Effects of Cultivation Management on Pearl Millet Yield and Growth Differed with Rainfall Conditions in a Seasonal Wetland of Sub-Saharan Africa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Plant Materials and Experimental Design
2.3. Measurements
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- El-Beltagy, A.; Madkour, M. Impact of climate change on arid lands agriculture. Agric. Food Sec. 2012, 1, 3. [Google Scholar] [CrossRef] [Green Version]
- Zika, M.; Erb, K.H. The global loss of net primary production resulting from human-induced soil degradation in drylands. Ecol. Econ. 2009, 69, 310–318. [Google Scholar] [CrossRef]
- Thornton, P.K.; Jones, P.G.; Owiyo, T.; Kruska, R.L.; Herrero, M.; Orindi, V.; Bhadwal, S.; Kristjanson, P.; Notenbaert, A.; Bekele, N.; et al. Climate change and poverty in Africa: Mapping hotspots of vulnerability. Afr. J. Agric. Resour. Econ. 2008, 2, 24–44. [Google Scholar]
- Belton, P.S.; Taylor, J.R. Sorghum and millets: Protein sources for Africa. Trends Food Sci. Technol. 2004, 15, 94–98. [Google Scholar] [CrossRef]
- Rai, K.N.; Murty, D.S.; Andrews, D.J.; Bramel-Cox, P.J. Genetic enhancement of pearl millet and sorghum for the semi-arid tropics of Asia and Africa. Genome 1999, 42, 617–628. [Google Scholar] [CrossRef]
- Awala, S.K.; Hove, K.; Wanga, M.A.; Valombola, J.S.; Mwandemele, O.D. Rainfall trend and variability in semi-arid northern Namibia: Implications for smallholder agricultural production. Welwitschia Int. J. Agric. Sci. 2019, 1, 1–25. [Google Scholar]
- Suzuki, T.; Ohta, T.; Izumi, Y.; Kanyomeka, L.; Mwandemele, O.D.; Sakagami, J.I.; Yamane, K.; Iijima, M. Role of canopy coverage in water use efficiency of lowland rice in early growth period in semi-arid region. Plant Prod. Sci. 2013, 16, 12–23. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, T.; Ohta, T.; Hiyama, T.; Izumi, Y.; Mwandemele, O.; Iijima, M. Effects of the introduction of rice on evapotranspiration in seasonal wetlands. Hydrol. Processes 2014, 28, 4780–4794. [Google Scholar] [CrossRef]
- Zegada-Lizarazu, W.; Kanyomeka, L.; Izumi, Y.; Iijima, M. Water acquisition from the seasonal wetland and root development of pearl millet intercropped with cowpea in a flooding ecosystem of northern Namibia. Plant Prod. Sci. 2007, 10, 20–27. [Google Scholar] [CrossRef]
- Watanabe, Y.; Itanna, F.; Fujioka, Y.; Petrus, A.; Iijima, M. Characteristics of soils under seasonally flooded wetlands (oshanas) in north-central Namibia. Afr. J. Agric. Res. 2017, 11, 4786–4795. [Google Scholar]
- Hirooka, Y.; Masuda, T.; Watanabe, Y.; Izumi, Y.; Inai, H.; Awala, S.; Iijima, M. Agronomic and socio-economic assessment of the introduction of a rice-based mixed cropping system to the Cuvelai seasonal wetland system in northern Namibia. Agrekon 2021, 60, 145–156. [Google Scholar] [CrossRef]
