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Abstract: To accurately estimate leaf area index (LAI) in mangrove areas, the selection of appropriate
models and predictor variables is critical. However, there is a major challenge in quantifying and
mapping LAI using multi-spectral sensors due to the saturation effects of traditional vegetation
indices (VIs) for mangrove forests. WorldView-2 (WV2) imagery has proven to be effective to estimate
LAI of grasslands and forests, but the sensitivity of its vegetation indices (VIs) has been uncertain for
mangrove forests. Furthermore, the single model may exhibit certain randomness and instability in
model calibration and estimation accuracy. Therefore, this study aims to explore the sensitivity of
WV2 VIs for estimating mangrove LAI by comparing artificial neural network regression (ANNR),
support vector regression (SVR) and random forest regression (RFR). The results suggest that the RFR
algorithm yields the best results (RMSE = 0.45, 14.55% of the average LAI), followed by ANNR (RMSE
= 0.49, 16.04% of the average LAI), and then SVR (RMSE = 0.51, 16.56% of the average LAI) algorithms
using 5-fold cross validation (CV) using all VIs. Quantification of the variable importance shows that
the VIs derived from the red-edge band consistently remain the most important contributor to LAI
estimation. When the red-edge band-derived VIs are removed from the models, estimation accuracies
measured in relative RMSE (RMSEr) decrease by 3.79%, 2.70% and 4.47% for ANNR, SVR and RFR
models respectively. VIs derived from red-edge band also yield better accuracy compared with
other traditional bands of WV2, such as near-infrared-1 and near-infrared-2 band. Furthermore, the
estimated LAI values vary significantly across different mangrove species. The study demonstrates
the utility of VIs of WV2 imagery and the selected machine-learning algorithms in developing LAI
models in mangrove forests. The results indicate that the red-edge band of WV2 imagery can help
alleviate the saturation problem and improve the accuracy of LAI estimation in a mangrove area.
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1. Introduction

Mangrove ecosystems are regarded as one of the most productive ecosystems on earth with
long-term storage of abundant biomass and organic carbon [1]. Mangrove forests provide a number of
ecosystem services [2], such as protection of the coastline from storm surges and tsunamis, reduction of
coastal erosion, decreased coastal pollution, and formation of nursery areas for a variety of terrestrial
and aquatic fauna [3–5]. Globally, coastal areas are commonly associated with high-density population
pressure and urban growth [6], and this has resulted in the conversion of mangrove ecosystems
into areas for aquaculture, salt production, and rice cultivation over the past few decades [7–9].
The consequence has been widespread deforestation of mangroves.

Artificial planting of mangrove forests has been used to restore and rehabilitate mangrove
forests in China since the 1990s [10]. Comprehensive monitoring of the recovery process and its
effects on mangrove ecosystems can increase understanding of mangrove net primary production,
photosynthesis, and plant health [11,12]. As a key biophysical parameter, the leaf area index (LAI) is an
important input parameter in dynamic global vegetation models [13–16], and studies of vegetation LAI
can contribute to the understanding of vegetation conditions and ecological processes in general [17].

Compared to QuickBird and IKONOS images, WorldView-2 (WV2) imagery, with higher spatial
and spectral resolution, provides great potential for estimating and mapping forest biophysical
parameters [18–20]. Although previous studies have demonstrated that the WV2 imagery can be
successfully utilized for estimating and mapping forest structure parameters with a reasonable accuracy
including canopy nitrogen concentration [21], biomass [22], tree crown [23], etc., few studies focused
on prediction and mapping of forest LAI using WV2 imagery [24–27], especially for mangrove forests.
Kamal et al. assessed multi-resolution images for mangrove LAI mapping and focused on exploring
the relationship between image spatial resolution, sampling sizes and spatial variation for estimating
LAI [25]. Therefore, more studies are needed to further investigate the application of WV2 imagery for
LAI estimation.

Mangrove forests often have a great spatial variation in LAI values due to the impact of species
types, stand density, and their growing environment [28]. They show distinctive spectral reflectance
and absorption features affected by the soil and water surrounding compared to other forests [29].
However, understanding of mangrove LAI variations is relatively limited. Scholars have attempted
to measure the LAI of mangrove forests using various types of sensors and models. For example,
Kovacs et al. [16,30–33] successfully built the linear relationship between LAI values and parameters
derived from different remote-sensing images (e.g., the bands or their spectral transformations, texture
information, and backscattering coefficients) utilizing field survey data. They also assessed the health
status of mangrove forests based on LAI variations of different species types. Wong et al. developed a
stepwise regression model between measured LAI values of mangrove forests and vegetation indices
(VIs), texture information, and backscattering coefficients combined with hyperspectral and radar
images [34]. However, most studies have primarily focused on the linear relationship between LAI
and remote sensing-derived parameters.

There exists no publication on the sensitivity of bands or spectral transformations for LAI
estimation for mangrove forests using WV2 imagery. Previous studies have demonstrated that
traditional bands and their spectral transformations from multi-spectral images are not sensitive to
LAI variations [35,36]. The application of the above parameters may suffer from saturation effects for
mangrove forests. Therefore, detailed and accurate estimation of mangrove LAI is still a challenge
using multi-spectral sensors. Adjorlolo, Mutanga and Cho [21], Van Deventer et al. [37], Cho et al. [38],
Mutanga et al. [39] found that the red-edge band from hyperspectral data, RapidEye or WV2 imagery
can contribute to improving accuracies of estimation due to higher sensitivity to biochemical and
biophysical parameters such as biomass, canopy nitrogen, and foliar N and P. The red-edge band was
used to develop their optimal combination of attributes. However, Pu and Cheng [26] found that the
red-edge band from WV2 imagery was considered the worst input variable in estimating LAI of mixed
natural forests than other WV2 bands. There is no generally agreed conclusion on the effectiveness of
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the red-edge band. Therefore, the sensitivity of the red-edge band in estimating LAI should be further
explored using WV2 imagery in mangrove forests.

