Cactus Pear (Opuntia ficus-indica) Productivity, Proximal Composition and Soil Parameters as Affected by Planting Time and Agronomic Management in a Semi-Arid Region of India
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design and Treatments Description
2.3. Agronomical Observations
2.4. Laboratory Analysis for Proximate Values
2.5. Soil Analysis
2.6. Data Handling and Analysis
3. Results and Discussion
3.1. Agronomic Management Practices and Cactus Pear Growth
3.2. Cactus Pear Nutrient and Crude Protein Content
3.3. Change in Soil Properties and Nutrient Status
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UNDDD. United Nation Decade for Desert and the Fight against Desertification. 2009. Available online: https://www.un.org/en/events/desertification_decade/whynow.shtml (accessed on 12 July 2021).
- Huang, J.; Ji, M.; Xie, Y.; Wang, S.; He, Y.; Ran, J. Global semi-arid climate change over last 60 years. Clim. Dyn. 2016, 46, 1131–1150. [Google Scholar] [CrossRef] [Green Version]
- Gallart, F.; Solé, A.; Puigdefábregas, J.; Lázaro, R. Badland Systems in the Mediterranean; John Wiley & Sons, Ltd.: Chichester, UK, 2002; pp. 299–326. [Google Scholar]
- Lal, R. Carbon sequestration in dryland ecosystems. Environ. Manag. 2004, 33, 528–544. [Google Scholar] [CrossRef]
- Huang, J.; Minnis, P.; Yan, H.; Yi, Y.; Chen, B.; Zhang, L.; Ayers, J. Dust aerosol effect on semi-arid climate over Northwest China detected from A-Train satellite measurements. Atmos. Chem. Phys. 2010, 10, 6863–6872. [Google Scholar] [CrossRef] [Green Version]
- Li, A.; Wu, J.; Huang, J. Distinguishing between human-induced and climate-driven vegetation changes: A critical application of RESTREND in inner Mongolia. Landsc. Ecol. 2012, 27, 969–982. [Google Scholar] [CrossRef]
- Liu, H.; Yin, Y.; Tian, Y.; Ren, J.; Wang, H. Climatic and anthropo-genic controls of topsoil features in the semi-arid East Asian steppe. Geophys. Res. Lett. 2008, 35, L04401. [Google Scholar] [CrossRef]
- Schiere, H.; Louis Baumhardt, R.; Van Keulen, H.; Whitbread, A.M.; Bruinsma, A.S.; Goodchild, T.; Gregorini, P.; Slingerland, M.; Hartwell, B. Mixed crop-livestock systems in semiarid regions. Dryland Agric. 2006, 23, 227–291. [Google Scholar]
- IGFRI. Vision 2050; ICAR-Indian Grassland and Fodder Research Institute: Jhansi, India, 2015. [Google Scholar]
- Gupta, G.; Palsaniya, D.R.; Upadhyay, D.; Manjanagouda, S.S.; Suman, M.; Chand, K.; Patel, R.K.; Sharma, R.K. Fodder technology intervention for round the year feed security to livestock. Vigyan Varta 2020, 1, 1–5. [Google Scholar]
- Guevara, J.C.; Felker, P.; Balzarini, M.G.; Páez, S.A.; Estevez, O.R.; Paez, M.N.; Antúnez, J.C. Productivity, cold hardiness and forage quality of spineless progeny of the Opuntia ficus-indica 1281 x O. lindheimerii 1250 cross in Mendoza plain. Argentina. J. Prof. Assoc. Cactus Dev. 2011, 13, 48–62. [Google Scholar]