- Iijima, M.; Awala, S.K.; Nanhapo, P.I.; Wanga, A.; Mwandemele, O.D. Development of flood-and drought-adaptive cropping systems in Namibia. In Crop Production under Stressful Conditions; Springer: Singapore, 2018; pp. 49–70. [Google Scholar]
- Hirooka, Y.; Shoji, K.; Watanabe, Y.; Izumi, Y.; Awala, S.K.; Iijima, M. Ridge formation with strip tillage alleviates excess moisture stress for drought-tolerant crops. Soil Till. Res. 2019, 195, 104429. [Google Scholar] [CrossRef]
- Coulibaly, A.; Woumou, K.; Aune, L.B. Sustainable intensification of sorghum and pearl millet production by seed priming, seed treatment and fertilizer microdosing under different rainfall regimes in Mali. Agronomy 2019, 9, 664. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, Y.; Itanna, F.; Izumi, Y.; Awala, S.K.; Fujioka, Y.; Tsuchiya, K.; Iijima, M. Cattle manure and intercropping effects on soil properties and growth and yield of pearl millet and cowpea in Namibia. J. Crop Improv. 2019, 33, 395–409. [Google Scholar] [CrossRef]
- Nezomba, H.; Mtambanengwe, F.; Rurinda, J.; Mapfumo, P. Integrated soil fertility management sequences for reducing climate risk in smallholder crop production systems in southern Africa. Field Crop. Res. 2018, 224, 102–114. [Google Scholar] [CrossRef]
- Zhang, Y.; Han, H.; Zhang, D.; Li, J.; Gong, X.; Feng, B.; Xue, Z.; Yang, P. Effects of ridging and mulching combined practices on proso millet growth and yield in semi-arid regions of China. Field Crop. Res. 2017, 213, 65–74. [Google Scholar] [CrossRef]
- Silungwe, F.R.; Graef, F.; Bellingrath-Kimura, S.D.; Tumbo, S.D.; Kahimba, F.C.; Lana, M.A. The management strategies of pearl millet farmers to cope with seasonal rainfall variability in a semi-arid agroclimate. Agronomy 2019, 9, 400. [Google Scholar] [CrossRef] [Green Version]
- Mason, S.C.; Maman, N.; Pale, S. Pearl millet production practices in semi-arid West Africa: A review. Exp. Agric. 2015, 51, 501–521. [Google Scholar] [CrossRef]
- Sharma, B.; Kumari, R.; Kumari, P.; Meena, S.K.; Singh, R.M. Effect of planting pattern on productivity and water use efficiency of pearl millet in the Indian Semi-Arid Region. J. Ind. Soc. Soil Sci. 2015, 63, 259–265. [Google Scholar] [CrossRef]
- Silungwe, F.R.; Graef, F.; Bellingrath-Kimura, S.D.; Tumbo, S.D.; Kahimba, F.C.; Lana, M.A. Analysis of intra and interseasonal rainfall variability and its effects on pearl millet yield in a semiarid agroclimate: Significance of scattered fields and tied ridges. Water 2019, 11, 578. [Google Scholar] [CrossRef] [Green Version]
- Traore, K.; Sidibe, D.K.; Coulibaly, H.; Bayala, J. Optimizing yield of improved varieties of millet and sorghum under highly variable rainfall conditions using contour ridges in Cinzana, Mali. Agric. Food Secur. 2017, 6, 11. [Google Scholar] [CrossRef] [Green Version]