A number of scholars have explored different methods in estimating LAIs. LAI values are
estimated primarily using two complementary groups of approaches (radiative transfer models and
statistical models) from remotely sensed data [40]. Physically based radiative transfer models are used
to inverse the LAI and other biophysical parameters [41–43]. Statistical models and machine-learning
algorithms are commonly used to retrieve LAI values. However, statistical models, such as linear
regression and logistic regression, require variables to follow certain statistical distributions (e.g.,
the normal distribution), which are often an over-simplification [44]. Machine-learning algorithms,
including classification and regression trees (CART), artificial neural networks (ANN), support
vector machines (SVM) and random forests (RF), can often reach a superior prediction accuracy
due to fewer assumptions about the data and processes. Several studies have demonstrated that
machine-learning algorithms are effective for modeling vegetation LAI using remotely sensed data
and field measurements [45,46]. However, a single model has a certain randomness and instability
partially due to the possible change in input variables performance during the calibration process [47].

The overall goal of the study is to evaluate the sensitivity of the red-edge band of WV2 imagery
for mangrove forests with distinctive spectral reflectance features using different models. Comparisons
of multiple models can help discern the pros and cons of each, eventually point to the direction of the
best performing model [48]. Two questions are addressed in this study: (1) Are WV2 imagery and the
selected machine-learning algorithms suitable for developing LAI estimation models in mangrove
forests with high spatial heterogeneity? (2) What is the relative importance of the VIs in estimating
mangrove LAI?

2. Materials and Methods

2.1. Study Area

Mangrove forests in Dawei Bay, with an area of about 700 ha, are located on northwest Qi’ao
Island, near the City of Zhuhai in Guangdong Province [49] (Figure 1). The coastal region has an ideal
setting for the growth of mangrove forests. The bay is located between latitude 22◦23′N–22◦27′N and
longitude 113◦36′E–113◦39′E and has a subtropical monsoon climate with prevailing southeast winds
in summer and northeast winds in winter. The average annual temperature is 22.4 ◦C, the annual
average sunshine hours is 1907.4 h, and the average annual precipitation is between 1700 mm and
2200 mm [11,50]. The salinity of surface seawater ranges from 0.22h to 32.32h with an annual average
of 18.22h [11,51]. The tidal pattern is an irregular semidiurnal tide. As a typical wetland ecosystem,
mangrove forests in Dawei Bay have been designated a provincial-level nature reserve—the largest
area of artificially planted mangrove forests in China.

Mangrove forests of Dawei Bay with high spatial heterogeneity grades, ranging from prevalent
mature forest, to smaller trees and shrubs, and to herbaceous vegetation [50]. Dominant species include
Kandelia candel (K. candel), Aegiceras corniculatum (A. corniculatum), Acanthus ilicifolius (A. ilicifolius),
Sonneratia apetala (S. apetala), and Acrostichum aureum (A. aureum) [52]. The mature native K. candel and
A. corniculatum are mostly located in the high tidal zones outside the enclosing levee. The other three
mangrove species are distributed in the middle and low tidal zones. S. apetala, a fast-growing tree, has
been artificially planted on the island since 1999 [50]. A large area dominated by the invasive species,
Spartina alterniflora (S. alterniflora), is mainly distributed outside the intertidal flat and is designated as
a reconstructed demonstration area. There are other species distributed in the region as well, including
Phragmites australis (P. australis) as well as mangrove nurseries.
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Figure 1. The study area and field sampling sites on Qi’ao Island overlaid on WV2 imagery. 
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was obtained by measuring the gap fraction in five zenith angles and Miller’s theorem using the Plant 
Canopy Analyzer LAI-2000 (LI-COR Biosciences, Inc., Lincoln, NE, USA, 2010). The gap fraction is 
calculated from the ratio of above-canopy light intensity (A) and below-canopy light intensity (B) 
[53]. It has been demonstrated to be a practical method for obtaining LAI values [54,55]. Actually, the 
LAI obtained from LAI-2000 is an effective LAI and has been shortened to LAI henceforward. 

There were a total of 68 rectangular plots located along tidal creeks, including 9, 6, 6, 14, 7, 6, 20 
samples of S. alterniflora, P. australis, A. aureum, A. ilicifolius, A. corniculatum, K. candel and S. apetala, 
respectively. Mangrove forests within this dynamic landscape are characterized by uneven-aged 
trees and high spatial variability. The data of tree age was obtained by the conservation authority of 
mangrove nature preservation and mangrove growers. LAI variation was investigated based on 
different species types and age (growth stages) (Figure 1). The distribution of samples was selected 
to include all species in different growth stages in the study area to ensure that all LAI variations 
were represented in the samples. Two field surveys were conducted on the 23 and 27 of December 
2010 and the 10 and 15 of January 2011. Each sample plot with a 10 m × 10 m quadrant was selected 
in a homogeneously covered species. Two line transects were made along the two diagonal lines of 
each sample plot using a cloth tape measure. For each diagonal line, five below-canopy readings and 
one above-canopy reading were taken at regular intervals using a 180° view angle cap with a sensor 

Figure 1. The study area and field sampling sites on Qi’ao Island overlaid on WV2 imagery.

