# UAV-Based Hyperspectral and Ensemble Machine Learning for Predicting Yield in Winter Wheat

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

^{2}between 0.62 and 0.73. The accuracy of the proposed ensemble learner model was higher than that of each base learner model; moreover, the R

^{2}(0.78) for the yield prediction model based on Boruta’s preferred characteristics was the highest at the grain-filling stage.

## 1. Introduction

## 2. Materials and Methods

#### 2.1. Experimental Design and Data Collection

^{2}. Thirty varieties of winter wheat were selected for this experiment, and each irrigation treatment was replicated twice in a group of 30 wheat varieties to ensure the objectivity of the experiment. For production fields, pesticide and fertilizer management was performed according to local management practices. At maturity (3 June 2020), winter wheat yields were collected using a plot combine.

#### 2.2. Acquisition and Processing of Hyperspectral Data

^{2}reference panels that differed in brightness (95% white, 40% grey, and 5% black) were placed within the study area for postprocessing and measured with the spectrometer. In this study, 12 ground control points (GCPs) were evenly distributed across the field as precise georeferenced positions, and their centimeter-level positioning accuracy was obtained through the differential global positioning systems.

#### 2.3. Acquisition of Spectral Indices

#### 2.4. Feature Selection Methods

_{xy}) may be calculated using the following equation:

#### 2.5. Decision-Level Fusion Model for Ensemble Learning

#### 2.5.1. Regression Methods

^{2}and high regression coefficients, and is widely used in co-linear problems and research with a large amount of data. The LRR algorithm was used in this study to construct yield estimation models.

#### 2.5.2. Cross-Validation and Parameter Optimization

#### 2.6. Statistical Analysis

^{2}), root mean square error (RMSE), ratio of performance to interquartile distance (RPIQ), and ratio of performance to deviation (RPD). The criteria for evaluating models are yield estimation models with higher accuracy, and an RPD of >1.5 is usually considered to indicate a reliable prediction. The formulae for the four evaluation methods are as follows:

## 3. Results

#### 3.1. Descriptive Statistics

^{−1}, and the mean yields differed for the three irrigation treatments. The yield statistics for the test plots under each irrigation treatment and all of the plots are shown in Table 3. In general, the treatments with higher irrigation levels were associated with higher yields. IT1 had the highest average yield of 7.97 t·ha

^{−1}, followed by IT2 at 6.73 t·ha

^{−1}, and IT3 at 4.94 t·ha

^{−1}. The data ranges, quantile statistics, standard deviations (SD), and coefficients of variation (CV) for the yield datasets for all of the plots and the three experimental treatments showed significant yield differences between the treatments and well separated datasets.

^{2}of each spectral index in the grain-filling stage was mostly greater than that in the flowering stage. The RVSI index performed best at both stages, with R

^{2}values of 0.48 at the flowering stage, and 0.49 at the grain-filling stage. The poorest performing index was CI in the flowering stage, with an R

^{2}of 0.08, and the index with the poorest performance in the grain-filling stage was TCARI/OSAVI, with an R

^{2}of 0.1.

#### 3.2. Feature Importance Ranking

#### 3.3. Comparison and Performance of Feature Selection Methods and Model Accuracy

^{2}of the four models constructed for the two growth stages showed that the LRR model had the lowest accuracy, with R

^{2}ranging from 0.48 to 0.54 at the flowering stage and 0.48 to 0.63 at the grain-filling stage, and after the input features were stable, the R

^{2}values were 0.54 and 0.59, respectively. The R

^{2}of the GP model ranged from 0.12 to 0.72 for the flowering stage, and 0.55–0.81 for the grain-filling stage. The RF model had the highest accuracy, with R

^{2}ranging from 0.76 to 0.94 at the flowering stage and 0.86–0.95 at the grain-filling stage, and when the input features were stabilized, the R

^{2}values were 0.93 and 0.95, respectively.

^{2}= 0.63, RMSE = 1.03 t·ha

^{−1}, RPIQ = 2.40, RPD = 1.60), and the validation set accuracy of the SVM model constructed using the Boruta method with the preferred features at the grain-filling stage was the highest (R

^{2}= 0.73, RMSE = 0.87 t·ha

^{−1}, RPIQ = 2.74, RPD = 1.90). Among the constructed DLF models, the best accuracy of the models constructed using the Boruta and PCC methods with the preferred features at the flowering stage achieved an R

^{2}of 0.66, and the highest accuracy of the models constructed using the Boruta method with the preferred features was at the grain-filling stage (R

^{2}= 0.78, RMSE = 0.79 t·ha

^{−1}, RPIQ = 2.99, RPD = 2.08). Overall, all of the methods gave an R

^{2}of 0.56 or higher, indicating the effectiveness of these models in estimating the winter wheat yield. The DLF models outperformed all of the individual models. The R

^{2}values for the DLF models constructed using the preferred features were ≥0.65 for the flowering stage, and 0.63 for the DLF models constructed using all features. At the grain-filling stage, the R

^{2}values were ≥0.77 for the DLF models constructed using the preferred features, and 0.75 for the DLF models constructed using all of the features at the grain-filling stage. The accuracy of all of the feature selection methods was improved in this study relative to the full feature model, and the RFE method improved the most at the flowering stage. The R

^{2}values of the SVM, GP, LRR, RF, and DLF models improved by 0.04, 0.03, 0.04, 0.03, and 0.02, reaching 0.63, 0.59, 0.62, 0.60, and 0.65, respectively, at the flowering stage. The Boruta method improved the most at the grain-filling stage. The R

^{2}values for the five models increased by 0.05, 0.05, 0.06, 0.03, and 0.03, reaching 0.73, 0.72, 0.66, 0.68, 0.78, respectively. In addition, the accuracy of the models was higher at the grain-filling stage compared to the flowering stage.

#### 3.4. Yield Distribution

^{−1}. Based on the observed results, the IT1 treatment had the highest yield of 5 to 9 t·ha

^{−1}, followed by the IT2 and IT3 treatments; this is consistent with the yield distribution predicted by the DLF model and demonstrates the feasibility of using a model to estimate yield.

## 4. Discussion

_{[553,682]}. The RVSI index, which consists of three bands including the red-edge band, performed well in assessing wheat rust symptoms and constructing rice physiological trait models [83], and was in the top five in the different methodological feature rankings in this study. This could be because it provided more spectral information and was more sensitive to the yield of the different feature selection methods at the different growth stages. The DWSI-4 index, originally a variant of the plant disease-water stress index constructed using simple and normalized ratios, also had good stability and performance in crop disease prediction [84]. The ND

_{[553,682]}index can be used to estimate the chlorophyll content and can minimize the effect of shading and leaf area index size [85,86]. Our study showed that these three spectral indices can be used for yield estimation. MCARI/MTVI2 and TCARI/OSAVI are integrated indices. In previous studies, their performance was better than the individual MCARI, MTVI2, and OSAVI indices, because the integrated indices had richer band information and effectively eliminate the background effects. [87,88]. The Boruta method was second to the RFE method for winter wheat at the flowering stage and performed best at the grain-filling stage, probably due to the difference in the performance between the two methods in the different environments. The Boruta method is a fully correlated feature selection method that aims to select features that are truly correlated with the dependent variable and can be used for prediction, rather than model-specific selection, and can help us to understand the characteristics of the dependent variable more comprehensively and make better and more effective feature selections [24,89]. The RFE method takes into account the correlation between the features, continuously builds models to find the best features, has good generalization ability, and is a suitable method for small sample data sets [90]. The PCC method, which performed the worst in this study, is very commonly used in sensitivity feature selection in the crop science community. It does not require any model training, but does not objectively represent correlations when the correlations between the variables are complex. There is also a risk of multicollinearity between features [91,92]. In this study, the accuracy of the model construction, based on the preferred features under feature selection, was better than that of the model under the full feature condition, which was consistent with the findings of Hsu et al. 2011 [93] and validated the effectiveness and generalizability of the feature selection method.

^{2}than the ordinary regression models but can generate a value on covariance problems [95]. The GP models use the full sample for prediction, and as the dimensionality of the data rises, the effectiveness decreases [96]. The SVM models did not perform well in the training set but had the highest accuracy in the validation. SVM is a machine learning method based on the inner product kernel function. The wrong choice of kernel hyperparameters may cause a decrease in the accuracy of the model training set estimation. However, the high accuracy of the SVM model validation set was due to its better robustness, suitability for small sample data regression, and the lack of sensitivity to kernel functions with the ability to avoid dimensional catastrophe problems. [97,98]. We also found that the accuracy of yield estimation models constructed using the four independent machine learning algorithms, SVM, GP, LRR, and RF, at the two developmental stages of winter wheat also differed greatly. Based on the model validation set, the accuracy of each model at the grain-filling stage was higher than that at the flowering stage under the different feature selections. This was due to the dry matter stored in the wheat seeds through carbon assimilation in the winter wheat during grain filling, indicating that this stage contains more spectral information that can be used to predict yield. In addition, the spectral information collected from the winter wheat was increased in order to provide a more comprehensive and accurate reflection of the yield of the winter wheat [2,99].

