E) |
---|---|---|---|---|
(μmol m−2 s−1 CO2) | (mol m−2 s−1) | (μmol mol−1) | (mmol m−2 s−1) | |
Nitrogen level (N) | ||||
N2 | 5.25 b (2) | 0.16 b | 328.8 a | 1.52 c |
N8 | 9.67 a | 0.22 a | 304.2 b | 3.05 a |
N14 | 10.63 a | 0.22 a | 280.9 c | 1.89 b |
Biostimulant (B) | ||||
Control | 8.57 a | 0.19 a | 301.9 a | 2.05 a |
Legume-PH | 8.69 a | 0.20 a | 300.4 a | 2.16 a |
Meat-PH | 8.30 a | 0.21 a | 311.6 a | 2.24 a |
Significance (1) | ||||
N | *** | ** | *** | *** |
B | ns | ns | ns | ns |
N * B | * | ns | ns | ns |
Treatment | N concentration | N Uptake | Reduced-N | Specific Leaf Nitrogen (SLN) | NUtE |
---|---|---|---|---|---|
(g kg−1 dw) | (g m−2) | (g 100 g−1 Nupt) | (g m−2 Leaf Area) | (g dw g−1 Nupt) | |
Nitrogen level (N) | |||||
N2 | 20.4 c | 1.5 c (2) | 99.8 a | 1.1 c | 50.6 a |
N8 | 39.5 b | 6.0 b | 95.5 b | 1.6 b | 25.5 b |
N14 | 46.7 a | 11.3 a | 86.3 c | 2.1 a | 21.5 b |
Biostimulant (B) | |||||
Control | 35.1 a | 6.0 a | 94.6 a | 1.6 a | 33.2 a |
Legume-PH | 36.2 a | 6.6 a | 94.4 a | 1.6 a | 31.2 a |
Meat-PH | 35.2 a | 6.3 a | 92.7 b | 1.6 a | 33.2 a |
Significance (1) | |||||
N | *** | *** | *** | ** | ** |
B | ns | ns | *** | ns | ns |
N * B | ns | * | ** | ns | ns |
Treatment | Anions | Cations | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Total | Cl | PO4 | SO4 | NO3 | Total | Na | K | Mg | Ca | |
(g kg−1 dw) | ||||||||||
Nitrogen level (N) | ||||||||||
N2 | 185.6 a (2) | 117.7 a | 54.4 a | 13.4 b | 0.2 c | 125.0 a | 16.5 c | 89.9 a | 6.1 c | 14.2 a |
N8 | 103.4 b | 51.9 b | 25.9 b | 16.7 a | 8.8 b | 121.9 a | 19.8 b | 81.6 b | 8.2 b | 12.3 b |
N14 | 82.3 c | 26.6 c | 17.6 c | 9.7 c | 28.3 a | 119.6 a | 34.9 a | 62.0 c | 10.8 a | 11.9 b |
Biostimulant (B) | ||||||||||
Control | 123.1 a | 67.4 a | 32.0 a | 13.0 b | 10.8 c | 123.0 a | 23.7 a | 77.9 a | 8.5 a | 13.0 a |
Legume-PH | 121.7 a | 62.4 a | 33.0 a | 12.2 b | 12.5 b | 120.3 a | 23.2 a | 76.7 a | 8.8 a | 12.0 b |
Meat-PH | 128.5 a | 66.5 a | 33.0 a | 14.6 a | 14.4 a | 124.9 a | 24.3 a | 79.0 a | 8.3 a | 13.4 a |
Significance (1) | ||||||||||
N | *** | *** | *** | *** | *** | ns | *** | *** | *** | *** |
B | ns | ns | ns | ** | *** | ns | ns | ns | ns | * |
N * B | ns | ns | ns | ns | ** | ns | ns | ns | ns | ns |
Treatment | Phenols (3) | Carotenoids | Vitamin C | DHAA | AA |
---|---|---|---|---|---|
(g.a.e. mg 100 g−1 dw) | (mg 100 g−1 dw) | (mg 100 g−1 fw) | |||
Nitrogen level (N) | |||||
N2 | 1674 a (2) | 51.9 c | 26.6 a | 22.5 a | 4.1 a |
N8 | 1139 b | 58.5 b | 23.7 a | 21.8 a | 1.9 b |
N14 | 605 c | 66.2 a | 21.5 a | 19.6 a | 1.9 b |
Biostimulant (B) | |||||
Control | 1152 a | 58.4 a | 25.3 a | 22.3 a | 2.9 a |
Legume-PH | 1103 a | 59.7 a | 23.7 a | 21.5 a | 2.2 a |
Meat-PH | 1163 a | 58.5 a | 22.0 a | 20.1 a | 2.7 a |
Significance (1) | |||||
N | *** | *** | ns | ns | ** |
B | ns | ns | ns | ns | ns |
N * B | * | ns | ns | ns | ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonasia, A.; Conversa, G.; Lazzizera, C.; Elia, A. Foliar Application of Protein Hydrolysates on Baby-Leaf Spinach Grown at Different N Levels. Agronomy 2022, 12, 36. https://doi.org/10.3390/agronomy12010036
Bonasia A, Conversa G, Lazzizera C, Elia A. Foliar Application of Protein Hydrolysates on Baby-Leaf Spinach Grown at Different N Levels. Agronomy. 2022; 12(1):36. https://doi.org/10.3390/agronomy12010036
Chicago/Turabian StyleBonasia, Anna, Giulia Conversa, Corrado Lazzizera, and Antonio Elia. 2022. "Foliar Application of Protein Hydrolysates on Baby-Leaf Spinach Grown at Different N Levels" Agronomy 12, no. 1: 36. https://doi.org/10.3390/agronomy12010036
APA StyleBonasia, A., Conversa, G., Lazzizera, C., & Elia, A. (2022). Foliar Application of Protein Hydrolysates on Baby-Leaf Spinach Grown at Different N Levels. Agronomy, 12(1), 36. https://doi.org/10.3390/agronomy12010036