2.2. Measurement of LAI

We obtained LAI values and mangrove species in the field survey. The LAI of mangrove forests
was obtained by measuring the gap fraction in five zenith angles and Miller’s theorem using the Plant
Canopy Analyzer LAI-2000 (LI-COR Biosciences, Inc., Lincoln, NE, USA, 2010). The gap fraction is
calculated from the ratio of above-canopy light intensity (A) and below-canopy light intensity (B) [53].
It has been demonstrated to be a practical method for obtaining LAI values [54,55]. Actually, the LAI
obtained from LAI-2000 is an effective LAI and has been shortened to LAI henceforward.

There were a total of 68 rectangular plots located along tidal creeks, including 9, 6, 6, 14, 7, 6, 20
samples of S. alterniflora, P. australis, A. aureum, A. ilicifolius, A. corniculatum, K. candel and S. apetala,
respectively. Mangrove forests within this dynamic landscape are characterized by uneven-aged
trees and high spatial variability. The data of tree age was obtained by the conservation authority
of mangrove nature preservation and mangrove growers. LAI variation was investigated based on
different species types and age (growth stages) (Figure 1). The distribution of samples was selected to
include all species in different growth stages in the study area to ensure that all LAI variations were
represented in the samples. Two field surveys were conducted on the 23 and 27 of December 2010
and the 10 and 15 of January 2011. Each sample plot with a 10 m × 10 m quadrant was selected in a
homogeneously covered species. Two line transects were made along the two diagonal lines of each
sample plot using a cloth tape measure. For each diagonal line, five below-canopy readings and one
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above-canopy reading were taken at regular intervals using a 180◦ view angle cap with a sensor to
mask out the operator. Therefore, the LAI value in each sampling point was measured twice along
with two diagonal lines. Finally, the mean LAI value was calculated from the two measurements.

The four vertex coordinates of each sampling point were recorded by a sub-meter accurate GPS.
Further, auxiliary details such as distances to shore and other features that can easily be identified in
the WV2 imagery were collected to mark in locating sites on the images.

The LAI values obtained from field study (n = 68) varied from 1.77 to 6.01. The mean LAI value
was 3.08, and the coefficient of variation was 0.45. The measured LAI values suggested mangrove
forests exists the high degree of spatial variability.

2.3. Workflow for the Analyses

Three different regression models, including Artificial Neural Network regression (ANNR) [56],
Support Vector Machine regression (SVMR) [57], and Random Forest regression (RFR) [44], were used
to explore different models’ performance and the sensitivity of VIs related to mangrove LAI. These
methods have been successfully used in classification and retrieval of remotely sensed data and are
capable of quantifying a variable’s importance. Figure 2 provides the workflow for mapping LAI
from WV2 imagery. The VIs, as predictor variables, were calculated after image processing. The LAI
values and mangrove species were obtained from field investigations. The mangrove species map
was obtained by using object-oriented classification and SVM algorithm. Then, the regression models
(ANNR, SVR, and RFR algorithms) were selected to establish non-linear relationships between the
LAI and the predictor variables. The constructed models were applied to the WV imagery to map
the spatial distribution of LAI. The statistical analysis for predicted LAI map of each species were
calculated based on mangrove species map. Variables’ importance was determined to analyze the
sensitivity of predictor variables. To quantify the contribution of red-edge band, we built different LAI
estimating models with and without VIs derived from red-edge bands based on ANNR, SVR and RFR
models, respectively.
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2.4. Remotely Sensed Data and Processing

A WV2 multispectral image, dated on 11 November 2011, was acquired for the mangrove forests
in Dawei Bay (Table 1). It contains eight multispectral bands with 2 m resolution and a panchromatic
band with 0.5 m resolution. Four new bands provided by WV2 include a coastal zone band, a yellow
band, a red-edge band, and a near infrared-2 band. The red-edge band has been demonstrated to be
particularly more sensitive to biophysical parameters of forests than other traditional bands derived
from optical images [21,50]. Consequently, WV2 imagery has high potential for application to LAI
estimation of mangrove forests.

Table 1. The spectral band information of WV2 imagery.

Types of Bands Wavebands Spectral Band Edges Spatial Resolution

The traditional bands

B2 blue band 450 nm to 510 nm

2 m

B3 green band 510 nm to 580 nm
B5 red band 630 nm to 690 nm
B7 near-infrared-1 band 770 nm to 895 nm

The new bands

B1 coastal band 400 nm to 450 nm
B4 yellow band 585 nm to 625 nm
B6 red-edge band 705 nm to 745 nm
B8 near-infrared-2 band 860 nm to 1040 nm

The panchromatic band – – – 0.5 m

Preprocessing was conducted for the WV2 imagery, including geometric correction, radiometric
calibration, and atmospheric correction. Geometric correction was executed by collecting fifteen
ground control points using a UTM Zone 49 map projection. Following radiometric calibration,
we used the sensor calibrating model of calibration utilities. Atmospheric correction was used to
calculate apparent reflectance of the image using fast line-of-sight atmospheric analysis of the spectral
hypercubes (FLAASH) model with the ENVI module [50]. The major input parameters of FLASSH
were MODTRAN spectral resolution of 15 cm−1, mid-latitude summer model (MLS), atmospheric
water vapor of 2.9 g/cm2, urban aerosol model, and DISORT streams 8 for multiscatter model of
Scaled DISORT.

2.5. Mangrove Classification Based on WorldView-2 Imagery

Combined with prior knowledge, field interview and the characteristics of artificial planting,
mangrove species types were also investigated for species classification. The training and testing
samples were obtained, and the features of spatial location for each species were determined. Some
species types were confused based on their spectral and texture features, such as between K. candel
and A. corniculatum, between P. australis and S. alterniflora [49]. Therefore, to improve classification
accuracy of mangrove species, the study area was further divided into 5 subareas based on spatial
features of the different mangrove species. As shown in Figure 3, K. candel mainly grows in Subarea 1,
A. corniculatum in Subarea 2 and 3, P. australis in subarea 3 and 4, and S. alterniflora in subarea 5.