- Guevara, J.C.; Suassuna, P.; Felker, P. Opuntia forage production systems: Status and prospects for rangeland applications. Range. Ecol. Manag. 2009, 62, 428–434. [Google Scholar] [CrossRef]
- Dev, R.; Dayal, D.; Shamshudeen, M.; Yadav, O.P. Thornless cactus: An unconventional, valuable fodder resource in arid region of India. Indian Farming. 2018, 68, 101–103. [Google Scholar]
- Pessoa, D.V.; de Andrade, A.P.; Magalhães, A.L.; Teodoro, A.L.; dos Santos, D.C.; de Araújo, G.G.; de Medeiros, A.N.; do Nascimento, D.B.; de Lima Valença, R.; Cardoso, D.B. Forage cactus of the genus Opuntia in different with the phenological phase: Nutritional value. J. Arid Environ. 2020, 181, 104243. [Google Scholar] [CrossRef]
- Mayer, J.A.; Cushman, J.C. Nutritional and mineral content of prickly pear cactus: A highly water-use efficient forage, fodder and food species. J. Agron. Crop. Sci. 2019, 205, 625–634. [Google Scholar] [CrossRef]
- Donato, P.E.; Donato, S.L.; Silva, J.A.; Pires, A.J.; Junior, S. Extraction/exportation of macronutrients by cladodes of ‘Gigante’ cactus pear under different spacings and organic fertilization. Rev. Bras. Eng. Agric. Ambient. 2017, 21, 238–243. [Google Scholar] [CrossRef] [Green Version]
- Donato, P.E.; Pires, A.J.; Donato, S.L.; Bonomo, P.; Silva, J.A.; Aquino, A.A. Morfometria e rendimento da palma forrageira ‘Gigante’ sob diferentes espaçamentos e doses de adubação orgânica. Rev. Bras. Cienc. Agrar. 2014, 9, 151–158. [Google Scholar] [CrossRef] [Green Version]
- Lopes, M.N.; Cândido, M.J.D.; Silveira, W.M.; Maranhão, T.D.; Soares, I.; Pompeu, R.C.F.F.; Silva, R.G.D.; Carneiro, M.S.D.S. Accumulation and export of nutrients in cactus pear cladodes (Opuntia ficus-indica) under different managements in the Brazilian Semiarid. Rev. Bras. Zootec. 2018, 47, e20170077. [Google Scholar] [CrossRef] [Green Version]
- Ramos, J.P.D.F.; Santos, E.M.; Cruz, G.R.B.; Pinho, R.M.A.; de Freitas, P.M.D. Effects of harvest management and manure levels on cactus pear productivity. Rev. Caatinga 2015, 28, 135–142. [Google Scholar]
- Govindasamy, P.; Liu, R.; Provin, T.; Rajan, N.; Hons, F.; Mowrer, J.; Bagavathiannan, M. Soil carbon improvement under long-term (36 years) no-till sorghum production in a sub-tropical environment. Soil Use Manag. 2021, 37, 37–48. [Google Scholar] [CrossRef]
- Govindasamy, P.; Mowrer, J.; Rajan, N.; Provin, T.; Hons, F.; Bagavathiannan, M. Influence of long-term (36 years) tillage practices on soil physical properties in a grain sorghum experiment in southeast Texas. Arch. Agron. Soil Sci. 2021, 67, 234–244. [Google Scholar] [CrossRef]
- Adeyemo, A.J.; Agele, S.O. Effects of tillage and manure application on soil physicochemical properties and yield of maize grown on a degraded intensively tilled alfisol in southwestern Nigeria. J. Soil Sci. Environ. Manag. 2010, 1, 205–216. [Google Scholar]