^{2}values of >0.65 at the flowering stage and >0.77 at the grain-filling stage. Overall, the DLF model gave more satisfactory and better results than the individual models. This was the same conclusion reached in a previous study [33] where the DLF model was able to minimize the individual model bias and improve the accuracy of the inverse model. Taken together, the above description suggests that adequacy and diversity are two important principles in the selection of base models in the decision-level fusion process [100]. This requires that the different base learners should all have a good predictive performance and be able to minimize inter-model dependencies and act as complementary information [101,102]. This prerequisite requirement is justified by the fact that the DLF methods fuse the prediction results of different independent machine learners so that the final fusion results are all influenced by each base model [103]. Furthermore, fusion of models with similar high performance will yield limited prediction results [104]. Based on the requirements of DLF and the limitation problem, this study used the SVM, GP, LRR, and RF machine learning algorithms with completely different training mechanisms to construct the yield estimation models and improved the model performance through parameter optimization, and the experimental results provided further evidence of the effectiveness of the underlying models.

## 5. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Conflicts of Interest

## Disclaimer

## Appendix A

**Table A1.**The coefficients of determination for the 60 spectral indices under simple linear regression.

Full Form | Spectral Index or Ratio | R^{2} | |
---|---|---|---|

Flowering | Grain Filling | ||

Curvative index | CI | 0.08 | 0.33 |

Chlorophyll index red-edge | CIre | 0.21 | 0.40 |

Datt1 | 0.30 | 0.31 | |

Datt4 | 0.14 | 0.41 | |

Datt6 | 0.05 | 0.29 | |

Double difference index | DDI | 0.24 | 0.26 |

Double peak index | DPI | 0.14 | 0.30 |

Gitelson2 | $0.21$ | 0.45 | |

Green normalized difference vegetation index | GNDVI | $0.21$ | 0.40 |

Leaf chlorophyll index | LCI | $0.20$ | 0.42 |

Modified chlorophyll absorption ratio index | MCARI | $0.17$ | 0.41 |

MCARI3 | $0.22$ | 0.43 | |

Modified normalized difference | MND_{[680,800]} | $0.26$ | 0.45 |

Modified normalized difference | MND_{[705,750]} | $0.20$ | 0.43 |

Modified simple ratio | mSR | $0.22$ | 0.32 |

Modified simple ratio 2 | mSR2 | $0.23$ | 0.41 |

MERIS terrestrial chlorophyll index | MTCI | $0.13$ | 0.31 |

Modified triangular vegetation index 1 | MTVI1 | $0.43$ | 0.40 |

Modified triangular vegetation index 2 | MTVI2 | $0.36$ | 0.47 |

Normalized difference 550/531 | ND_{[531,550]} | $0.13$ | 0.28 |

Normalized difference 682/553 | ND_{[553,682]} | 0.41 | 0.48 |

Normalized difference chlorophyll | NDchl | 0.23 | 0.36 |

New double difference index | DDn | 0.45 | 0.39 |

Normalized difference red-edge | NDRE | $0.18$ | 0.36 |

Normalized difference vegetation index | NDVI_{[650,750]} | $0.32$ | 0.47 |

NDVI_{[550,750]} | $0.23$ | 0.42 | |

NDVI_{[710,750]} | $0.22$ | 0.43 | |

Normalized pigment chlorophyll index | NPCI | $0.17$ | 0.35 |

Normalized difference pigment index | NPQI | 0.13 | 0.31 |

Optimized soil-adjusted vegetation index | OSAVI | 0.31 | 0.48 |

Plant biochemical index | PBI | 0.20 | 0.37 |

Plant pigment ratio | PPR | 0.09 | 0.25 |

Physiological reflectance index | PRI | 0.40 | 0.48 |

Pigment-specific normalized difference | PSNDb1 | 0.31 | 0.46 |

PSNDc1 | 0.28 | 0.44 | |

PSNDc2 | $0.26$ | 0.43 | |

Plant senescence reflectance index | PSRI | $0.24$ | 0.31 |

Pigment-pecific simple ratio | PSSRc1 | $0.26$ | 0.39 |

PSSRc2 | $0.24$ | 0.38 | |

Photosynthetic vigor ratio | PVR | $0.40$ | 0.48 |

Plant water index | PWI | $0.15$ | 0.28 |

Renormalized difference vegetation index | RDVI | $0.43$ | 0.44 |

RDVI2 | $0.42$ | 0.44 | |

Reflectance at the inflexion point | Rre | $0.35$ | 0.14 |

Red-edge stress vegetation index | RVSI | $0.48$ | 0.49 |

Soil-adjusted vegetation index | SAVI | $0.31$ | 0.47 |

Structure intensive pigment index | SIPI | $0.44$ | 0.35 |

Spectral polygon vegetation index | SPVI | $0.44$ | 0.40 |

Simple ratio | SR_{[430,680]} | $0.17$ | 0.34 |

SR_{[440,740]} | $0.31$ | 0.46 | |

SR_{[550,672]} | $0.02$ | 0.25 | |

SR_{[550,750]} | $0.01$ | 0.05 | |

Disease-water stress index 4 | DSWI-4 | $0.43$ | 0.47 |

Simple ratio pigment index | SRPI | $0.17$ | 0.34 |

Transformed chlorophyll absorption ratio | TCARI | $0.01$ | 0.34 |

Triangular chlorophyll index | TCI | $0.08$ | 0.40 |

Triangular vegetation index | TVI | $0.43$ | 0.42 |

Water band index | WBI | $0.30$ | 0.31 |

Combined MCARI/MTVI2 | MCARI/MTVI2 | $0.13$ | 0.39 |

Combined TCARI/OSAVI | TCARI/OSAVI | $0.03$ | 0.10 |

**Table A2.**Ranking of all 60 features for the three feature selection methods at the flowering and grain-filling stages of winter wheat.

Ranking | Flowering Features | Grain-Filling Features | ||||
---|---|---|---|---|---|---|

RFE | Boruta | PCC | RFE | Boruta | PCC | |

1 | RVSI | Gitelson2 | RVSI | DSWI-4 | Gitelson2 | RVSI |

2 | RDVI | RVSI | DDn | ND_{[553,682]} | RVSI | ND_{[553,682]} |

3 | WBI | NDchl | SPVI | MTVI2 | NDchl | PVR |

4 | NDVI_{[650,750]} | ND_{[553,682]} | SIPI | RVSI | ND_{[553,682]} | OSAVI |

5 | PRI | OSAVI | MTVI1 | Gitelson2 | OSAVI | PRI |

6 | PWI | CIre | RDVI | PVR | CIre | NDVI_{[650,750]} |

7 | DSWI-4 | NDVI_{[710,750]} | DSWI-4 | CI | NDVI_{[710,750]} | MTVI2 |

8 | SR_{[440,740]} | DPI | TVI | OSAVI | DPI | DSWI-4 |

9 | SAVI | MSR2 | RDVI2 | NDchl | MSR2 | SAVI |

10 | TCI | MTCI | ND_{[553,682]} | Datt1 | MTCI | SR_{[440,740]} |

11 | MTVI1 | DSWI-4 | PRI | SR_{[450,550]} | DSWI-4 | PSNDb1 |

12 | OSAVI | MND_{[705,750]} | PVR | PPR | MND_{[705,750]} | MND_{[680,800]} |

13 | Datt4 | MTVI2 | MTVI2 | CIre | MTVI2 | Gitelson2 |

14 | MSR | PVR | Rre | PRI | PVR | RDVI2 |

15 | DDn | NDVI_{[650,750]} | NDVI_{[650,750]} | NPQI | NDVI_{[650,750]} | RDVI |

16 | RDVI2 | SAVI | SR_{[440,740]} | SR_{[450,690]} | SAVI | PSNDc1 |

17 | MCARI | PRI | PSNDb1 | Rre | PRI | MND_{[705,750]} |

18 | ND_{[553,682]} | Datt6 | OSAVI | MSR2 | Datt6 | PSNDc2 |

19 | PSNDb1 | SR_{[440,740]} | SAVI | TCARI/OSAVI | SR_{[440,740]} | NDVI_{[710,750]} |

20 | SIPI | DDI | WBI | DDI | DDI | MCARI3 |

21 | Rre | PSNDb1 | PSNDc1 | MCARI | PSNDb1 | NDVI_{[550,750]} |

22 | TVI | LCI | PSNDc2 | PSRI | LCI | LCI |

23 | Gitelson2 | MND_{[680,800]} | MND_{[680,800]} | LCI | MND_{[680,800]} | TVI |