The mangrove species was classified by using object-oriented classification and a SVM (Support
Vector Machine) classifier. Since mangrove species is mostly homogeneous in the study area, the
hard classification with SVM was used to separate species types. Object-oriented method was
executed in the eCognition 9.0 software by Trimble Inc. (Sunnyvale, CA, USA), originally developed at
Defniens AG. The segmentation parameters (color index, smoothness index, shape index, compactness
index and scale parameter) were adjusted through repeated experiments and comparison of the
segmentation results. The parameter values that produced the best visual effect with singular entities
outlining objects of homogeneous appearance were selected [58]. The image object attributes, including
8 bands, vegetation index (NDVI and NDWI) and texture information (Homogeneity and Entropy
from gray-level co-occurrence matrix), were calculated to train and construct the classifier.
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Five subareas were classified separately by means of a SVM classifiers. The mangrove species of
each subarea was classified separately using above attributes and SVM classifier based on the same
optimal segmentation parameters. Half of the collected samples were used for training and the other
half for validation. The accuracy was assessed by confusion matrix.

2.6. Calculation of VIs from WorldView-2 Imagery

Multi-spectral images have been widely used to quantify and map vegetation LAI over mangrove
forests. However, the high spectral variation and shadows caused by canopy and topography may lead
to challenges in developing accurate LAI estimation models [59]. It has been demonstrated that VIs
have the potential of alleviating this problem [59]. The 20 VIs were calculated from the preprocessed
WV2 imagery. These VIs have been demonstrated to successfully estimate and map forest structure
parameters that could be crucial for LAI estimation (Table 2). The VIs were divided into three parts
based on different bands according to the comparison between red-edge band and other main bands.
They were used to develop models for inversing the LAI values of mangrove forests. The mean VIs,
corresponding with the LAI of the plots, were calculated by the pixels of the imagery including the
four vertex coordinates of each quadrant.

Table 2. The VIs derived from WV2 imagery.

Bands VI Commonly Related to Ref.

Red-edge band
(B6)

RedEdge Normalized Difference Vegetation Index
RE− NDVI65 = (ρB6 − ρB5)/(ρB6 + ρB5)

canopy foliage content, gap fraction,
and senescence

[60]RedEdge Simple Ratio Index RE− SR65 = ρB6/ρB5
Chlorophyll concentration and moisture

content

Modified RedEdge Simple Ratio Index
mRE− SR651 = (ρB6 − ρB1)/(ρB5 + ρB1)

precision agriculture, forest monitoring,
and vegetation stress detection

RedEdge Normalized Difference Vegetation Index
RE− NDVI61 = (ρB6 − ρB1)/(ρB6 + ρB1)

Vegetation status, canopy structure

RedEdge Simple Ratio Index RE− SR61 = ρB6/ρB1 Vegetation status, canopy structure

Modified Chlorophyll Absorption in Reflectance Index
MCARI653 = [(ρB6 − ρB5)− 0.2(ρB6 − ρB3)]× (ρB6/ρB5)

relative abundance of chlorophyll, leaf
pigments and vegetation status

[61]
Transformed Chlorophyll Absorption in Reflectance Index
TCARI653 = 3[(ρB6 − ρB5)− 0.2(ρB6 − ρB3)× (ρB6/ρB5)]

relative abundance of chlorophyll, leaf
pigments and vegetation status

Triangular Vegetation Index
TVI653 = 0.5[120(ρB6 − ρB3)− 200(ρB5 − ρB3)]

Leaf pigments, vegetation status and
green LAI,

eeNear-infrared-1
band (B7)

Normalized Difference Vegetation Index
NDVI75 = (ρB7 − ρB5)/(ρB7 + ρB5)

Vegetation status, canopy structure

[62]
Simple Ratio Index SRI75 = ρB7/ρB5 Vegetation status, canopy structure

Green Normalized Difference Vegetation Index
GNDVI73 = (ρB7 − ρB3)/(ρB7 + ρB3)

Leaf pigments, vegetation greenish

Modified Simple Ratio
MSR75 = [(ρB7/ρB5)− 1]/[(ρB7/ρB5)

0.5 + 1]
Vegetation status, canopy structure

Modified Chlorophyll Absorption in Reflectance Index
MCARI753 = [(ρB7 − ρB5)− 0.2(ρB7 − ρB3)]× (]ρB7/ρB5)

Leaf pigments, vegetation status

Transformed Chlorophyll Absorption in Reflectance Index
TCARI753 = 3[(ρB7 − ρB5)− 0.2(ρB7 − ρB3)× (ρB7/ρB5)]

Leaf pigments, vegetation status

Optimized soil-Adjusted Vegetation Index
OSAVI75 = (1 + 0.6)(ρB7 − ρB5)/(ρB7 + ρB5 + 0.16) soil variation in low vegetation cover, [61]

Environmental Vegetation Index
EVI752 = 2.5(ρB7 − ρB5)/(ρB7 + 6ρB5 − 7.5ρB2 + 1) the vegetation signal in LAI regions [63]

Near-infrared-2
band (B8)

Normalized Difference Vegetation Index
NDVI84 = (ρB8 − ρB4)/(ρB8 + ρB4)

Vegetation status, canopy structure

[60]Simple Ratio Index NDVI85 = (ρB8 − ρB5)/(ρB8 + ρB5) Vegetation status, canopy structure

Normalized Difference Vegetation Index SRI84 = ρB8/ρB4 Vegetation status, canopy structure

Simple Ratio Index SRI85 = ρB8/ρB5 Vegetation status, canopy structure
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2.7. LAI Inversion Modeling and Accuracy Assessment

The selected machine-learning algorithms, including ANNR, SVR and RFR, were used to develop
the LAI model for the mangrove forests. LAI model building, tuning, and accuracy evaluation
were performed using the R statistical environment for Windows using the packages neuralnet [64],
e1071 [65], and randomForest [66]. Due to the limited samples, each model was built and optimized
using a 5-fold cross validation (CV) instead of 10-fold cross validation [67]. Stratified random sampling
was used to ensure that each subsample contains the whole range of LAI values. The 5-time results
(e.g., the obtained RMSE of each process) were then averaged to calculate single accuracy estimation.
Based on this method, the performance of the all three machine-learning algorithms was assessed.
The sensitivities of input variables were determined by quantifying variables’ importance using all
three methods. The importance measures were standardized to a standard deviation [68].