- Tadesse, T.; Dechassa, N.; Bayu, W.; Gebeyehu, S. Effects of farmyard manure and inorganic fertilizer application on soil physico-chemical properties and nutrient balance in rain-fed lowland rice ecosystem. Am. J. Plant. Sci. 2013, 4, 309–316. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Li, X.; Yan, H.; Ullah, I.; Zuo, Z.; Li, L.; Yu, J. Effects of irrigation quantity and biochar on soil physical properties, growth characteristics, yield and quality of greenhouse tomato. Agric. Water Manag. 2020, 241, 106263. [Google Scholar] [CrossRef]
- Obasi, N.A.; Eze, E.; Anyanwu, D.I.; Okorie, U.C. Effects of organic manures on the physicochemical properties of crude oil polluted soils. Afr. J. Biochem. Res. 2013, 7, 67–75. [Google Scholar]
- Singh, R.S.; Singh, V. Growth and development influenced by size, age, and planting methods of cladodes in cactus pear (Opuntia ficus-indica (L.) Mill.). J. PACD 2003, 10, 47–54. [Google Scholar]
- Soni, M.L.; Yadava, N.D.; Kumar, S.; Roy, M.M. Evaluation for growth and yield performance of prickly pear cactus (Opuntia ficus-indica (L.) Mill) accessions in hot arid region of Bikaner, India. Range Manag. Agrofor. 2015, 36, 19–25. [Google Scholar]
- Gupta, P.K. Methods in environmental analysis water, soil and air. Agrobios 2000, 5, 1–400. [Google Scholar]
- Jackson, M.L. Soil Chemical Analysis, 2nd ed.; Advanced Course: Madison, WI, USA, 1973. [Google Scholar]
- Walkley, A.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Subbiah, B.V.; Asija, G.L. A rapid method for estimation of available N in soil. Curr. Sci. 1956, 25, 259–260. [Google Scholar]
- Olsen, S.R.; Cole, C.V.; Watanabe, F.S.; Dean, L.A. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; United States Department of Agriculture: Washington, DC, USA, 1954.
- Hanway, J.J.; Heidel, H. Soil analysis methods as used in Iowa state college soil testing laboratory. Iowa Agric. 1952, 57, 1–31. [Google Scholar]
- Tandon, H.L.S. Methods of Analysis of Soils, Plants, Waters, Fertilizers and Organic Manures; Fertilizer Development and Consultation Organization: New Delhi, India, 2013. [Google Scholar]
- Jenkinson, D.S.; Powlson, D.S. The effects of biocidal treatments on metabolism in soil—V: A method for measuring soil biomass. Soil Boil. Biochem. 1976, 8, 209–213. [Google Scholar] [CrossRef]
- Silva, R.R.; Sampaio, E.V.S.B. Palmas forrageiras Opuntia fícus-indica e Nopalea cochenillifera: Sistemas de produção e usos (Opuntia fícus-indica and Nopalea cochenillifera cacti: Production systems and uses). Rev. Geama. 2015, 1, 151–161. [Google Scholar]
- Souza, L.S.B.; de Moura, M.S.B.; da Silva, T.G.F.; Soares, J.M.; do Carmo, J.F.A.; Brandão, E.O. Indicadoresclimáticos Para o Zoneamentoagrícola da Palmaforrageira (Opuntia sp.). 2008. Available online: https://www.alice.cnptia.embrapa.br/bitstream/doc/156105/1/OPB2185.pdf (accessed on 12 July 2021).