24 | Datt1 | NDRE | PSSRc1 | Datt4 | NDRE | MSR2 |

25 | NDchl | PSSRc1 | DDI | MCARI/MTVI2 | PSSRc1 | Datt4 |

26 | TCARI | PSNDc1 | PSSRc2 | MTCI | PSNDc1 | MCARI |

27 | MCARI3 | NDVI_{[550,750]} | PSRI | PSNDc2 | NDVI_{[550,750]} | CIre |

28 | MCARI/MTVI2 | NPQI | NDVI_{[550,750]} | WBI | NPQI | TCI |

29 | PSNDc2 | MCARI3 | MSR2 | DPI | MCARI3 | GNDVI |

30 | Datt6 | CI | NDVI_{[710,750]} | PWI | CI | MTVI1 |

31 | SR_{[450,550]} | ND_{[531,550]} | MSR | MTVI1 | ND_{[531,550]} | SPVI |

32 | ND_{[531,550]} | MCARI | GNDVI | PSNDb1 | MCARI | DDn |

33 | PSNDc1 | MCARI/MTVI2 | CIre | MSR | MCARI/MTVI2 | MCARI/MTVI2 |

34 | CI | TCARI/OSAVI | PBI | MND_{[705,750]} | TCARI/OSAVI | PSSRc1 |

35 | SPVI | PBI | MND_{[705,750]} | TCI | PBI | PSSRc2 |

36 | NDRE | PSNDc2 | LCI | MCARI3 | PSNDc2 | PBI |

37 | TCARI/OSAVI | PSSRc2 | NDRE | NDVI_{[650,750]} | PSSRc2 | NDRE |

38 | PVR | PSRI | NPCI | PSNDc1 | PSRI | NPCI |

39 | MTVI2 | Datt1 | SR_{[430,680]} | SR_{[440,740]} | Datt1 | SIPI |

40 | PPR | SRPI | SRPI | Datt6 | SRPI | TCARI |

41 | DDI | RDVI2 | MCARI | TCARI | RDVI2 | SR_{[430,680]} |

42 | NPQI | GNDVI | PWI | SR_{[430,680]} | GNDVI | SRPI |

43 | MND_{[680,800]} | RDVI | Datt4 | NDVI_{[710,750]} | RDVI | CI |

44 | PSSRc1 | NPCI | ND_{[531,550]} | NDVI_{[550,750]} | NPCI | MSR |

45 | PSRI | TVI | MTCI | ND_{[531,550]} | TVI | WBI |

46 | PSSRc2 | SR_{[450,550]} | MCARI/MTVI2 | PSSRc2 | SR_{[450,550]} | MTCI |

47 | MTCI | SR_{[430,680]} | TCI | SIPI | SR_{[430,680]} | PSRI |

48 | SR_{[450,690]} | PPR | Datt1 | NDRE | PPR | DPI |

49 | MND_{[705,750]} | DDn | Datt6 | SAVI | DDn | Datt6 |

50 | GNDVI | MSR | DPI | NPCI | MSR | ND_{[531,550]} |

51 | CIre | TCI | NPQI | PSSRc1 | TCI | PWI |

52 | LCI | SR_{[450,690]} | NDchl | RDVI2 | SR_{[450,690]} | DDI |

53 | NPCI | PWI | TCARI/OSAVI | SRPI | PWI | PPR |

54 | NDVI_{[550,750]} | Datt4 | PPR | SPVI | Datt4 | SR_{[450,550]} |

55 | SR_{[430,680]} | SIPI | SR_{[450,550]} | DDn | SIPI | NDchl |

56 | DPI | MTVI1 | MCARI3 | GNDVI | MTVI1 | Rre |

57 | SRPI | SPVI | SR_{[450,690]} | TVI | SPVI | TCARI/OSAVI |

58 | PBI | WBI | Gitelson2 | PBI | WBI | SR_{[450,690]} |

59 | MSR2 | TCARI | TCARI | MND_{[680,800]} | TCARI | NPQI |

60 | NDVI_{[710,750]} | Rre | CI | RDVI | Rre | Datt1 |

**Figure A1.**Scatter plots of observed versus predicted yields for the five models constructed from the three different feature selection methods. In the figure labels (

**a1**–

**f5**), the letters (

**a**,

**b**,

**c**) indicate the RFE, Boruta, and PCC feature selection methods used at the flowering stage, respectively; (

**d**,

**e**,

**f**) indicate the RFE, Boruta, and PCC feature selection methods used at the grain-filling stage, respectively; the numbers