Several critical tuning parameters used by all three machine-learning algorithms were examined
using grid search, a brute-force approach used to optimize the performance of regression models.
The adjustments for the main parameters were repeated until the model outputs reached the lowest
mean RMSE during the 5-fold CV process. The model built with the lowest mean RMSE was considered
optimized for LAI estimation in this study. Specific details of tuning parameters on all three algorithms
are listed in the sections below.

To analyze the effective of VIs derived from red-edge band on LAI estimation accuracy, we
conducted the experiments of different VIs combinations to build LAI models. We compared 5
different VIs combinations to estimate LAI accuracy, including all of 20 VIs, removing red-edge
band’s VIs and only using red-edge band’s VIs, near-infrared-1 band’s VIs and near-infrared-2 band’s
VIs, respectively.

2.7.1. Artificial Neural Network Regression (ANNR)

Artificial neural network (ANN) is a mathematical model based on the properties of biological
neural networks. ANN models possess the advantages of no underlying assumptions about the input
data, distributed parallel processing, resolution of nonlinear mapping, adaptive learning, and fewer
required training data [69–71]. The BP ANN adopted in this study (Back-propagation neural network
algorithm) is a multi-layered feed-forward network with back propagation. It was first proposed by
Rumelhart et al. (1986) [56]. The BP ANN contains three layers, including the input, hidden, and output
layers. Each layer has neurons connected by links, each of which signifies a weight. The learning
algorithm is an iterative gradient descent training procedure and is carried out in two procedures:
feed forward for input data and back propagation for errors [71]. First, the initial ANN weights are
assigned randomly. The original input data are entered into the network, and processed by the three
layers. If the calculated errors between output and actual values are unacceptable, the errors from the
output layer are back propagated to the input layer. Then, the weights between the different layers are
adjusted. This process is repeated until the errors are reduced to an acceptable level. We used two
hidden layers in this study. The main tuning parameters for the network, including the number of
hidden layer neurons (HLN) of the two layers and network iterations (NI), were continuously adjusted
using CV and grid search. Other parameters used the default values in the “neuralnet” packages.

The Olden function from the R package “NeuralNetTools” uses Olden’s algorithm (2004) to
evaluate variables’ relative importance [72]. This method is similar, but superior to Garson’s
algorithm [73] in representing true variable importance. The function deconstructed the connection
weights of the ANN model—“Weights” method. The importance of each variable can be determined
by the sum of all raw input-hidden and hidden-output connection weights between each input and
output neuron. The importance values assigned to each variable are based directly on the sum of
connection weights of the all hidden neurons. The relative importance of each connection weight is
maintained in terms of both sign and magnitude.
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2.7.2. Support Vector Regression (SVR)

Support vector machine (SVM) has a solid statistical learning theory based on the structural risk
minimization (SRM) principle [57]. SVMs can be used for regression, classification, and other learning
tasks. Essentially, SVMs map the original multi-dimensional space with linear, non-separable problems
into a higher dimensional feature space with linear, separable feature space using the transformation
of the kernel function, and they then construct a hyper plane with the maximum margin between
different classes [74]. SVR is an application of SVMs. It is a linear regression function based on
a high-dimensional feature space where the original input data are first mapped from a nonlinear
function. Thus, an optimization problem has been converted into dual convex quadratic programming.
Regressions based on the SVR algorithm use the radial basis function (RBF) kernel. The training of the
SVR model using the RBF kernel requires two main tuning parameters: cost of constraint violation (C)
and gamma in kernel function (γ). Increasing C will bring about larger penalties for estimation error
and may lead to over-fitting of the model. The tuning parameter γ controls the shape of the hyper
plane and may affect overall estimation accuracy. Other parameters used the default values in the
“e1071” package [65].

The SVM algorithm does not provide directly a measure of variable importance. Luckily, the
SVR model offers a α-vector incorporating the support vectors in the “e1071” package. The variable
importance measure was based on the inner product of the normalized predictor variables and the
α-vector proposed by Üstün et al. [75]. These positive or negative values were similar to regression
coefficients, while the absolute values were the measure of variable importance [68].

2.7.3. Random Forest Regression (RFR)

The random forest regression algorithm (RFR) is a popular machine-learning algorithm that is
largely insensitive to noisy data sets and has promising predictive capabilities for high-dimensional
data set [44]. The random forest algorithm performs recursive partitioning of data sets [76], and
makes no assumptions for the distribution of the input data sets [77]. It is an ensemble learning
technique that combines a large number (ntree) of decision trees (DT) for classification and regression.
In RFR algorithm, the number of regression trees is grown based on bootstrap samples of the original
observations. Each node of the regression trees splits using a random subset of input variables (mtry).
The final prediction is determined by averaging the individual predictions of all regression trees.
Validation dataset accuracy is determined by cross-validation (CV) for the remaining training dataset
samples (out-of-bag (OOB) samples) with the random forest model. In a random forest framework,
the generalization error is reduced by the randomness within the bootstrap samples of the original
observations and the random selection of input predictors for splitting at nodes of each DT. The RFR
tuning parameters (ntree and mtry) and accuracy assessments were obtained using grid search and the
CV process. Other parameters used the default values in the “randomForest” package [66].