- Dubeux, J.C.B., Jr.; Araújo Filho, J.T.; Santos, M.V.F.; Lira, M.A.; Santos, D.C.; Pessoa, R.A.S. Adubação mineral no crescimento e composição mineral da palma forrageira—Clone IPA-20. Rev. Bras. Cienc. Agrar. 2010, 5, 129–135. [Google Scholar]
- Silva, J.A.; Bonomo, P.; Donato, S.L.R.; Pires, A.J.V.; Rosa, R.C.C.; Donato, P.E.R. Composição mineral em cladódios de palma forrageira sob diferentes espaçamentos e adubações química. Rev. Bras. Cienc. Agrar. 2012, 7, 866–875. [Google Scholar] [CrossRef] [Green Version]
- Arba, M.; Falisse, A.; Choukr-Allah, R.; Sindic, M. Effect of irrigation at critical stages on the phenology of flowering and fruiting of the cactus Opuntia spp. Braz. J. Biol. 2018, 78, 653–660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freire, J.D.L.; Santos, M.V.F.; Dubeux, J.C.B., Jr.; BezerraNeto, E.G.Í.D.I.O.; Lira, M.D.A.; Cunha, M.V.; Santos, D.C.; Amorim, S.O.; Mello, A.C.L. Growth of cactus pear cv. Miúda under different salinity levels and irrigation frequencies. An. Acad. Bras. Cienc. 2018, 90, 3893–3900. [Google Scholar] [CrossRef] [PubMed]
- Silva, N.G.D.M.E.; Santos, M.V.F.D.; Dubeux, J.C.B., Jr.; Cunha, M.V.D.; Lira, M.D.A.; Ferraz, I. Effects of planting density and organic fertilization doses on productive efficiency of cactus pear. Rev. Caatinga 2016, 29, 976–983. [Google Scholar] [CrossRef]
- Graybill, J.S.; Cox, W.J.; Otis, D.J. Yield and quality of forage maize as influenced by hybrid, planting date, and plant density. Agron. J. 1991, 83, 559–564. [Google Scholar] [CrossRef]
- Rao, S.C.; Northup, B.K. Planting date affects production and quality of grass pea forage. Crop. Sci. 2008, 48, 1629–1635. [Google Scholar] [CrossRef]
- Hassan, S.; Inglese, P.; Gristina, L.; Liguori, G.; Novara, A.; Louhaichi, M.; Sortino, G. Root growth and soil carbon turnover in Opuntia ficus-indica as affected by soil volume availability. Eur. J. Agron. 2019, 105, 104–110. [Google Scholar] [CrossRef]
- Novara, A.; Pereira, P.; Santoro, A.; Kuzyakov, Y.; La Mantia, T. Effect of cactus pear cultivation after Mediterranean maquis on soil carbon stock, δ13C spatial distribution and root turnover. Catena 2014, 118, 84–90. [Google Scholar] [CrossRef]
- Dijkstra, F.A.; Carrillo, Y.; Pendall, E.; Morgan, J.A. Rhizosphere priming: A nutrient perspective. Front. Microbiol. 2013, 4, 216. [Google Scholar] [CrossRef] [Green Version]
- Murphy, C.J.; Baggs, E.; Morley, N.; Muro, D.; Paterson, E. Rhizosphere priming can promote mobilisation of N-rich compounds from soil organic matter. Soil Biol. Biochem. 2015, 81, 236–243. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, S. Response of labile soil organic matter to changes in forest vegetation in subtropical regions. Appl. Soil Ecol. 2011, 47, 210–216. [Google Scholar] [CrossRef]
- Chen, C.; Liu, W.; Jiang, X.; Wu, J. Effects of rubber-based agroforestry systems on soil aggregation and associated soil organic carbon: Implications for land use. Geoderma 2017, 299, 13–24. [Google Scholar] [CrossRef]
