Crop Production and Phosphorus Legacy with Long-Term Phosphorus- and Nitrogen-Based Swine Manure Applications under Corn-Soybean Rotation
Abstract
1. Introduction
2. Materials and Methods
2.1. Field Site and Preparation
2.2. Manure Sampling and Determination of Chemical Composition
2.3. Experimental Design
2.4. Yield Determination and Soil and Plant Sampling for P Analyses
2.5. Calculation of Phosphorus Source Availability Coefficients
2.6. Statistical Analysis
3. Results and Discussion
3.1. Crop Yield
3.2. Grain P Removal and Above-Ground-P Uptake
3.3. Postharvest STP Content in the Soil Profile
3.4. Manure Phosphorus Source Availability Coefficients
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bakhsh, A.; Kanwar, R.S.; Baker, J.L.; Sawyer, J.; Malarino, A. Annual swine manure applications to soybean under corn-soybean rotation. Trans. ASABE 2009, 52, 751–757. [Google Scholar] [CrossRef][Green Version]
- Reijnders, L. Phosphorus resources, their depletion and conservation, a review. Resour. Conserv. Recy. 2014, 93, 32–49. [Google Scholar] [CrossRef]
- Chowdhury, R.B.; Moore, G.A.; Weatherley, A.J.; Arora, M. Key sustainability challenges for the global phosphorus resource, their implications for global food security, and options for mitigation. J. Clean. Prod. 2017, 140, 945–963. [Google Scholar] [CrossRef]
- Hamilton, H.A.; Brod, E.; Hanserud, O.; Müller, D.B.; Brattebø, H.; Haraldsen, T.K. Recycling potential of secondary phosphorus resources as assessed byintegrating substance flow analysis and plant-availability. Sci. Total Environ. 2017, 575, 1546–1555. [Google Scholar] [CrossRef] [PubMed]
- Ajiboye, B.; Akinremi, O.O.; Hu, Y.; Flaten, D.N. Phosphorus Speciation of Sequential Extracts of Organic Amendments Using Nuclear Magnetic Resonance and X-ray Absorption Near-Edge Structure Spectroscopies. J. Environ. Qual. 2007, 36, 1563–1576. [Google Scholar] [CrossRef]
- Campbell, K.L.; Edwards, D.R. Phosphorus and water quality impacts. In Agricultural Nonpoint Source Pollution: Watershed Management and Hydrology; Ritter, W.F., Shirmohammadi, A., Eds.; Lewis Publishers: Boca Raton, FL, USA, 2001; pp. 91–109. [Google Scholar]
- Sharpley, A.N.; McDowell, R.W.; Kleinman, P.J.A. Amounts, forms, and solubility of phosphorus in soils receiving manure. Soil. Sci. Soc. Am. J. 2004, 68, 2048–2049. [Google Scholar] [CrossRef]
- Wang, Y.T.; Zhang, T.Q.; Hu, Q.C.; Tan, C.S. Phosphorus source coefficient determination for quantifying phosphorus loss risk of various animal manures. Geoderma 2016, 278, 23–31. [Google Scholar] [CrossRef]
- Canada-Ontario Lake Erie action plan. Available online: https://www.canada.ca/en/environment-climate-change/services/great-lakes-protection/action-plan-reduce-phosphorus-lake-erie.html (accessed on 3 March 2020).