The “randomForest” package internally produces a measure of the importance of the predictor
variables to optimize feature space measuring. The importance of each variable can be calculated in
two different ways, including the Mean Decrease in Gini (MDG), and the Mean Decrease in Accuracy
(MDA) [44]. The MDG calculates how much a variable reduces the Gini Impurity metric in a particular
class, while the MDA takes into account the difference of OOB error resulting from the difference
between original data set and a data set with randomly permutated variable. In this study, the relative
importance of a certain variable is estimated by using MDA method.
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2.7.4. Accuracy Assessment

After building the models of LAI for mangrove forests, well-known error statistics were calculated
to analyze the difference between the observed and predicted LAI, including root mean square error
(RMSE) and relative RMSE (RMSEr). The computational formulas are as follows:

RMSE =

√
1
n

n

∑
i=1

(PREi −OBSi)
2 (1)

RMSEr =
RMSE
OBS

(2)

where PREi and OBSi (i = 1, 2, . . . , n) represent the predicted and observed values at plot i, respectively;
OBS denotes the actual average of LAI; and n is the number of validation plots.

3. Results

3.1. Mangrove Classification

The parameters of multi-resolution segmentation were determined as follows: color index (0.7),
smoothness index, shape index (0.3), compactness index (0.4) and scale parameter (30). Five subareas
were classified separately by means of a SVM classifier. The accuracy of the classification results was
assessed based on a validation dataset obtained from field investigation (Table 3). The overall accuracy
was 84.2% and the Kappa coefficient was 0.794. The mangrove species map was shown in Figure 3.

Table 3. Confusion matrix of mangrove species classification using object-oriented classification.

Classified Data
Reference Data

SA AI SAP PA AC KC AA Mudflat Total

SA 96 9 4 1 0 0 5 13 128
AI 0 155 31 0 16 1 2 0 205

SAP 0 3 367 3 0 0 4 11 388
PA 0 0 3 26 0 0 0 7 36
AC 0 0 0 0 31 0 0 0 31
KC 0 0 0 5 0 59 0 0 64
AA 0 12 4 12 0 0 28 1 57

Mudflat 0 0 6 1 0 2 0 70 79
Total 96 179 179 48 47 62 39 102 -

Over accuracy: 84.2%; Kappa: 0.794

SA—Spartina alterniflora; PA—Phragmites australis; AA—Acrostichum aureum; AI—Acanthus ilicifolius;
AC—Aegiceras corniculatum; KC—Kandelia candel; SAP—Sonneratia apetala.
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3.2. Model Results and Accuracy Assessment

The optimal tuning parameters and accuracy evaluation for the different estimation models were
determined by the averaged 5-fold CV RMSE and stratified random sampling, which can help reduce
the bias of the validation datasets and increase stability, reliability and generalization ability of the
model results [78]. As shown in Table 4, the tuning parameters were set and determined. Overall,
when compared the results of different models for mangrove forest LAI estimation (Table 5), the RFR
model had the best accuracy for LAI estimation. Except for the LAI model of removing VIs derived
from red-edge band, the ANNR model performed slightly better than the SVR model.

We compared different VIs combinations for modeling LAI. While the inclusion of all VIs had the
best accuracy, removing VIs of the red-edge band significantly decreases the accuracies of all three
models (Table 5). Furthermore, the LAI model using VIs derived from red-edge band produced the
better accuracy than using VIs derived from near-infrared-1 band and near-infrared-2 band.

Table 4. The settings and selecting values of tuning parameters using ANNR, SVR and RFR models.

Models The Tuning Parameters Setting Range Interval The Optimal Value

ANNR
HLN 2–20 2 12, 7

NI 500–15,000 500 7000

SVR
C 2−10–210 Multiply by 2 2
γ 2−10–210 Multiply by 2 0.03125

RFR
ntree 100–5000 100 300
mtry 2–20 2 12
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Table 5. The RMSE of 5-fold CV for LAI estimation using ANNR, SVR and RFR model.

Parameters Models RMSEs Average RMSE Average RMSEr

All of VIs
ANNR 0.39 0.51 0.52 0.48 0.57 0.49 16.04%

SVR 0.42 0.45 0.56 0.48 0.64 0.51 16.56%
RFR 0.41 0.35 0.55 0.45 0.48 0.45 14.55%

Removing VIs
Derived from
red-edge band

ANNR 0.65 0.58 0.69 0.41 0.72 0.61 19.83%
SVR 0.54 0.49 0.48 0.73 0.72 0.59 19.26%
RFR 0.63 0.72 0.49 0.67 0.42 0.58 19.02%

VIs Derived from
red-edge band

ANNR 0.53 0.58 0.67 0.75 0.50 0.60 19.57%
SVR 0.66 0.64 0.62 0.60 0.63 0.63 20.47%
RFR 0.64 0.65 0.73 0.44 0.42 0.58 18.71%

VIs Derived from
near-infrared-1

ANNR 0.51 0.51 0.95 0.71 0.71 0.68 22.01%
SVR 0.64 0.77 0.85 0.42 0.71 0.68 21.97%
RFR 0.76 0.66 0.57 0.73 0.51 0.65 20.98%

VIs Derived from
near-infrared-2

ANNR 0.80 0.73 0.70 0.98 0.53 0.75 24.31%
SVR 0.79 0.89 0.84 0.54 0.86 0.78 25.38%
RFR 0.83 0.70 0.79 0.64 0.64 0.72 23.41%

3.3. Variable Importance

The relative importance of input variables for LAI estimation was calculated for the ANNR, SVR
and RFR models respectively. Table 6 illustrates the different VIs importance using the ANNR, SVR
and RFR algorithms. The VIs derived from the red-edge band of WV2 imagery are the consistent top
performers of all models. Other VIs show inconsistent performance. For SVR and RFR models, the
VIs computed from Near-infrared-1 were found to be the next most important variables, followed
by the near-infrared-2 band-derived VIs. However, for the ANNR model, the VIs computed from
Near-infrared-2 were found to be the next most important variables, followed by the near-infrared-1
band-derived VIs.