- Padalia, K.; Bargali, S.S.; Bargali, K.; Khulbe, K. Microbial biomass carbon and nitrogen in relation to cropping systems in Central Himalaya, India. Curr. Sci. 2018, 115, 1741–1749. [Google Scholar] [CrossRef]
- Lepcha, N.T.; Devi, N.B. Effect of land use, season, and soil depth on soil microbial biomass carbon of Eastern Himalayas. Ecol. Process. 2020, 9, 65. [Google Scholar] [CrossRef]
- Rayne, N.; Aula, L. Livestock Manure and the Impacts on Soil Health: A Review. Soil Syst. 2020, 4, 64. [Google Scholar] [CrossRef]
- O’Hallorans, J.M.; Munoz, M.A.; Colbery, O. Effect of chicken manure on chemical properties of a Mollisol and tomato production. J. Agric. Univ. Puerto Rico 1993, 77, 181–191. [Google Scholar] [CrossRef]
- Li, F.; Yuan, C.; Lao, D.; Yao, B.; Hu, X.; You, Y.; Wang, L.; Sun, S.; Liang, X. Drip irrigation with organic fertilizer application improved soil quality and fruit yield. Agron. J. 2020, 112, 608–623. [Google Scholar] [CrossRef]
- Abdelhafez, A.A.; Abbas, M.H.H.; Attia, T.M.S.; Bably, W.E.; Mahrous, S.M. Mineralization of organic carbon and nitrogen in semi-arid soils under organic and inorganic fertilization. Environ. Technol. Innov. 2018, 9, 243–253. [Google Scholar] [CrossRef]
- Wu, Y.P.; Li, Y.F.; Zheng, C.Y.; Zhang, Y.F.; Sun, Z.J. Organic amendment application influence soil organism abundance in saline alkali soil. Eur. J. Soil Biol. 2013, 54, 32–40. [Google Scholar] [CrossRef]
Month | Maximum Temperature (°C) | Minimum Temperature (°C) | Rainfall (mm) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2016 | 2017 | 2018 | 2019 | 2020 | 2016 | 2017 | 2018 | 2019 | 2020 | 2016 | 2017 | 2018 | 2019 | 2020 | |
January | 24.7 | 23.4 | 24.4 | 22.8 | 22.4 | 10.1 | 9 | 8.9 | 8.2 | 9.3 | 12 | 8 | 3 | 4 | 12 |
February | 28.5 | 28.3 | 28.8 | 26.2 | 26.5 | 13.1 | 12.6 | 13.1 | 10.7 | 12.5 | 1 | 2 | 2 | 11 | 17 |
March | 34.1 | 33.3 | 34.9 | 31.5 | 32.8 | 18.5 | 17.3 | 18.4 | 15.5 | 17.3 | 5 | 6 | 1 | 10 | 8 |
April | 39.4 | 39.5 | 38.7 | 38.6 | 38.8 | 24.1 | 23.9 | 23.3 | 22.9 | 22.9 | 0 | 0 | 2 | 10 | 6 |
May | 42.3 | 41.9 | 42.7 | 42 | 41.4 | 29 | 28.8 | 29.2 | 28.3 | 27.4 | 4 | 7 | 2 | 2 | 8 |
June | 40.2 | 37.8 | 40.1 | 41.2 | 38.7 | 29.9 | 28.7 | 29.6 | 30.4 | 28.8 | 63 | 72 | 70 | 36 | 97 |
July | 32.8 | 33.1 | 33.3 | 34.3 | 32.5 | 25.9 | 25.8 | 26.2 | 26.9 | 26.2 | 414 | 214 | 270 | 330 | 290 |
August | 31.3 | 32.1 | 31.5 | 31.8 | 31 | 24.9 | 25.5 | 25.1 | 25.2 | 25.2 | 442 | 186 | 250 | 337 | 261 |
September | 32.7 | 33.1 | 31.8 | 32.3 | 31.6 | 25 | 25.2 | 23.9 | 24.1 | 24.2 | 157 | 165 | 239 | 375 | 138 |
October | 33.0 | 34.8 | 34 | 33 | 32.3 | 20.2 | 21.2 | 20.1 | 19.4 | 20.2 | 21 | 6 | 5 | 32 | 19 |
November | 30.1 | 29.6 | 30.3 | 30.8 | 28.7 | 13.1 | 13 | 13.7 | 14.2 | 15.5 | 1 | 17 | 1 | 2 | 6 |
December | 26.4 | 25.8 | 24.2 | 22.7 | 22.4 | 10 | 9.9 | 7.9 | 6.5 | 10.9 | 1 | 7 | 2 | 18 | 9 |