**1**–

**5**indicate the SVM, GP, LRR, RF, and DLF models.

## References

- Nausheen, M.; Shirazi, S.A.; Stringer, L.C.; Sohail, M. Using UAV imagery to measure plant and water stress in winter wheat fields of drylands, south Punjab, Pakistan. Pak. J. Agric. Sci.
**2021**, 58, 1041–1050. [Google Scholar] - Fei, S.; Hassan, M.; He, Z.; Chen, Z.; Shu, M.; Wang, J.; Li, C.; Xiao, Y. Assessment of Ensemble Learning to Predict Wheat Grain Yield Based on UAV-Multispectral Reflectance. Remote Sens.
**2021**, 13, 2338. [Google Scholar] [CrossRef] - Yue, J.; Zhou, C.; Guo, W.; Feng, H.; Xu, K. Estimation of winter-wheat above-ground biomass using the wavelet analysis of unmanned aerial vehicle-based digital images and hyperspectral crop canopy images. Int. J. Remote Sens.
**2021**, 42, 1602–1622. [Google Scholar] [CrossRef] - Galan, R.J.; Bernal-Vasquez, A.; Jebsen, C.; Piepho, H.; Thorwarth, P.; Steffan, P.; Gordillo, A.; Miedaner, T. Integration of genotypic, hyperspectral, and phenotypic data to improve biomass yield prediction in hybrid rye. Theor. Appl. Genet.
**2020**, 133, 3001–3015. [Google Scholar] [CrossRef] - Yue, J.; Feng, H.; Li, Z.; Zhou, C.; Xu, K. Mapping winter-wheat biomass and grain yield based on a crop model and UAV remote sensing. Int. J. Remote Sens.
**2021**, 42, 1577–1601. [Google Scholar] [CrossRef] - Zhou, X.; Kono, Y.; Win, A.; Matsui, T.; Tanaka, T.S.T. Predicting within-field variability in grain yield and protein content of winter wheat using UAV-based multispectral imagery and machine learning approaches. Plant. Prod. Sci.
**2020**, 24, 137–151. [Google Scholar] [CrossRef] - Li, B.; Xu, X.; Zhang, L.; Han, J.; Bian, C.; Li, G.; Liu, J.; Jin, L. Above-ground biomass estimation and yield prediction in potato by using UAV-based RGB and hyperspectral imaging. ISPRS J. Photogramm.
**2020**, 162, 161–172. [Google Scholar] [CrossRef] - Wheeler, T.; von Braun, J. Climate Change Impacts on Global Food Security. Science
**2013**, 341, 508–513. [Google Scholar] [CrossRef] - Ma, B.L.; Dwyer, L.M.; Costa, C.; Cober, E.R.; Morrison, M.J. Early prediction of soybean yield from canopy reflectance measurements. Agron. J.
**2001**, 93, 1227–1234. [Google Scholar] [CrossRef] [Green Version] - Elsayed, S.; El-Hendawy, S.; Khadr, M.; Elsherbiny, O.; Al-Suhaibani, N.; Alotaibi, M.; Tahir, M.U.; Darwish, W. Combining Thermal and RGB Imaging Indices with Multivariate and Data-Driven Modeling to Estimate the Growth, Water Status, and Yield of Potato under Different Drip Irrigation Regimes. Remote Sens.
**2021**, 13, 1679. [Google Scholar] [CrossRef] - Fernandez-Manso, A.; Fernandez-Manso, O.; Quintano, C. SENTINEL-2A red-edge spectral indices suitability for discriminating burn severity. Int. J. Appl. Earth Obs.
**2016**, 50, 170–175. [Google Scholar] [CrossRef] - Jiao, C.; Zheng, G.; Xie, X.; Cui, X.; Shang, G. Prediction of Soil Organic Matter Using Visible-Short Near-Infrared Imaging Spectroscopy. Spectrosc. Spect. Anal.
**2020**, 40, 3277–3281. [Google Scholar] - Han, Y.; Liu, H.; Zhang, X.; Yu, Z.; Meng, X.; Kong, F.; Song, S.; Han, J. Prediction Model of Rice Panicles Blast Disease Degree Based on Canopy Hyperspectral Reflectance. Spectrosc. Spect. Anal.
**2021**, 41, 1220–1226. [Google Scholar] - Zhang, Y.; Tian, Y.; Sun, W.; Mu, X.; Gao, P.; Zhao, G. Effects of Different Fertilization Conditions on Canopy Spectral Characteristics of Winter Wheat Based on Hyperspectral Technique. Spectrosc. Spect. Anal.
**2020**, 40, 535–542. [Google Scholar] - Liu, Y.; Sun, Q.; Feng, H.; Yang, F. Estimation of Above-Ground Biomass of Potato Based on Wavelet Analysis. Spectrosc. Spect. Anal.
**2021**, 41, 1205–1212. [Google Scholar] - Galan, R.J.; Bernal-Vasquez, A.; Jebsen, C.; Piepho, H.; Thorwarth, P.; Steffan, P.; Gordillo, A.; Miedaner, T. Early prediction of biomass in hybrid rye based on hyperspectral data surpasses genomic predictability in less-related breeding material. Theor. Appl. Genet.
**2021**, 134, 1409–1422. [Google Scholar] [CrossRef] - Guo, W.; Qiao, H.; Zhao, H.; Zhang, J.; Pei, P.; Liu, Z. Cotton Aphid Damage Monitoring Using UAV Hyperspectral Data Based on Derivative of Ratio Spectroscopy. Spectrosc. Spect. Anal.
**2021**, 41, 1543–1550. [Google Scholar] - Liu, Y.; Feng, H.; Huang, J.; Yang, F.; Wu, Z.; Sun, Q.; Yang, G. Estimation of Potato Above-Ground Biomass Based on Hyperspectral Characteristic Parameters of UAV and Plant Height. Spectrosc. Spect. Anal.
**2021**, 41, 903–911. [Google Scholar] - Wang, L.; Chen, S.; Li, D.; Wang, C.; Jiang, H.; Zheng, Q.; Peng, Z. Estimation of Paddy Rice Nitrogen Content and Accumulation Both at Leaf and Plant Levels from UAV Hyperspectral Imagery. Remote Sens.
**2021**, 13, 2956. [Google Scholar] [CrossRef] - Nidamanuri, R.R.; Zbell, B. Use of field reflectance data for crop mapping using airborne hyperspectral image. ISPRS J. Photogramm. Remote Sens.
**2011**, 66, 683–691. [Google Scholar] [CrossRef] - Yang, C.; Everitt, J.H.; Fernandez, C.J. Comparison of airborne multispectral and hyperspectral imagery for mapping cotton root rot. Biosyst. Eng.
**2010**, 107, 131–139. [Google Scholar] [CrossRef] - Almugren, N.; Alshamlan, H. A Survey on Hybrid Feature Selection Methods in Microarray Gene Expression Data for Cancer Classification. IEEE Access
**2019**, 7, 78533–78548. [Google Scholar] [CrossRef] - Jebli, I.; Belouadha, F.; Kabbaj, M.I.; Tilioua, A. Prediction of solar energy guided by Pearson correlation using machine learning. Energy
**2021**, 224, 124109. [Google Scholar] [CrossRef] - Miron, B.K.; Witold, R.R. Feature Selection with the Boruta Package. J. Stat. Softw.
**2010**, 36, 11. [Google Scholar] - Zhao, J.; Karimzadeh, M.; Masjedi, A.; Wang, T.; Ebert, D.S. FeatureExplorer: Interactive Feature Selection and Exploration of Regression Models for Hyperspectral Images. In Proceedings of the 2019 IEEE Visualization Conference (VIS), Vancouver, BC, Canada, 20–25 October 2019; pp. 161–165. [Google Scholar]
- Feng, L.; Zhang, Z.; Ma, Y.; Du, Q.; Williams, P.; Drewry, J.; Luck, B. Alfalfa Yield Prediction Using UAV-Based Hyperspectral Imagery and Ensemble Learning. Remote Sens.
**2020**, 12, 2028. [Google Scholar] [CrossRef] - Pal, M. Ensemble Learning with Decision Tree for Remote Sensing Classification. Pro. World Acad. Sci. Eng. Technol.
**2007**, 26, 735–737. [Google Scholar] - Jiang, H.; Tao, C.; Dong, Y.; Xiong, R. Robust low-rank multiple kernel learning with compound regularization. Eur. J. Oper. Res.
**2021**, 295, 634–647. [Google Scholar] [CrossRef] - Peterson, K.T.; Sagan, V.; Sidike, P.; Hasenmueller, E.A.; Sloan, J.J.; Knouft, J.H. Machine Learning-Based Ensemble Prediction of Water-Quality Variables Using Feature-Level and Decision-Level Fusion with Proximal Remote Sensing. Photogramm. Eng. Rem. S.
**2019**, 85, 269–280. [Google Scholar] [CrossRef] - Liang, L.; Yang, M.; Deng, K.; Zhang, L.; Lin, H.; Liu, Z. A new hyperspectral index for the estimation of nitrogen contents of wheat canopy. Acta Ecol. Sin.
**2011**, 31, 6594–6605. [Google Scholar] - Ye, X.; Sakai, K.; He, Y. Development of Citrus Yield Prediction Model Based on Airborne Hyperspectral Imaging. Spectrosc. Spect. Anal.
**2010**, 30, 1295–1300. [Google Scholar] - Xu, B.; Wen, G.; Su, Y.; Zhang, Z.; Chen, F.; Sun, Y. Application of multi-level information fusion for wear particle recognition of ferrographic images. Opt. Precis. Eng.
**2018**, 26, 1551–1560. [Google Scholar] - Tewary, S.; Mukhopadhyay, S. HER2 Molecular Marker Scoring Using Transfer Learning and Decision Level Fusion. J. Digit. Imaging
**2021**, 34, 667. [Google Scholar] [CrossRef] - Teng, S.; Chen, G.; Liu, Z.; Cheng, L.; Sun, X. Multi-Sensor and Decision-Level Fusion-Based Structural Damage Detection Using a One-Dimensional Convolutional Neural Network. Sensors
**2021**, 21, 3950. [Google Scholar] [CrossRef] - Zhao, P.; Li, Z.Y.; Wang, C.K. Wood Species Recognition Based on Visible and Near-Infrared Spectral Analysis Using Fuzzy Reasoning and Decision-Level Fusion. J. Spectrosc.
**2021**, 2021, 1–16. [Google Scholar] [CrossRef] - Attard, L.; Debono, C.J.; Valentino, G.; Di Castro, M. Vision-Based Tunnel Lining Health Monitoring via Bi-Temporal Image Comparison and Decision-Level Fusion of Change Maps. Sensors
**2021**, 21, 4040. [Google Scholar] [CrossRef] - Yu, R.; Luo, Y.; Zhou, Q.; Zhang, X.; Wu, D.; Ren, L. A machine learning algorithm to detect pine wilt disease using UAV-based hyperspectral imagery and LiDAR data at the tree level. Int. J. Appl. Earth Obs.