Table 6. Ranking of variable importance based on the ANNR, SVR and RFR.

VIs
ANNR SVR RFR

Variable Importance Ranks Variable Importance Ranks Variable Importance Ranks

RE-NDVI65 0.97 7 2.22 7 2.7 2
RE-SR65 2.00 2 2.44 1 3.83 1

MRE-SR651 0.03 19 2.25 5 0.69 9
RE-NDVI61 0.08 18 2.02 12 0.05 19

RE-SR61 1.32 5 2.00 15 0.17 17
MCARI653 2.14 1 2.41 2 2.59 3
TCARI653 0.09 17 1.21 20 0.04 20

TVI653 0.66 9 2.15 9 0.64 10
NDVI75 0.41 10 2.03 10 1.02 5

SRI75 0.26 12 2.26 4 0.97 6
GNDVI73 1.09 6 2.01 13 0.43 13

MSR75 0.18 15 2.28 3 1.06 4
MCARI753 0.86 8 2.21 8 0.38 15
TCARI753 0.37 11 2.24 6 0.06 18
OSAVI75 0.02 20 2.03 11 0.29 16
EVI752 0.21 14 2.00 14 0.54 12

NDVI84 0.26 13 1.51 19 0.42 14
NDVI85 1.75 3 1.71 18 0.8 8

SRI84 1.34 4 1.77 17 0.59 11
SRI85 0.13 16 1.98 16 0.89 7

3.4. Spatial Distribution of Mangrove Vegetation LAI

Once the models built with the highest accuracy were identified, they were used to develop
LAI maps. The original WV2 images and their corresponding mangrove species maps are shown in
Figure 4a,b respectively. Based on the spatial distribution patterns of the different species, we chose
four typical subareas to analyze the characteristics of mangrove LAI. As shown in Figure 4c–e, the
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three different models presented similar results. Further, Figure 4 shows that different mangrove
species have different ranges of LAI.
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The distribution of LAI values of different mangrove species are shown in Figure 5 and Table 7.
The results show that different mangrove species have different ranges of LAI. Spartina alterniflora
and Phragmites australis were the main herbaceous vegetation in the study area, and have the lowest
LAI values with a mean of 2.02 and a range from 1.7 to 2.44, mainly because they both withered
in December. They had the smallest standard deviation (SD), which indicated the lowest spatial
variability. Another herbaceous species, Acrostichum aureum, had the highest LAI value with a mean of
2.84 and a range from 1.72 to 4.40. The evergreen Acrostichum aureum with a large leaf area had the
highest LAI value of all studied herbaceous vegetation. The LAI of the shrub Aegiceras corniculatum
had a mean of 2.73 with range of 1.73 to 5.55. Another shrub, Acanthus ilicifolius, had the highest
LAI value (mean LAI of 4.51) of all the vegetation types due to its high-density canopy. Tree species
(Kandelia candel and Sonneratia apetala) were the tallest in height and had the lowest canopy densities
with mean values of 2.48 and 2.73. The resulting estimation map displays a high level of variation in
different mangrove species.

Table 7. The statistics of LAI estimates for mangrove species using RFR model.

Community Types Species LAI Range Mean LAI SD

Herbaceous
S. alterniflora 1.70–2.44 2.02 0.30

P. australis 1.73–2.42 2.02 0.27
A. aureum 1.72–4.40 2.84 0.73

Shrub
A. corniculatum 1.73–5.55 2.73 0.86

A. ilicifolius 3.10–6.06 4.51 0.92

Tree
K. candel 1.75–4.38 2.48 0.73
S. apetala 1.74–5.35 2.73 0.86
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4. Discussion

4.1. Spatial Distribution Characteristics of LAI for Mangrove Species

The estimation models of the LAI of mangrove forests were built using all three models (RFR,
ANN, and SVR) and VIs derived from WV2 imagery. The LAI estimations demonstrated a successful
level of accuracy based on CV. We also predicted the spatial distribution of LAI variation and made
a statistical analysis of LAI value ranges of different species types. Although there have been no
previous studies in this region for comparison, the results showed that the spatial distribution of LAI
values were roughly in line with the spatial distributions of different species types; consequently, the
average and range of LAI for each mangrove species could be roughly produced by simply aggregating
the LAI values as shown in Figure 5 and Table 7. Kovacs, Wang and Flores-Verdugo [28] mapped
mangrove leaf area index at the species level using IKONOS and aggregated the LAI values to four
classes (red mangrove, healthy white mangrove, poor condition white mangrove, and dead mangrove).
They also demonstrated that different species types had different range of LAI values.

However, as shown in Figure 5 and Table 7, The LAI values in this region are especially suitable
for the separation of the different life forms (herbaceous, shrub and tree species). The herbaceous
with lowest LAI values has withered, and the shrub has more high density, consequently, with the
highest LAI values, than tree species for image acquisition time dated on November [50]. However,
the distinction was not complete for the same life form, such as between S. alterniflora and P. australis,
and between K. candel and S. apetala.