Mean | 32.9 | 32.7 | 32.8 | 32.2 | 31.7 | 20.3 | 20.0 | 19.9 | 19.3 | 20.0 | 1121 | ||||
Total | 690 | 847 | 1167 | 871 |
Variables | N | df | Plant Height | Plant Width | Cladode Number | Cladode Length | Cladode Width | Cladode Weight | Biomass Yield |
---|---|---|---|---|---|---|---|---|---|
p-value | |||||||||
Planting time | 4 | 3 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Agronomic management | 2 | 1 | 0.15 | 0.03 | 0.16 | 0.03 | 0.001 | 0.06 | 0.14 |
Time of planting × Agronomic management | 3 × 1 | 3 | 0.98 | 0.99 | 0.79 | 0.64 | 0.68 | 0.72 | 0.83 |
Planting Time | Plant Height (cm) | Plant Width (cm) | Cladode Number (plant−1) | Cladode Weight (g) |
---|---|---|---|---|
February | 86.0 (±3.3 *) c ** | 79.1 (±8.5) c | 14.2 (±2.5) c | 652.2 (±24.2) c |
April | 76.8 (±2.8) d | 66.0 (±6.0) d | 10.2 (±1.3) c | 585.1 (±19.2) d |
July | 130.1 (±6.4) a | 126.4 (±7.5) a | 32.5 (±4.4) a | 914.0 (±16.3) a |
October | 111.1 (±5.2) b | 110.7 (±8.5) b | 22.1 (±2.8) b | 796.0 (±16.0) b |
p-value | 0.001 | 0.001 | <0.0001 | <0.0001 |
Agronomic Management | Plant Width (cm) | Cladode Length (cm) | Cladode Width (cm) |
---|---|---|---|
Irrigation and fertilizer | 100.1 (±7.4 *) a ** | 33.5 (±0.7) a | 15.4 (±0.4) a |
No irrigation and fertilizer | 91.0 (±7.1) b | 32.1 (±0.8) b | 14.0 (±0.3) b |
p-value | 0.03 | 0.03 | 0.001 |
Agronomic Management | Planting Time | Total P (g kg−1) | Total K (g kg−1) | Zn (mg kg−1) | Mn (mg kg−1) | Fe (mg kg−1) | Crude Protein (g kg−1) |
---|---|---|---|---|---|---|---|
No irrigation and fertilizer | February | 1.4 (±0.09 *) g | 23.7 (±0.3) f | 73.56 (±2.2) e | 197.17 (±4.0) | 295.5 (±4.6) e | 44.2 (±1.3) g ** |
April | 1.6 (±0.09) e | 24.6 (±0.3) d | 74.87 (±2.1) d | 202.50 (±4.0) | 290.1 (±5.6) f | 46.2 (±1.4) e | |
July | 1.6 (±0.09) f | 24.2 (±0.3) e | 71.80 (±2.1) f | 205.50 (±4.2) | 299.1 (±4.6) d | 45 (±1.4) f | |
October | 1.7 (±0. 11) e | 25 (±0.3) d | 67.36 (±2.3) g | 194.17 (±4.0) | 292.1 (±4.4) f | 46.9 (±1.1) d | |
Irrigation and fertilizer | February | 2 (±0.09) d | 29.7 (±0.2) a | 90.78 (±2.0) a | 245.50 (±4.6) | 338.1 (±7.4) b | 65.2 (±1.2) a |
April | 2.6 (±0.06) a | 29.1 (±0.1) b | 89.51 (±1.6) b | 243.50 (±4.6) | 299.1 (±6.2) c | 63.3 (±1.4) b | |
July | 2.2 (±0.09) c | 28.4 (±0.3) c | 88.94 (±2.2) b | 236.50 (±3.6) | 350.1 (±4.4) a | 63.5 (±1.4) b | |
October | 2.4 (±0007) b | 29.4 (±0.1) b | 74.87 (±2.3) c | 239.83 (±3.8) | 341.1 (±4.4) b | 61.5 (±1.2) c | |
ANOVA | df | p-value | |||||
Planting time | 3 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.001 |
Agronomic management | 1 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Planting time × Agronomic management | 3 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Treatment | pH | EC (dS m−1) | BD (Mg m−3) | PD (Mg m−3) | SOC (mg kg−1) | SMBC (mg kg−1) | |
---|---|---|---|---|---|---|---|
Agronomic management | |||||||