- Michalak, A.M.; Anderson, E.J.; Beletsky, D.; Boland, S.; Bosch, N.S.; Bridgeman, T.B.; Chaffin, J.D.; Cho, K.; Confesor, R.; Daloglu, I.; et al. Record-setting algal bloom in Lake Erie caused by agricultural and meteorological trends consistent with expected future conditions. Proc. Natl. Acad. Sci. USA 2013, 110, 6448–6452. [Google Scholar] [CrossRef]
- Scavia, D.; Allan, J.D.; Arend, K.K.; Bartell, S.; Beletsky, D.; Bosch, N.S.; Brand, S.B.; Briland, R.D.; Daloglu, I.; Depinto, J.V.; et al. Assessing and addressing the re-eutrophication of Lake Erie: Central basin hypoxia. J. Great Lakes Res. 2014, 40, 226–246. [Google Scholar] [CrossRef]
- Scavia, D.; Kalcic, M.; Muenich, R.L.; Aloysius, N.; Boles, C.; Confesor, R.; Depinto, J.; Gildow, M.; Martin, J.; Read, J.; et al. Informing Lake Erie Agriculture Nutrient Management via Scenario Evaluation; University of Michigan: Ann Arbor, MI, USA, 2016; pp. 1–84. Available online: http://graham.umich.edu/water (accessed on 4 March 2020).
- Ohio’s Concentrated Animal Feeding Facilities: A Review of Statewide Manure Management and Phosphorus Applications in the Western Lake Erie Watershed. Available online: https://theoec.org/wp-content/uploads/2019/09/Manure-Report.pdf (accessed on 1 March 2020).
- Eghball, B.; Power, J.F. Phosphorus and nitrogen-based manure and compost application: Corn production and soil phosphorus. Soil. Sci. Soc. Am. J. 1999, 63, 895–901. [Google Scholar] [CrossRef]
- Eghball, B.; Gilley, J.E. Phosphorus and N in runoff following beef cattle manure or compost application. J. Environ. Qual. 1999, 28, 1201–1210. [Google Scholar] [CrossRef]
- Maguire, R.O.; Muilins, G.L.; Brosius, M. Evaluating long-term nitrogen- versus phosphorus-based nutrient management of poultry litter. J. Environ. Qual. 2008, 37, 1810–1816. [Google Scholar] [CrossRef]
- Sadeghpour, A.; Ketterings, Q.M.; Godwin, G.S.; Czymmek, K.J. Nitrogen- vs. Phosphorus-Based Manure and Compost Management of Corn. Agron. J. 2016, 108, 185–195. [Google Scholar] [CrossRef]
- ASAE D384. 2 MAR2005 (R2014). Manure Production and Characteristics. In ASABE STANDARDS, ASABE: American Society of Agricultural and Biologycal Engineers; ASABE: St. Joseph, MI, USA, 2014; pp. 29–30. [Google Scholar]
- Chastain, J.P.; Camberato, J.J.; Albrecht, J.E.; Adams, J. Swine Manure Production and Nutrient Content. In Chapter 3a in Confined Animal Manure Managers Certification Program Manual B Swine, Version 3; 2003; Available online: https://www.clemson.edu/extension/camm/manuals/swine/sch3a_03.pdf (accessed on 4 March 2020).
- Ye, W.; Lorimor, J.C.; Hurburgh, C.; Zhang, H.; Hattey, J. Application of near-infrared reflectance spectroscopy for determination of nutrient contents in liquid and solid manures. T. ASAE 2005, 48, 1911–1918. [Google Scholar] [CrossRef]
- Karlen, D.L.; Cambardella, C.A.; Kanwar, R.S. Challenges of managing liquid swine manure. Appl. Eng. Agric. 2004, 20, 693–699. [Google Scholar] [CrossRef]
- Güsewell, S. N: P ratios in terrestrial plants: Variation and functional significance. New Phytol. 2004, 164, 243–266. [Google Scholar] [CrossRef]
- Gilbertson, C.B.; Norstadt, F.A.; Mathers, A.C.; Holt, R.F.; Shuyler, L.R.; Barnett, A.P.; McCalla, T.M.; Onstad, C.A.; Young, R.A.; Christensen, L.A.; et al. Animal Waste Utilization on Cropland and Pastureland: A Manual for Evaluating Agronomic and Environmental Effects; US Governmental Printing Office: Washington, DC, USA, 1979.