- Subbarao, G.V.; Renard, C.; Payne, W.A.; Bationo, A. Long-term effects of tillage, phosphorus fertilization and crop rotation on pearl millet–cowpea productivity in the West-African Sahel. Exp. Agric. 2000, 36, 243–264. [Google Scholar] [CrossRef] [Green Version]
- Awala, S.K.; Yamane, K.; Izumi, Y.; Mwandemele, O.D.; Iijima, M. Alleviative effects of mixed-cropping with rice on the growth inhibition of pearl millet caused by flooding at reproductive stage. J. Crop Improv. 2019, 33, 42–52. [Google Scholar] [CrossRef]
- Kotani, A.; Hiyama, T.; Ohta, T.; Hanamura, M.; Kambatuku, J.R.; Awala, S.K.; Iijima, M. Impact of rice cultivation on evapotranspiration in small seasonal wetlands of north-central Namibia. Hydrol. Res. Lett. 2017, 11, 134–140. [Google Scholar] [CrossRef] [Green Version]
- Awala, S.K.; Yamane, K.; Izumi, Y.; Fujioka, Y.; Watanabe, Y.; Wada, K.C.; Kawato, Y.; Mwandemele, O.D.; Iijima, M. Field evaluation of mixed-seedlings with rice to alleviate flood stress for semi-arid cereals. Eur. J. Agron. 2016, 80, 105–112. [Google Scholar] [CrossRef] [Green Version]
- Crescimanno, G.; Iovino, M.; Provenzano, G. Influence of salinity and sodicity on soil structural and hydraulic characteristics. Soil Sci. Soc. Am. J. 1995, 59, 1701–1708. [Google Scholar] [CrossRef]
- Cortas, N.K.; Wakid, N.W. Determination of inorganic nitrate in serum and urine by a kinetic cadmium-reduction method. Clinic. Chem. 1990, 36, 1440–1443. [Google Scholar] [CrossRef]
- Watanabe, F.S.; Olsen, S.R. Test of an ascorbic acid method for determining phosphorus in water and NaHCO3 extracts from soil. Soil Sci. Soc. Am. J. 1965, 29, 677–678. [Google Scholar] [CrossRef]
- Jackson, B.L.J. A modified sodium tetraphenylboron method for the routine determination of reserve-potassium status of soil. N. Z. J. Exp. Agric. 1985, 13, 253–262. [Google Scholar] [CrossRef]
- Kalembasa, S.J.; Jenkinson, D.S. A comparative study of titrimetric and gravimetric methods for the determination of organic carbon in soil. J. Sci. Food Agric. 1973, 24, 1085–1090. [Google Scholar] [CrossRef]
- Shikangalah, R.N. The 2019 drought in Namibia: An overview. Change 2020, 16, 617–628. [Google Scholar]
- Van Oosterom, E.J.; Carberry, P.S.; Hargreaves, J.N.G.; O’leary, G.J. Simulating growth, development, and yield of tillering pearl millet: II. Simulation of canopy development. Field Crop. Res. 2001, 72, 67–91. [Google Scholar] [CrossRef] [Green Version]
- Gholamhoseini, M.; Ghalavand, A.; Khodaei-Joghan, A.; Dolatabadian, A.; Zakikhani, H.; Farmanbar, E. Zeolite-amended cattle manure effects on sunflower yield, seed quality, water use efficiency and nutrient leaching. Soil Till. Res. 2013, 126, 193–202. [Google Scholar] [CrossRef]
- Lal, R. Carbon management in agricultural soils. Mitig. Adapt. Strateg. Glob. Chang. 2007, 12, 303–322. [Google Scholar] [CrossRef]