4.2. Overall Performance of the LAI Model

Model testing helps select the right model, improve reliability and reduce the uncertainty in
the estimating LAI of mangrove forests. Of the selected algorithms, the RFR model performed best.
A major advantage of the RFR model is that it reduces the algorithm’s risk for over-fitting due to
relative insensitivity to variations in parameter values [44].

The ranks of variable importance are different using the selected algorithms (Table 6). That is
normal due to the selected algorithms with different principles and performances. Overall, the RFR
and SVR algorithms are more similar than the ANNR algorithm. That may be because the RFR
and SVMR algorithms are suitable for a relatively small number of training samples than ANNR
algorithm [79]. Due to the difficulties of conducting field studies in the intertidal zone, these model
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properties are especially suited to research on mangrove forest inversions of biophysical parameters.
Therefore, the verification results from the validation dataset demonstrated that the RFR models built
for mangrove forests were well suited for LAI estimation in this study. The red-edge band-derived VIs
were consistently selected as the most important band using the selected machine-learning algorithms.
Consequently, we can conclude that the red-edge band is more sensitive to estimate LAI for mangrove
forests than other traditional bands of multi-spectral sensors.

Mangrove forests in Dawei Bay are characterized by uneven-aged trees and exhibit high spatial
variability. The spatial variability aggregated together contrasting species reflects the wide range of
LAI values. The results in our studies demonstrated that the built models can be used to estimate the
wide range of LAI values of aggregated together trees, shrubs and herbs species. However, we must
carefully consider the restriction of the machine-learning algorithms in selection of the training and
validation dataset. The main reason is that machine-learning algorithms for the parameter inversions
are not able to predict or extrapolate the values beyond the range in the training dataset. Therefore, the
training dataset was selected to represent the full range of potential variations using stratified random
sampling [80]. Another restriction was that separate models could not be built for each mangrove
species due to the limited samples in this study.

4.3. Effect of the Red-Edge Band on LAI Estimation

To quantify the contribution of the red-edge band to improvement of mangrove LAI estimation,
we built the 5 different LAI estimation models (Table 5). Removing eight red edge-derived VIs had
consistent lower precision than all of 20 VIs based on ANNR, SVR and RFR models, respectively.
Only using VIs derived from red-edge band also yield better accuracy compared with other bands,
such as near-infrared-1 or near-infrared-2. Thus, the VIs calculated from the new red-edge band are
more sensitive to LAI. The red-edge band can help resolve saturation of LAI estimation to some extent.
When combined with the VIs of the new red-edge band and the selected algorithms, the LAI estimation
models in mangrove areas had higher inversion accuracies.

Though traditional VIs of multi-spectral images, such as the normalized difference vegetation
index (NDVI) or the simple ratio index (SRI), have been successfully used in LAI estimation, they have
also demonstrated a lack of sensitivity to LAI variations or other biophysical parameters. Some studies
have demonstrated that if the LAI exceeds 2.5, the traditional VI of the broadband spectrum is not
as sensitive to the changes in LAI [55]. This is mainly because traditional broadband satellite sensors
have been constrained by the asymptotic saturation of VIs due to multiple scattering of canopies from
dense vegetation or high LAI [81,82]. This is particularly true for mangrove forests in our study area,
where the vegetation grows very densely [50].

The results of the previous studies demonstrate the utility of red-edge band and associated VIs
derived from hyperspectral [36,83] and multi-spectral images [21,39,84,85] in estimating vegetation
biophysical parameters (e.g., biomass, nitrogen concentration, canopy gaps). However, some study
results found that red-edge band did not have a good relation to variations in LAI using hyperspectral
images [81,82]. For example, Darvishzadeh et al. suggested red-edge band was not appropriate
variable for LAI estimations when aggregated together contrasting different plant species using
hyperspectral images [81]. Moreover, Pu and Cheng [26] found that the red-edge band from WV2 had
the worst prediction accuracy in estimating LAI of mixed natural forests compared with other WV2
MS bands due to a relatively small variation of red-edge band reflectance with a large variation of LAI.
However, other studies have reported opposite findings. It was concluded that the red-edge band
was the most significant determining factors for wetland vegetation LAI estimation [39]. Our findings
support the latter. The results suggest that the red-edge band-derived VIs are suitable for aggregated
together contrasting species in estimating LAI using WV2 imagery. It may be because the spectral
features of mangrove species obtained from field investigation have more considerable variation of
the albedo at ranges of 700–750 nm in our study area, compared with plant species mentioned above.
A slight change of vegetation properties will lead to a notable shift in the red-edge spectral curve [39].



Remote Sens. 2017, 9, 1060 16 of 20

With the assistance of the red-edge band, the saturation problem of VIs can be alleviated to some extent
in mangrove forests, thus improving the accuracy of the LAI estimation.

5. Conclusions

The main goals of this study were to develop accurately estimation models of LAI and explore the
sensitivity of VIs of WV2 imagery in mangrove forests. Our fingdings show that the RFR model had the
best estimation accuracy, followed by SVR. The combination of WV2 imagery and the selceted machine
learnging algorithms were suitable for estimating the wide range of LAI values for mangrove forests.
The results of spatial distribution of LAI values were roughly in line with the spatial distributions of
different species types.

The study demonstrated that the spectral transformations of the red-edge band of WV2 imagery
were more effective in predicting the LAI of mangrove forests than traditional bands. The red-edge
band-derived VIs were consistently selected as the most important variables using different algorithms.
The VIs derived from the red-edge band can improve LAI estimation accuracy by 3.79%, 2.70% and
4.47% by comparing with and without VIs derived from red-edge bands based on ANNR, SVR and
RFR models, respectively.

In sum, we conclude that the combination of red-edge band and machine-learning algorithms is
an effective approach for generating accurate estimates of LAIs for mangrove forests.
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