**2021**, 101, 102363. [Google Scholar] [CrossRef] - Ma, H.; Huang, W.; Dong, Y.; Liu, L.; Guo, A. Using UAV-Based Hyperspectral Imagery to Detect Winter Wheat Fusarium Head Blight. Remote Sens.
**2021**, 13, 3024. [Google Scholar] [CrossRef] - Ashourloo, D.; Mobasheri, M.R.; Huete, A. Evaluating the Effect of Different Wheat Rust Disease Symptoms on Vegetation Indices Using Hyperspectral Measurements. Remote Sens.
**2014**, 6, 5107–5123. [Google Scholar] [CrossRef] [Green Version] - Singh, K.D.; Duddu, H.S.N.; Vail, S.; Parkin, I.; Shirtliffe, S.J. UAV-Based Hyperspectral Imaging Technique to Estimate Canola (Brassica napus L.) Seedpods Maturity. Can. J. Remote Sens.
**2021**, 47, 33–47. [Google Scholar] [CrossRef] - Zarco-Tejada, P.J.; Pushnik, J.C.; Dobrowski, S.; Ustin, S.L. Steady-state chlorophyll a fluorescence detection from canopy derivative reflectance and double-peak red-edge effects. Remote Sens. Environ.
**2003**, 84, 283–294. [Google Scholar] [CrossRef] - Vergara-Diaz, O.; Zaman-Allah, M.A.; Masuka, B.; Hornero, A.; Zarco-Tejada, P.; Prasanna, B.M.; Cairns, J.E.; Araus, J.L. A Novel Remote Sensing Approach for Prediction of Maize Yield Under Different Conditions of Nitrogen Fertilization. Front. Plant. Sci.
**2016**, 7, 666. [Google Scholar] [CrossRef] [Green Version] - Datt, B. A new reflectance index for remote sensing of chlorophyll content in higher plants: Tests using Eucalyptus leaves. J. Plant. Physiol.
**1999**, 154, 30–36. [Google Scholar] [CrossRef] - le Maire, G.; Francois, C.; Dufrene, E. Towards universal broad leaf chlorophyll indices using PROSPECT simulated database and hyperspectral reflectance measurements. Remote Sens. Environ.
**2004**, 89, 1–28. [Google Scholar] [CrossRef] - Main, R.; Cho, M.A.; Mathieu, R.; O’Kennedy, M.M.; Ramoelo, A.; Koch, S. An investigation into robust spectral indices for leaf chlorophyll estimation. ISPRS J. Photogramm.
**2011**, 66, 751–761. [Google Scholar] [CrossRef] - Hunt, E.R., Jr.; Daughtry, C.S.T.; Eitel, J.U.H.; Long, D.S. Remote Sensing Leaf Chlorophyll Content Using a Visible Band Index. Agron. J.
**2011**, 103, 1090–1099. [Google Scholar] [CrossRef] [Green Version] - Pu, R.; Gong, P.; Yu, Q. Comparative analysis of EO-1 ALI and Hyperion, and Landsat ETM+ data for mapping forest crown closure and leaf area index. Sensors
**2008**, 8, 3744–3766. [Google Scholar] [CrossRef] [Green Version] - Herrmann, I.; Karnieli, A.; Bonfil, D.J.; Cohen, Y.; Alchanatis, V. SWIR-based spectral indices for assessing nitrogen content in potato fields. Int. J. Remote Sens.
**2010**, 31, 5127–5143. [Google Scholar] [CrossRef] - Jurgens, C. The modified normalized difference vegetation index (mNDVI)—a new index to determine frost damages in agriculture based on Landsat TM data. Int. J. Remote Sens.
**1997**, 18, 3583–3594. [Google Scholar] [CrossRef] - Dash, J.; Curran, P.J. The MERIS terrestrial chlorophyll index. Int. J. Remote Sens.
**2004**, 25, 5403–5413. [Google Scholar] [CrossRef] - Haboudane, D.; Miller, J.R.; Pattey, E.; Zarco-Tejada, P.J.; Strachan, I.B. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens. Environ.
**2004**, 90, 337–352. [Google Scholar] [CrossRef] - le Maire, G.; Francois, C.; Soudani, K.; Berveiller, D.; Pontailler, J.; Breda, N.; Genet, H.; Davi, H.; Dufrene, E. Calibration and validation of hyperspectral indices for the estimation of broadleaved forest leaf chlorophyll content, leaf mass per area, leaf area index and leaf canopy biomass. Remote Sens. Environ.
**2008**, 112, 3846–3864. [Google Scholar] [CrossRef] - Richardson, A.D.; Duigan, S.P.; Berlyn, G.P. An evaluation of noninvasive methods to estimate foliar chlorophyll content. New Phytol.
**2002**, 153, 185–194. [Google Scholar] [CrossRef] [Green Version] - Metternicht, G. Vegetation indices derived from high-resolution airborne videography for precision crop management. Int. J. Remote Sens.
**2003**, 24, 2855–2877. [Google Scholar] [CrossRef] - Aparicio, N.; Villegas, D.; Royo, C.; Casadesus, J.; Araus, J.L. Effect of sensor view angle on the assessment of agronomic traits by ground level hyper-spectral reflectance measurements in durum wheat under contrasting Mediterranean conditions. Int. J. Remote Sens.
**2004**, 25, 1131–1152. [Google Scholar] [CrossRef] - Royo, C.; Aparicio, N.; Villegas, D.; Casadesus, J.; Monneveux, P.; Araus, J.L. Usefulness of spectral reflectance indices as durum wheat yield predictors under contrasting Mediterranean conditions. Int. J. Remote Sens.
**2003**, 24, 4403–4419. [Google Scholar] [CrossRef] - Wu, C.; Niu, Z.; Tang, Q.; Huang, W. Estimating chlorophyll content from hyperspectral vegetation indices: Modeling and validation. Agric. For. Meteorol.
**2008**, 148, 1230–1241. [Google Scholar] [CrossRef] - Rao, N.R.; Garg, P.K.; Ghosh, S.K.; Dadhwal, V.K. Estimation of leaf total chlorophyll and nitrogen concentrations using hyperspectral satellite imagery. J. Agric. Sci.
**2008**, 146, 65–75. [Google Scholar] - Ceccato, P.; Gobron, N.; Flasse, S.; Pinty, B.; Tarantola, S. Designing a spectral index to estimate vegetation water content from remote sensing data: Part 1—Theoretical approach. Remote Sens. Environ.
**2002**, 82, 188–197. [Google Scholar] [CrossRef] - Penuelas, J.; Gamon, J.A.; Fredeen, A.L.; Merino, J.; Field, C.B. Reflectance indices associated with physiological changes in nitrogen- and water-limited sunflower leaves. Remote Sens. Environ.
**1994**, 48, 135–146. [Google Scholar] [CrossRef] - Blackburn, G.A. Spectral indices for estimating photosynthetic pigment concentrations: A test using senescent tree leaves. Int. J. Remote Sens.
**1998**, 19, 657–675. [Google Scholar] [CrossRef] - Sims, D.A.; Gamon, J.A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens. Environ.
**2002**, 81, 337–354. [Google Scholar] [CrossRef] - Galvao, L.S.; Formaggio, A.R.; Tisot, D.A. Discrimination of sugarcane varieties in southeastern Brazil with EO-1 hyperion data. Remote Sens. Environ.
**2005**, 94, 523–534. [Google Scholar] [CrossRef] - Underwood, E.; Ustin, S.; DiPietro, D. Mapping nonnative plants using hyperspectral imagery. Remote Sens. Environ.
**2003**, 86, 150–161. [Google Scholar] [CrossRef] - Clevers, J.; De Jong, S.M.; Epema, G.F.; Van der Meer, F.D.; Bakker, W.H.; Skidmore, A.K.; Scholte, K.H. Derivation of the red edge index using the MERIS standard band setting. Int. J. Remote Sens.
**2002**, 23, 3169–3184. [Google Scholar] [CrossRef] [Green Version] - Azadbakht, M.; Ashourloo, D.; Aghighi, H.; Radiom, S.; Alimohammadi, A. Wheat leaf rust detection at canopy scale under different LAI levels using machine learning techniques. Comput. Electron. Agric.
**2019**, 156, 119–128. [Google Scholar] [CrossRef] - Wu, J.; Wang, D.; Bauer, M.E. Assessing broadband vegetation indices and QuickBird data in estimating leaf area index of corn and potato canopies. Field Crop. Res.
**2007**, 102, 33–42. [Google Scholar] [CrossRef] - Lichtenthaler, H.K. Vegetation stress: An introduction to the stress concept in plants. J. Plant. Physiol.
**1996**, 148, 4–14. [Google Scholar] [CrossRef] - Gitelson, A.A.; Merzlyak, M.N. Remote estimation of chlorophyll content in higher plant leaves. Int. J. Remote Sens.
**1997**, 18, 2691–2697. [Google Scholar] [CrossRef] - Broge, N.H.; Leblanc, E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sens. Environ.
**2001**, 76, 156–172. [Google Scholar] [CrossRef] - Guyon, I.; Weston, J.; Barnhill, S.; Vapnik, V. Gene selection for cancer classification using support vector machines. Mach. Learn.
**2002**, 46, 389–422. [Google Scholar] [CrossRef] - Ramendra, P.; Ravinesh, C.D.; Yan, L.; Tek, M. Weekly soil moisture forecasting with multivariate sequential, ensemble empirical mode decomposition and Boruta-random forest hybridizer algorithm approach. Catena
**2019**, 177, 149–166. [Google Scholar] - Gholami, H.; Mohammadifar, A.; Golzari, S.; Kaskaoutis, D.G.; Collins, A.L. Using the Boruta algorithm and deep learning models for mapping land susceptibility to atmospheric dust emissions in Iran. Aeolian Res.