- Duan, Z.H.; Xiao, H.L.; Dong, Z.B.; He, X.D.; Wang, G. Estimate of total CO2 output from desertified sandy land in China. Atmos. Environ. 2001, 35, 5915–5921. [Google Scholar]
- Khan, A.U.; Iqbal, M.; Islam, K.R. Islam. Dairy manure and tillage effects on soil fertility and corn yields. Bioresour. Technol. 2007, 98, 1972–1979. [Google Scholar] [CrossRef] [PubMed]
- Batchelor, W.D.; Basso, B.; Paz, J.O. Examples of strategies to analyze spatial and temporal yield variability using crop models. Eur. J. Agron. 2002, 18, 141–158. [Google Scholar] [CrossRef]
- Varella, H.; Guérif, M.; Buis, S. Global sensitivity analysis measures the quality of parameter estimation: The case of soil parameters and a crop model. Environ. Model. Softw. 2010, 25, 310–319. [Google Scholar] [CrossRef]
- Hirooka, Y.; Homma, K.; Shiraiwa, T.; Kuwada, M. Parameterization of leaf growth in rice (Oryza sativa L.) utilizing a plant canopy analyzer. Field Crop. Res. 2016, 186, 116–123. [Google Scholar] [CrossRef]
- Masvaya, E.N.; Nyamangara, J.; Giller, K.E.; Descheemaeker, K. Risk management options in maize cropping systems in semi-arid areas of Southern Africa. Field Crop. Res. 2018, 228, 110–121. [Google Scholar] [CrossRef] [Green Version]
Temperature (°C) | Solar Radiation | Precipitation | |||
---|---|---|---|---|---|
Mean | Min | Max | (MJ m−2 d−1) | (mm) | |
2017 | |||||
January | 24.2 | 18.6 | 30.4 | 21.3 | 36.8 |
February | 24.5 | 19.7 | 30.2 | 19.8 | 76.6 |
March | 24.0 | 19.9 | 29.3 | 20.7 | 118.2 |
April | 22.7 | 16.9 | 29.7 | 20.4 | 22.9 |
Ave. | 23.8 | 18.9 | 29.8 | 20.4 | total 254.5 |
2018 | |||||
January | 27.0 | 20.3 | 34.0 | 26.1 | 0.8 |
February | 26.0 | 19.4 | 33.1 | 25.2 | 16.4 |
March | 23.9 | 19.1 | 30.2 | 20.5 | 63.6 |
April | 23.1 | 18.2 | 29.2 | 18.3 | 108.8 |
Ave. | 25.0 | 19.3 | 31.7 | 22.6 | total 189.6 |
(a) 2017 | ||||||||
Grain Yield | Total Dry Weight | Harvest Index | Panicle Density | Grain Density | 1000-Grain Weight | Plant Height | Panicle Length | |
(t ha−1) | (t ha−1) | (m−2) | (102) | (cm) | (cm) | |||
Tillage | ||||||||
Cf | 0.74 | 2.90 | 0.26 | 5.8 | 0.73 | 17.7 | 179 | 19.9 |
R/F | 0.71 | 2.73 | 0.26 | 6.7 | 0.60 | 15.8 | 177 | 19.4 |
LSD (p < 0.05) | 0.26 | 0.87 | 0.06 | 1.7 | 0.11 | 1.3 | 11 | 1.1 |
Fertilizer | ||||||||
None | 0.49 | 2.27 | 0.22 | 4.7 | 0.64 | 15.7 | 168 | 19.2 |
Manure | 0.67 | 2.68 | 0.25 | 6.6 | 0.59 | 17.2 | 179 | 19.9 |
Mineral | 1.02 | 3.49 | 0.29 | 7.5 | 0.77 | 17.3 | 187 | 19.7 |
LSD (p < 0.05) | 0.16 | 0.88 | 0.06 | 1.6 | 0.13 | 1.9 | 9 | 1.4 |
ANOVA | p value | |||||||
Tillage | 0.601 | 0.572 | 0.824 | 0.078 | 0.033 * | 0.005 ** | 0.471 | 0.356 |
Fertilizer | 0.000 *** | 0.016 * | 0.057 | 0.002 ** | 0.038 * | 0.084 | 0.004 ** | 0.515 |
Tillage*Fertilizer | 0.225 | 0.043 * | 0.105 | 0.085 | 0.430 | 0.920 | 0.387 | 0.280 |
(b) 2018 | ||||||||