No irrigation and fertilizer | 6.81 (±0.01 *) b | 0.11 (±0.02) a ** | 1.35 (±0.02) b | 2.30 (±0.02) a | 5 (±0.12) b | 807 (±3.06) b | |
Irrigation and fertilizer | 6.55 (±0.03) a | 0.09 (±0.01) b | 1.40 (±0.01) a | 2.33 (±0.01) a | 5.9 (±0.13) a | 867 (±7.95) a | |
Year | |||||||
2020 | 6.70 (±0.06) a | 0.11 (±0.02) a | 1.38 (±0.01) a | 2.33 (±0.02) a | 5.5 (±0.21) a | 839 (±14.51) a | |
2018 | 6.66 (±0.05) a | 0.10 (±0.02) a | 1.36 (±0.01) b | 2.30 (±0.01) a | 5.4 (±0.12) b | 834 (±14.51) a | |
ANOVA | df | p-value | |||||
Agronomic management | 1 | 0.0004 | 0.0002 | <0.0001 | 0.11 | <0.0001 | 0.0002 |
Year | 1 | 0.30 | 0.23 | <0.0001 | 0.15 | 0.002 | 0.52 |
Agronomic management × Year | 1 | 0.37 | 1.00 | 1.00 | 0.82 | 1.00 | 1.00 |
Treatment | N (kg ha−1) | P (kg ha−1) | K (kg ha−1) | Fe (mg kg−1) | Zn (mg kg−1) | Cu (mg kg−1) | Mn (mg kg−1) | |
---|---|---|---|---|---|---|---|---|
Agronomic management | ||||||||
No irrigation and fertilizer | 234 (±4.57 *) b | 19 (±0.68) b ** | 327 (±10.93) b | 16 (±1.42) b | 1.2 (±0.02) b | 1.3 (±0.02) b | 17.9 (±1.33) b | |
Irrigation and fertilizer | 250 (±4.30) a | 20 (±0.73) a | 363 (±7.31) a | 21 (±0.99) a | 1.5 (±0.03) a | 1.6 (±0.01) a | 22.4 (±1.18) a | |
Year | ||||||||
2020 | 243 (±3.05) a | 20 (±0.78) a | 346 (±12.28) a | 19 (±1.72) a | 1.4 (±0.08) a | 1.5 (±0.07) a | 20.2 (±1.61) a | |
2018 | 241 (±5.75) b | 19 (±0.48) b | 344 (±10.28) a | 18 (±1.72) a | 1.4 (±0.06) a | 1.5 (±0.07) a | 20.1 (±1.61) a | |
ANOVA | df | p-value | ||||||
Agronomic management | 1 | <0.0001 | <0.0001 | 0.001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Year | 1 | 0.0006 | 0.001 | 0.73 | 0.63 | 0.05 | 0.11 | 0.78 |
Agronomic management × Year | 1 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, S.; Louhaichi, M.; Dana Ram, P.; Tirumala, K.K.; Ahmad, S.; Rai, A.K.; Sarker, A.; Hassan, S.; Liguori, G.; Probir Kumar, G.; et al. Cactus Pear (Opuntia ficus-indica) Productivity, Proximal Composition and Soil Parameters as Affected by Planting Time and Agronomic Management in a Semi-Arid Region of India. Agronomy 2021, 11, 1647. https://doi.org/10.3390/agronomy11081647
Kumar S, Louhaichi M, Dana Ram P, Tirumala KK, Ahmad S, Rai AK, Sarker A, Hassan S, Liguori G, Probir Kumar G, et al. Cactus Pear (Opuntia ficus-indica) Productivity, Proximal Composition and Soil Parameters as Affected by Planting Time and Agronomic Management in a Semi-Arid Region of India. Agronomy. 2021; 11(8):1647. https://doi.org/10.3390/agronomy11081647
Chicago/Turabian StyleKumar, Sunil, Mounir Louhaichi, Palsaniya Dana Ram, Kiran Kumar Tirumala, Shahid Ahmad, Arvind Kumar Rai, Ashutosh Sarker, Sawsan Hassan, Giorgia Liguori, Ghosh Probir Kumar, and et al. 2021. "Cactus Pear (Opuntia ficus-indica) Productivity, Proximal Composition and Soil Parameters as Affected by Planting Time and Agronomic Management in a Semi-Arid Region of India" Agronomy 11, no. 8: 1647. https://doi.org/10.3390/agronomy11081647