**2021**, 50, 100682. [Google Scholar] [CrossRef] - Wang, L.; Zhou, X.; Zhu, X.; Dong, Z.; Guo, W. Estimation of biomass in wheat using random forest regression algorithm and remote sensing data. Crop. J.
**2016**, 4, 212–219. [Google Scholar] [CrossRef] [Green Version] - Zhai, Y.; Cui, L.; Zhou, X.; Gao, Y.; Fei, T.; Gao, W. Estimation of nitrogen, phosphorus, and potassium contents in the leaves of different plants using laboratory-based visible and near-infrared reflectance spectroscopy: Comparison of partial least-square regression and support vector machine regression methods. Int. J. Remote Sens.
**2013**, 34, 2502–2518. [Google Scholar] - Chlingaryan, A.; Sukkarieh, S.; Whelan, B. Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: A review. Comput. Electron. Agric.
**2018**, 151, 61–69. [Google Scholar] [CrossRef] - Chen, C.C.; Schwender, H.; Keith, J.; Nunkesser, R.; Mengersen, K.; Macrossan, P. Methods for Identifying SNP Interactions: A Review on Variations of Logic Regression, Random Forest and Bayesian Logistic Regression. IEEE ACM Trans. Comput. Bi.
**2011**, 8, 1580–1591. [Google Scholar] [CrossRef] - Wang, J.; Shi, T.; Yu, D.; Teng, D.; Ge, X.; Zhang, Z.; Yang, X.; Wang, H.; Wu, G. Ensemble machine-learning-based framework for estimating total nitrogen concentration in water using drone-borne hyperspectral imagery of emergent plants: A case study in an arid oasis, NW China. Environ. Pollut.
**2020**, 266, 115412. [Google Scholar] [CrossRef] - Xianxian, G.; Mao, W.; Mingming, J.; Wenqing, W. Estimating mangrove leaf area index based on red-edge vegetation indices: A comparison among UAV, WorldView-2 and Sentinel-2 imagery. Int. J. Appl. Earth Obs.
**2021**, 103, 102493. [Google Scholar] - Yu, Z.; Jian-wen, W.; Li-ping, C.; Yuan-yuan, F.U.; Hong-chun, Z.; Hai-kuan, F.; Xin-gang, X.U.; Zhen-hai, L.I. An entirely new approach based on remote sensing data to calculate the nitrogen nutrition index of winter wheat. J. Integr. Agric.
**2021**, 20, 2535–2551. [Google Scholar] - Zhu, Y.; Liu, K.; Liu, L.; Myint, S.W.; Wang, S.; Liu, H.; He, Z. Exploring the Potential of WorldView-2 Red-Edge Band-Based Vegetation Indices for Estimation of Mangrove Leaf Area Index with Machine Learning Algorithms. Remote Sens.
**2017**, 9, 1060. [Google Scholar] [CrossRef] [Green Version] - Xie, Y.; Wang, C.; Yang, W.; Feng, M.; Qiao, X.; Song, J. Canopy hyperspectral characteristics and yield estimation of winter wheat (Triticum aestivum) under low temperature injury. Sci. Rep.
**2020**, 10, 109–119. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Li, G.; Xiang-Nan, L.; Cheng-Qi, C. Research on hyperspectral information parameters of chlorophyll content of rice leaf in Cd-polluted soil environment. Guang Pu Xue Yu Guang Pu Fen Xi
**2009**, 29, 2713–2716. [Google Scholar] - Apan, A.; Held, A.; Phinn, S.; Markley, J. Detecting sugarcane ‘orange rust’ disease using EO-1 Hyperion hyperspectral imagery. Int. J. Remote Sens.
**2004**, 25, 489–498. [Google Scholar] [CrossRef] [Green Version] - Padalia, H.; Sinha, S.K.; Bhave, V.; Trivedi, N.K.; Kumar, A.S. Estimating canopy LAI and chlorophyll of tropical forest plantation (North India) using Sentinel-2 data. Adv. Space Res.
**2020**, 65, 458–469. [Google Scholar] [CrossRef] - Cui, B.; Zhao, Q.; Huang, W.; Song, X.; Ye, H.; Zhou, X. Leaf chlorophyll content retrieval of wheat by simulated RapidEye, Sentinel-2 and EnMAP data. J. Integr. Agric.
**2019**, 18, 1230–1245. [Google Scholar] [CrossRef] - Lin, W.; Huang, J.; Hu, X.; Zhao, M. Crop Yield Forecast Based On Modis Temperature-Vegetation Angel Index. J. Infrared Millim. W.
**2010**, 29, 476–480. [Google Scholar] - Cao, S.; Liu, X.; Liu, M.; Cao, S.; Yao, S. Estimation of Leaf Area Index by Normalized Composite Vegetation Index Fusing the Spectral Feature of Canopy Water Content. Spectrosc. Spect. Anal.
**2011**, 31, 478–482. [Google Scholar] - Kursa, M.B.; Jankowski, A.; Rudnicki, W.R. Boruta—A System for Feature Selection. Fund. Inform.
**2010**, 101, 271–285. [Google Scholar] [CrossRef] - Paul, J.; Ambrosio, R.D.; Dupont, P. Kernel methods for heterogeneous feature selection. Neurocomputing
**2015**, 169, 187–195. [Google Scholar] [CrossRef] [Green Version] - Salleh, F.H.M.; Arif, S.M.; Zainudin, S.; Firdaus-Raih, M. Reconstructing gene regulatory networks from knock-out data using Gaussian Noise Model and Pearson Correlation Coefficient. Comput. Biol. Chem.
**2015**, 59, 3–14. [Google Scholar] [CrossRef] - Jain, D.K.A.; Shetty, N.; Naveen Kumar, L.; Sundaresh, D.C. Assessment of Usefulness of Anthropometric Data for Predicting the Scaphoid and the Screw Length: A New Technique. J. Hand Surg. Asian-Pac. Volume
**2017**, 22, 435–440. [Google Scholar] [CrossRef] - Hsu, H.; Hsieh, C.; Lu, M. Hybrid feature selection by combining filters and wrappers. Expert Syst. Appl.
**2011**, 38, 8144–8150. [Google Scholar] [CrossRef] - Ge, X.; Ding, J.; Wang, J.; Sun, H.; Zhu, Z. A New Method for Predicting Soil Moisture Based on UAV Hyperspectral Image. Spectrosc. Spect. Anal.
**2020**, 40, 602–609. [Google Scholar] - Joris, T.; Jaak, S.; Karl, M.; Yves, M. Two-level preconditioning for Ridge Regression. Numer. Linear Algebr.
**2021**, 28, 2371. [Google Scholar] - Yuanyuan, L.; Qianqian, Z.; Won, Y.S. Gaussian process regression-based learning rate optimization in convolutional neural networks for medical images classification. Expert Syst. Appl.
**2021**, 184, 115357. [Google Scholar] - Elbeltagi, A.; Azad, N.; Arshad, A.; Mohammed, S.; Mokhtar, A.; Pande, C.; Etedali, H.R.; Bhat, S.A.; Islam, A.R.M.T.; Deng, J. Applications of Gaussian process regression for predicting blue water footprint: Case study in Ad Daqahliyah, Egypt. Agric. Water Manag.
**2021**, 255, 107052. [Google Scholar] [CrossRef] - Shafaei, M.; Kisi, O. Predicting river daily flow using wavelet-artificial neural networks based on regression analyses in comparison with artificial neural networks and support vector machine models. Neural Comput. Appl.
**2017**, 28, 15–28. [Google Scholar] [CrossRef] - Jurečka, F.; Fischer, M.; Hlavinka, P.; Balek, J.; Semerádová, D.; Bláhová, M.; Anderson, M.C.; Hain, C.; Žalud, Z.; Trnka, M. Potential of water balance and remote sensing-based evapotranspiration models to predict yields of spring barley and winter wheat in the Czech Republic. Agric. Water Manag.
**2021**, 256, 107064. [Google Scholar] [CrossRef] - Bhavya, D.N.; Chethan, H.K. Feature and Decision Level Fusion in Children Multimodal Biometrics. Int. J. Recent Technol. Eng. (IJRTE).
**2020**, 8, 2522–2527. [Google Scholar] - Fu, H.; Cui, G.; Li, X.; She, W.; Cui, D.; Zhao, L.; Su, X.; Wang, J.; Cao, X.; Liu, J.; et al. Estimation of ramie yield based on UAV (Unmanned Aerial Vehicle) remote sensing images. Acta Agron. Sin.
**2020**, 46, 1448–1455. [Google Scholar] - Yuri, S.; Robert, D.; Peter, T. Integrating satellite imagery and environmental data to predict field-level cane and sugar yields in Australia using machine learning. Field Crop. Res.
**2021**, 260, 107984. [Google Scholar] - Shen, B.; Liu, Y.; Fu, J. An Integrated Model for Robust Multisensor Data Fusion. Sensors
**2014**, 14, 19669–19686. [Google Scholar] [CrossRef] [Green Version] - Verrelst, J.; Muñoz, J.; Alonso, L.; Delegido, J.; Rivera, J.P.; Camps-Valls, G.; Moreno, J. Machine learning regression algorithms for biophysical parameter retrieval: Opportunities for Sentinel-2 and-3. Remote Sens. Environ.
**2012**, 118, 127–139. [Google Scholar] [CrossRef] - Garriga, M.; Romero-Bravo, S.; Estrada, F.; Mendez-Espinoza, A.M.; Gonzalez-Martinez, L.; Matus, I.A.; Castillo, D.; Lobos, G.A.; Del Pozo, A. Estimating carbon isotope discrimination and grain yield of bread wheat grown under water-limited and full irrigation conditions by hyperspectral canopy reflectance and multilinear regression analysis. Int. J. Remote Sens.
**2021**, 42, 2848–2871. [Google Scholar] [CrossRef] - Zhang, X.; Zhao, J.; Yang, G.; Liu, J.; Cao, J.; Li, C.; Zhao, X.; Gai, J. Establishment of Plot-Yield Prediction Models in Soybean Breeding Programs Using UAV-Based Hyperspectral Remote Sensing. Remote Sens.
**2019**, 11, 2752. [Google Scholar] [CrossRef] [Green Version] - Chandel, N.S.; Tiwari, P.S.; Singh, K.P.; Jat, D.; Gaikwad, B.B.; Tripathi, H.; Golhani, K. Yield prediction in wheat (Triticum aestivum L.) using spectral reflectance indices. Curr. Sci.
**2019**, 116, 272–278. [Google Scholar] [CrossRef]