Grain Yield | Total Dry Weight | Harvest Index | Panicle Density | Grain Density | 1000-Grain Weight | Plant Height | Panicle Length | |
(t ha−1) | (t ha−1) | (m−2) | (102) | (cm) | (cm) | |||
Tillage | ||||||||
Cf | 2.79 | 7.01 | 0.40 | 12.0 | 1.36 | 17.1 | 170 | 19.9 |
R/F | 3.13 | 6.64 | 0.47 | 12.1 | 1.63 | 16.6 | 169 | 19.4 |
LSD (p < 0.05) | 0.30 | 1.84 | 0.07 | 1.8 | 0.37 | 1.0 | 8 | 1.1 |
Fertilizer | ; | |||||||
None | 2.00 | 4.70 | 0.43 | 10.3 | 1.31 | 16.4 | 171 | 24.8 |
Manure | 3.97 | 8.42 | 0.47 | 12.5 | 1.84 | 17.6 | 171 | 24.2 |
Mineral | 2.90 | 7.36 | 0.39 | 13.3 | 1.33 | 16.5 | 167 | 25.7 |
LSD (p < 0.05) | 0.39 | 1.05 | 0.10 | 1.5 | 0.38 | 1.0 | 10 | 1.1 |
ANOVA | p value | |||||||
Tillage | 0.011 * | 0.408 | 0.093 | 0.892 | 0.078 | 0.292 | 0.784 | 0.207 |
Fertilizer | 0.000 *** | 0.000 *** | 0.309 | 0.005 ** | 0.016 * | 0.049 * | 0.725 | 0.033 * |
Tillage*Fertilizer | 0.112 | 0.804 | 0.655 | 0.306 | 0.560 | 0.577 | 0.642 | 0.342 |
Yield | Total Dry Weight | Harvest Index | Panicle Density | Grain Density | 1000-Grain Weight | Plant Height | Panicle Length | |
---|---|---|---|---|---|---|---|---|
Yield | 0.78 ** | 0.39 | 0.74 ** | 0.50 * | 0.33 | 0.63 ** | 0.12 | |
Total dry weight | 0.78 ** | −0.21 | 0.77 ** | 0.22 | 0.15 | 0.45 | −0.25 | |
Harvest index | 0.38 | −0.26 | 0.05 | 0.49 * | 0.38 | 0.45 | 0.52 * | |
Panicle density | 0.71 ** | 0.67 ** | −0.32 | −0.16 | 0.13 | 0.44 | −0.04 | |
Grain density | 0.43 | 0.28 | 0.67 ** | −0.25 | 0.15 | 0.28 | 0.09 | |
1000-grain weight | 0.42 | 0.56 * | −0.19 | 0.48 * | −0.12 | 0.58 * | 0.49 * | |
Plant height | 0.01 | 0.08 | −0.09 | 0.31 | −0.36 | 0.37 | 0.30 | |
Panicle length | 0.31 | 0.40 | −0.05 | 0.14 | 0.02 | 0.58 * | 0.66 ** |
N | P | K | OC | EC | Sand | Clay | Silt | pH | |
---|---|---|---|---|---|---|---|---|---|
(mg kg−1) | (mg kg−1) | (mg kg−1) | (g kg−1) | (ds m−1) | (%) | (%) | (%) | ||
Tillage | |||||||||
Cf | 8.3 | 25.1 | 41.1 | 2.70 | 0.70 | 64.5 | 25.1 | 8.9 | 6.9 |
F | 7.9 | 24.5 | 49.6 | 2.56 | 0.70 | 67.0 | 23.0 | 10.3 | 7.1 |
R | 10 | 21.9 | 33.8 | 2.81 | 0.71 | 67.4 | 25.5 | 5.9 | 6.6 |
LSD (p < 0.05) | 1.4 | 18.1 | 12.4 | 0.35 | 0.04 | 6.9 | 7.2 | 4.5 | 0.8 |
Fertilizer | |||||||||
None | 9.4 | 14.2 | 48.2 | 2.44 | 0.68 | 64.4 | 26.2 | 7.8 | 6.7 |
Manure | 9.1 | 13.5 | 44.1 | 2.96 | 0.71 | 64.4 | 25.4 | 8.9 | 7.4 |
Mineral | 7.7 | 43.8 | 32.1 | 2.67 | 0.71 | 70.0 | 21.9 | 8.5 | 6.5 |
LSD (p < 0.05) | 1.5 | 10.4 | 12.2 | 0.59 | 0.04 | 6.5 | 7.0 | 4.9 | 0.7 |
ANOVA | p value | ||||||||
Tillage | 0.000 *** | 0.592 | 0.012 * | 0.245 | 0.858 | 0.639 | 0.767 | 0.223 | 0.274 |
Fertilizer | 0.002 ** | 0.000 *** | 0.011 * | 0.082 | 0.222 | 0.183 | 0.477 | 0.901 | 0.023 * |
Tillage*Fertilizer | 0.000 *** | 0.001 *** | 0.001 ** | 0.312 | 0.749 | 0.641 | 0.823 | 0.938 | 0.603 |
(a) | |||||