**Figure 1.**Meteorological conditions during the wheat growth period from November to May: (

**a**) total monthly rainfall, (

**b**) average monthly temperature, (

**c**) average monthly humidity, and (

**d**) average monthly sunshine hours.

**Figure 2.**Distribution of test sites and test plots. IT1: high irrigation; IT2: moderate irrigation; IT3: low irrigation.

**Figure 3.**Workflow of a DLF (decision-level fusion) model for grain yield prediction; the model included SVM (support vector machine), GP (Gaussian process), LRR (linear ridge regression), and RF (random forest). The “e” is the model prediction.

**Figure 5.**The relationships between model training accuracy and number of features. (

**a1**,

**a2**), SVM model at the flowering and grain-filling stages, respectively; (

**b1**,

**b2**), GP model at flowering and grain-filling stages, respectively; (

**c1**,

**c2**) LRR model at flowering and grain-filling stages, respectively; (

**d1**,

**d2**) RF model at flowering and grain-filling stages, respectively.

**Figure 6.**Yield distribution chart for the three irrigation treatments. The color scale from blue to red indicates the increasing grain yield from 4 to 10 t ha

^{−1}.

**Table 1.**Summary of irrigation volumes for the three treatments at six stages of growth for winter wheat.

Growth Itage | High Irrigation (mm) | Moderate Irrigation (mm) | Low Irrigation (mm) |
---|---|---|---|

Tillering | 35 | 35 | 35 |

Overwintering | 35 | 35 | 35 |

Greening | 35 | 25 | 20 |

Jointing | 50 | 35 | 20 |

Heading | 50 | 35 | 20 |

Grain filling | 35 | 25 | 15 |

Total | 240 | 190 | 145 |

Full Form | Spectral Index or Ratio | Formula | Application | Reference |
---|---|---|---|---|

Curvative index | CI | $\mathrm{R}675\times \mathrm{R}690/\mathrm{R}{683}^{2}$. | Chlorophyll | [40] |

Chlorophyll index red-edge | CIre | $\mathrm{R}750/\mathrm{R}710-1$ | Vegetation, chlorophyll | [41] |

Datt1 | $\left(\mathrm{R}850-\mathrm{R}710\right)/\left(\mathrm{R}850-\mathrm{R}680\right)$ | Vegetation, chlorophyll | [42] | |

Datt4 | $\mathrm{R}672/\left(\mathrm{R}550\times \mathrm{R}708\right)$ | |||

Datt6 | $\mathrm{R}860/\left(\mathrm{R}550\times \mathrm{R}708\right)$ | |||

Double difference index | DDI | $\left(\mathrm{R}749-\mathrm{R}720\right)-\left(\mathrm{R}701-\mathrm{R}672\right)$ | Vegetation | [43] |

Double peak index | DPI | $\left(\mathrm{R}688+\mathrm{R}710\right)/\mathrm{R}{697}^{2}$ | Vegetation, chlorophyll | [44] |

Gitelson2 | $\left(\mathrm{R}750-\mathrm{R}800\right)/\left(\mathrm{R}695-\mathrm{R}740\right)-1$ | Chlorophyll | ||

Green normalized difference vegetation index | GNDVI | $\left(\mathrm{R}750-\mathrm{R}550\right)/\left(\mathrm{R}750+\mathrm{R}550\right)$ | Vegetation, chlorophyll | [45] |

Leaf chlorophyll index | LCI | $\left(\left|\mathrm{R}850|-|\mathrm{R}710\right|\right)/\left(\left|\mathrm{R}850|+|\mathrm{R}680\right|\right)$ | Vegetation, chlorophyll | [46] |

Modified chlorophyll absorption ratio index | MCARI | $\left[\left(\mathrm{R}700-\mathrm{R}670\right)-0.2\left(\mathrm{R}700-\mathrm{R}550\right)\right]\left(\mathrm{R}700/\mathrm{R}670\right)$ | Vegetation, chlorophyll | [47] |

MCARI3 | $[\left(\mathrm{R}750-\mathrm{R}710\right)-0.2(\mathrm{R}750-$$\mathrm{R}550\left)\right](\mathrm{R}750/\mathrm{R}715)$ | |||

Modified normalized difference | MND_{[680,800]} | $\left(\mathrm{R}800-\mathrm{R}680\right)/\left(\mathrm{R}800+\mathrm{R}680-2\times \mathrm{R}445\right)$ | Pigments | [48] |

Modified normalized difference | MND_{[705,750]} | $\left(\mathrm{R}750-\mathrm{R}705\right)/\left(\mathrm{R}750+\mathrm{R}705-2\times \mathrm{R}445\right)$ | ||

Modified simple ratio | mSR | $\left(\mathrm{R}800-\mathrm{R}445\right)/\left(\mathrm{R}680-\mathrm{R}445\right)$ | Vegetation | [43] |

Modified simple ratio 2 | mSR2 | $\left(\mathrm{R}750/\mathrm{R}705-1\right)/\left(\sqrt{\mathrm{R}750/\mathrm{R}705+1}\right)$ | [44] | |

MERIS terrestrial chlorophyll index | MTCI | $\left(\mathrm{R}754-\mathrm{R}709\right)/\left(\mathrm{R}709-\mathrm{R}681\right)$ | Vegetation, chlorophyll | [49] |

Modified triangular vegetation index 1 | MTVI1 | $1.2\left[1.2\left(\mathrm{R}800-\mathrm{R}550\right)-2.5\left(\mathrm{R}670-\mathrm{R}550\right)\right]$ | Vegetation | [50] |

Modified triangular vegetation index 2 | MTVI2 | $\left(1.5\frac{1.2\left(\mathrm{R}800-\mathrm{R}550\right)-2.5\left(\mathrm{R}670-\mathrm{R}550\right)}{\sqrt{\left(2\times \mathrm{R}800+{1}^{2}\right)-(6\times \mathrm{R}800-5\sqrt{\mathrm{R}670)}-0.5}}\right)$ | ||

Normalized difference 550/531 | ND_{[531,550]} | $(\mathrm{R}550-\mathrm{R}531)/(\mathrm{R}550+\mathrm{R}531)$ | Vegetation, chlorophyll | [44] |

Normalized difference 682/553 | ND_{[553,682]} | (R682 − R553)/(R682 + R553) | ||

Normalized difference chlorophyll | NDchl | (R925 − R710)/(R925 + R710) | [51] | |

New double difference index | DDn | $2\times \left(\mathrm{R}710-\mathrm{R}760-\mathrm{R}760\right)$ | Chlorophyll | |

Normalized difference red-edge | NDRE | $\left(\mathrm{R}790-\mathrm{R}720\right)/\left(\mathrm{R}790+\mathrm{R}720\right)$ | Vegetation | [52] |

Normalized difference vegetation index | NDVI_{[650,750]} | $\left(\mathrm{R}750-\mathrm{R}650\right)/\left(\mathrm{R}750+\mathrm{R}650\right)$ | Vegetation, vitality | [53] |

NDVI_{[550,750]} | $\left(\mathrm{R}750-\mathrm{R}550\right)/\left(\mathrm{R}750+\mathrm{R}550\right)$ | |||

NDVI_{[710,750]} | $\left(\mathrm{R}750-\mathrm{R}710\right)/\left(\mathrm{R}750+\mathrm{R}710\right)$ | |||

Normalized pigment chlorophyll index | NPCI | $(\mathrm{R}680-\mathrm{R}430)/(\mathrm{R}680+\mathrm{R}430)$ | Vegetation, chlorophyll | [54] |

Normalized difference pigment index | NPQI | (R415 − R435)/(R415 + R435) | Vegetation, chlorophyll | [55] |

Optimized soil-adjusted vegetation index | OSAVI | $\left(1+0.16\right)\left(\mathrm{R}800-\mathrm{R}670\right)\left(\mathrm{R}800+\mathrm{R}670+0.16\right)$ | Vegetation | [56] |

Plant biochemical index | PBI | $\mathrm{R}810/\mathrm{R}560$ | Vegetation | [57] |

Plant pigment ratio | PPR | $\left(\mathrm{R}550-\mathrm{R}450\right)/\left(\mathrm{R}550+\mathrm{R}450\right)$ | Vegetation | [58] |

Physiological reflectance index | PRI | $\left(\mathrm{R}550-\mathrm{R}530\right)/\left(\mathrm{R}550+\mathrm{R}530\right)$ | Vegetation | [59] |

Pigment-specific normalized difference | PSNDb1 | $\left(\mathrm{R}800-\mathrm{R}650\right)/\left(\mathrm{R}800+\mathrm{R}650\right)$ | Vegetation, chlorophyll | [60] |

PSNDc1 | $\left(\mathrm{R}800-\mathrm{R}500\right)/\left(\mathrm{R}800+\mathrm{R}500\right)$ | |||

PSNDc2 | $\left(\mathrm{R}800-\mathrm{R}470\right)/\left(\mathrm{R}800+\mathrm{R}470\right)$ | |||

Plant senescence reflectance index | PSRI | $\left(\mathrm{R}678-\mathrm{R}500\right)/\mathrm{R}750$ | Vegetation | [61] |

Pigment-specific simple ratio | PSSRc1 | $\mathrm{R}800/\mathrm{R}500$ | Vegetation, chlorophyll | [62] |

PSSRc2 | $\mathrm{R}800/\mathrm{R}470$ | |||

Photosynthetic vigor ratio | PVR | $\left(\mathrm{R}550-\mathrm{R}650\right)/\left(\mathrm{R}550+\mathrm{R}650\right)$ | Vegetation | [53] |

Plant water index | PWI | $\mathrm{R}970/\mathrm{R}900$ | Vegetation, water stress | [63] |

Renormalized difference vegetation index | RDVI | $\left(\mathrm{R}800-\mathrm{R}670\right)/(\sqrt{\mathrm{R}800+\mathrm{R}670)}$ | Vegetation | [64] |

RDVI2 | $\left(\mathrm{R}833-\mathrm{R}658\right)/\left(\sqrt{\mathrm{R}833+\mathrm{R}658}\right)$ | |||

Reflectance at the inflexion point | Rre | $\left(\left|\mathrm{R}670|+|\mathrm{R}780\right|\right)/2$ | Vegetation | [51] |

Red-edge stress vegetation index | RVSI | $\left(\left(\mathrm{R}718+\mathrm{R}748\right)/2\right)-\mathrm{R}733$. | Vegetation | [65] |

Soil-adjusted vegetation index | SAVI | $1.16\left(\left(\mathrm{R}800-\mathrm{R}670\right)/\left(\mathrm{R}800+\mathrm{R}670+0.16\right)\right)$ | Vegetation | [66] |

Structure intensive pigment index | SIPI | $\left(\mathrm{R}800-\mathrm{R}445\right)/\left(\mathrm{R}800-\mathrm{R}680\right)$. | Pigments | [46] |

Spectral polygon vegetation index | SPVI | $0.4\left(3.7\left(\mathrm{R}800-\mathrm{R}670\right)-1.2\left|\mathrm{R}530-\mathrm{R}670\right|\right)$ | Vegetation | [44] |

Simple ratio | SR_{[430,680]} | $\mathrm{R}430/\mathrm{R}680$ | Vegetation | [67] |

SR_{[440,740]} | $\mathrm{R}440/\mathrm{R}740$ | [44] | ||

SR_{[550,672]} | $\mathrm{R}550/\mathrm{R}672$ | |||

SR_{[550,750]} | $\mathrm{R}550/\mathrm{R}750$ | |||

Disease-water stress index 4 | DSWI-4 | $\mathrm{R}550/\mathrm{R}680$ | Vegetation, water stress | [68] |

Simple ratio pigment index | SRPI | $\mathrm{R}430/\mathrm{R}680$ | Vegetation, chlorophyll | [69] |

Transformed chlorophyll absorption ratio | TCARI | $3\left(\left(\mathrm{R}700-\mathrm{R}670\right)-0.2\left(\mathrm{R}700-\mathrm{R}550\right)\left(\mathrm{R}700/\mathrm{R}670\right)\right)$ | Vegetation, chlorophyll | [45] |

Triangular chlorophyll index | TCI | $1.2\left(\mathrm{R}700-\mathrm{R}550\right)-1.5\left(\mathrm{R}670-\mathrm{R}550\right)\times \sqrt{\mathrm{R}700/\mathrm{R}670}$ | Vegetation, chlorophyll | [45] |

Triangular vegetation index | TVI | $0.5\left(120\left(\mathrm{R}750-\mathrm{R}550\right)-200\left(\mathrm{R}670-\mathrm{R}550\right)\right)$ | Vegetation | [69] |

Water band index | WBI | $\mathrm{R}970/\mathrm{R}902$ | Vegetation, water stress | [70] |

Combined MCARI/MTVI2 | MCARI/MTVI2 | $\mathrm{MCARI}/\mathrm{MTVI}2$ | Vegetation, chlorophyll | [45] |

Combined TCARI/OSAVI | TCARI/OSAVI | $\mathrm{TCARI}/\mathrm{OSAVI}$ | Vegetation, chlorophyll | [56] |

**Table 3.**Descriptive statistics for the data sets from all test plots and the test plots from the three different irrigation treatments (t·ha

^{−1}).

Category | N | Mean | SD | Min | Q25 | Q50 | Q75 | Max | CV |
---|---|---|---|---|---|---|---|---|---|

All datasets | 180 | 6.55 | 1.59 | 3.13 | 5.27 | 6.65 | 7.71 | 9.71 | 24.33% |

IT1 dataset | 60 | 7.97 | 1.01 | 5.58 | 7.43 | 7.97 | 8.65 | 9.71 | 12.68% |

IT2 dataset | 60 | 6.73 | 1.02 | 4.28 | 6.08 | 6.75 | 7.55 | 8.75 | 15.16% |

IT3 dataset | 60 | 4.94 | 0.96 | 3.13 | 4.31 | 4.89 | 5.55 | 7.54 | 19.50% |

**Table 4.**Test accuracies of the support vector machine (SVM), Gaussian process (GP), linear ridge regression (LRR), random forest (RF), and decision layer fusion (DLF) models in predicting winter wheat yield.

Feature | Model | Flowering | Grain Filling | ||||||
---|---|---|---|---|---|---|---|---|---|

R^{2} | RMSE(t/ha) | RPIQ | RPD | R^{2} | RMSE(t/ha) | RPIQ | RPD | ||

Selected features (RFE) | SVM | 0.63 | 1.03 | 2.40 | 1.60 | 0.71 | 0.90 | 2.64 | 1.83 |

GP | 0.59 | 1.09 | 2.25 | 1.51 | 0.69 | 0.94 | 2.52 | 1.75 | |

LRR | 0.62 | 1.03 | 2.38 | 1.59 | 0.64 | 1.00 | 2.36 | 1.64 | |

RF | 0.60 | 1.05 | 2.35 | 1.57 | 0.67 | 0.94 | 2.51 | 1.74 | |

DLF | 0.65 | 0.99 | 2.47 | 1.65 | 0.77 | 0.81 | 2.94 | 2.04 | |

Selected features (Boruta) | SVM | 0.62 | 1.03 | 2.31 | 1.60 | 0.73 | 0.87 | 2.74 | 1.90 |

GP | 0.57 | 1.11 | 2.12 | 1.48 | 0.72 | 0.89 | 2.65 | 1.84 | |

LRR | 0.62 | 1.03 | 2.29 | 1.59 | 0.66 | 0.98 | 2.42 | 1.68 | |

RF | 0.58 | 1.07 | 2.21 | 1.54 | 0.68 | 0.94 | 2.53 | 1.76 | |

DLF | 0.66 | 0.98 | 2.40 | 1.67 | 0.78 | 0.79 | 2.99 | 2.08 | |

Selected features (PCC) | SVM | 0.62 | 1.03 | 2.29 | 1.61 | 0.67 | 0.94 | 2.52 | 1.74 |

GP | 0.58 | 1.11 | 2.12 | 1.49 | 0.68 | 0.96 | 2.49 | 1.71 | |

LRR | 0.62 | 1.03 | 2.28 | 1.60 | 0.63 | 1.03 | 2.32 | 1.60 | |

RF | 0.58 | 1.08 | 2.19 | 1.54 | 0.66 | 0.96 | 2.47 | 1.70 | |

DLF | 0.66 | 0.99 | 2.39 | 1.68 | 0.77 | 0.82 | 2.91 | 2.01 | |

Full features | SVM | 0.59 | 1.05 | 2.25 | 1.56 | 0.68 | 0.95 | 2.51 | 1.73 |

GP | 0.56 | 1.10 | 2.14 | 1.48 | 0.67 | 0.97 | 2.45 | 1.69 | |

LRR | 0.58 | 1.07 | 2.22 | 1.53 | 0.60 | 1.05 | 2.26 | 1.56 | |

RF | 0.57 | 1.08 | 2.20 | 1.52 | 0.65 | 0.97 | 2.44 | 1.68 | |

DLF | 0.63 | 1.00 | 2.36 | 1.63 | 0.75 | 0.84 | 2.84 | 1.96 |

Feature | t | p-Value |
---|---|---|

IT1 VS IT2 | 7.097 | 0.000 |

IT1 VS IT3 | 16.661 | 0.000 |

IT2 VS IT3 | 9.348 | 0.000 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Li, Z.; Chen, Z.; Cheng, Q.; Duan, F.; Sui, R.; Huang, X.; Xu, H.
UAV-Based Hyperspectral and Ensemble Machine Learning for Predicting Yield in Winter Wheat. *Agronomy* **2022**, *12*, 202.
https://doi.org/10.3390/agronomy12010202

**AMA Style**

Li Z, Chen Z, Cheng Q, Duan F, Sui R, Huang X, Xu H.
UAV-Based Hyperspectral and Ensemble Machine Learning for Predicting Yield in Winter Wheat. *Agronomy*. 2022; 12(1):202.
https://doi.org/10.3390/agronomy12010202

**Chicago/Turabian Style**

Li, Zongpeng, Zhen Chen, Qian Cheng, Fuyi Duan, Ruixiu Sui, Xiuqiao Huang, and Honggang Xu.
2022. "UAV-Based Hyperspectral and Ensemble Machine Learning for Predicting Yield in Winter Wheat" *Agronomy* 12, no. 1: 202.
https://doi.org/10.3390/agronomy12010202