3-Mar | 10-Mar | 17-Mar | 24-Mar | 31-Mar | |
Tillage | |||||
Cf | 14.9 | 11.4 | 20.3 | 14.8 | 18.3 |
F | 19.2 | 17.4 | 25.9 | 21.1 | 24.7 |
R | 13.3 | 9.9 | 18.5 | 14.0 | 17.9 |
LSD (p < 0.05) | 3.1 | 3.4 | 3.7 | 3.7 | 2.7 |
Fertilizer | |||||
None | 15.4 | 12.8 | 21.6 | 17.3 | 20.6 |
Manure | 15.1 | 12.2 | 20.3 | 15.7 | 19.4 |
Mineral | 16.9 | 13.6 | 22.8 | 17.0 | 21.0 |
LSD (p < 0.05) | 4.0 | 4.7 | 4.8 | 4.9 | 4.1 |
ANOVA | p value | ||||
Tillage | 0.001 *** | 0.001 ** | 0.000 *** | 0.001 *** | 0.000 *** |
Fertilizer | 0.383 | 0.693 | 0.211 | 0.61 | 0.496 |
Tillage*Fertilizer | 0.138 | 0.236 | 0.117 | 0.209 | 0.986 |
(b) | |||||
3-Mar | 10-Mar | 17-Mar | 24-Mar | 31-Mar | |
Tillage | |||||
Cf | 31.0 | 29.9 | 34.7 | 31.9 | 33.6 |
F | 34.5 | 33.6 | 35.6 | 35.0 | 34.3 |
R | 25.3 | 23.1 | 29.1 | 26.1 | 28.6 |
LSD (p < 0.05) | 7.6 | 9.6 | 7.9 | 8.1 | 4.6 |
Fertilizer | |||||
None | 29.8 | 28.4 | 32.9 | 31.7 | 31.7 |
Manure | 29.2 | 26.5 | 30.9 | 28.1 | 32.2 |
Mineral | 32.0 | 31.7 | 35.7 | 33.2 | 32.7 |
LSD (p < 0.05) | 8.4 | 10.4 | 8.2 | 8.6 | 5.2 |
ANOVA | p value | ||||
Tillage | 0.016 * | 0.035 * | 0.136 | 0.018 * | 0.065 |
Fertilizer | 0.59 | 0.379 | 0.364 | 0.215 | 0.926 |
Tillage*Fertilizer | 0.132 | 0.112 | 0.488 | 0.062 | 0.666 |
17-MAR (71 DAS) | 7-APR (92 DAS) | |
---|---|---|
Tillage | ||
CT | 60.9 | 48.5 |
F | 62.8 | 48.5 |
R | 63.3 | 50.5 |
LSD (p < 0.05) | 2.3 | 4.1 |
Fertilizer | ||
None | 62.4 | 45.9 |
Manure | 66.2 | 57.1 |
Mineral | 58.6 | 44.5 |
LSD (p < 0.05) | 2.8 | 5.6 |
ANOVA | p value | |
Tillage | 0.048 * | 0.433 |
Fertilizer | 0.000 *** | 0.000 *** |
Tillage*Fertilizer | 0.273 | 0.002 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hirooka, Y.; Awala, S.K.; Hove, K.; Nanhapo, P.I.; Iijima, M. Effects of Cultivation Management on Pearl Millet Yield and Growth Differed with Rainfall Conditions in a Seasonal Wetland of Sub-Saharan Africa. Agronomy 2021, 11, 1767. https://doi.org/10.3390/agronomy11091767
Hirooka Y, Awala SK, Hove K, Nanhapo PI, Iijima M. Effects of Cultivation Management on Pearl Millet Yield and Growth Differed with Rainfall Conditions in a Seasonal Wetland of Sub-Saharan Africa. Agronomy. 2021; 11(9):1767. https://doi.org/10.3390/agronomy11091767
Chicago/Turabian StyleHirooka, Yoshihiro, Simon K. Awala, Kudakwashe Hove, Pamwenafye I. Nanhapo, and Morio Iijima. 2021. "Effects of Cultivation Management on Pearl Millet Yield and Growth Differed with Rainfall Conditions in a Seasonal Wetland of Sub-Saharan Africa" Agronomy 11, no. 9: 1767. https://doi.org/10.3390/agronomy11091767
APA StyleHirooka, Y., Awala, S. K., Hove, K., Nanhapo, P. I., & Iijima, M. (2021). Effects of Cultivation Management on Pearl Millet Yield and Growth Differed with Rainfall Conditions in a Seasonal Wetland of Sub-Saharan Africa. Agronomy, 11(9), 1767. https://doi.org/10.3390/agronomy11091767