- Olson, B.M.; McKenzie, R.H.; Larney, F.J.; Bremer, E. Nitrogen- and phosphorus-based applications of cattle manure and compost for irrigated cereal silage. Can. J. Soil Sci. 2010, 90, 619–635. [Google Scholar] [CrossRef]
- Eghball, B. Phosphorus and nitrogen-based beef cattle manure or compost application to corn. Neb. Beef Cattle Rep. 2001, Agricultural Research Division, University of Nebraska Cooperative Extension, and Institute of Agricultural and Natural Resources; University of Nebraska-Lincoln: Lincoln, NE, USA, 2001; pp. 89–91. [Google Scholar]
- Qian, P.; Schoenau, J.J.; Wu, T.; Mooleki, P. Phosphorus amounts and distribution in a Saskatchewan soil after five years of swine and cattle manure application. Can. J. Soil. Sci. 2004, 84, 275–281. [Google Scholar] [CrossRef]
- MnKeni, P.N.S.; MacKenzie, A.F. Retention of ortho- and polyphosphates in some Quebec soils as affected by added organic residues and calcium carbonate. Can. J. Soil. Sci. 1985, 65, 575–585. [Google Scholar] [CrossRef]
- Dormaar, J.F.; Chang, C. Effect of 20 annual applications of excess feedlot manure on labile soil phosphorus. Can. J. Soil. Sci. 1995, 75, 507–512. [Google Scholar] [CrossRef]
- Eghball, B.; Wienhold, B.J.; Woodbury, B.L.; Eigenberg, R.A. Plant availability of phosphorus in swine slurry and cattle feedlot manure. Agron. J. 2005, 97, 542–548. [Google Scholar] [CrossRef]
- Carter, M.R.; Campbell, A.J. Influence of tillage and liquid swine manure on productivity of a soybean-barley rotation and some properties of a fine sandy loam in Prince Edward Island. Can. J. Soil. Sci. 2006, 86, 741–748. [Google Scholar] [CrossRef]
- Chantigny, M.H.; Angers, D.A.; Bélanger, G.; Rochette, P.; Hamel, N.E.; Bittman, S.; Buckley, K.; Massé, D.; Gasser, M.O. Yield and nutrient export of grain corn fertilized with raw and treated liquid swine manure. Agron. J. 2008, 100, 1303–1309. [Google Scholar] [CrossRef]
- Laboski, C.A.M.; Lamb, J.A. Changes in soil test phosphorus concentration after application of manure or fertilizer. Soil. Sci. Soc. Am. J. 2003, 67, 544–554. [Google Scholar] [CrossRef]
- Karimi, R.; Akinremi, W.; Flaten, D. Nitrogen- or phosphorus-based pig manure application rates affect soil test phosphorus and phosphorus loss risk. Nutr. Cycl. Agroecosyst. 2018, 111, 217–230. [Google Scholar] [CrossRef]
- Ceretta, C.A.; Girotto, E.; Lourenzi, C.R.; Trentin, G.; Vieira, R.C.B.; Brunetto, G. Nutrient transfer by runoff under no tillage in a soil treated with successive applications of pig slurry. Agr. Ecosyst. Environ. 2010, 139, 689–699. [Google Scholar] [CrossRef]
- Li, L.; Liang, X.Q.; Ye, Y.S.; Zhao, Y.; Zhang, Y.X.; Jin, Y.; Yuan, J.L.; Chen, Y.X. Effects of repeated swine manure applications on legacy phosphorus and phosphomonoesterase activities in a paddy soil. Biol. Fertil. Soils 2015, 51, 167–181. [Google Scholar] [CrossRef]
- Nash, D.M.; Halliwell, D.J. Fertilizers and phosphorus loss from productive grazing system. Aust. J. Soil. Res. 1999, 37, 403–429. [Google Scholar] [CrossRef]
- De Conti, L.; Ceretta, C.A.; Ferreira, P.A.A.; Lorensini, F.; Lourenzi, C.R.; Vidal, R.F.; Tassinari, A.; Brunetto, G. Effects of pig slurry application and crops on phosphorus content in soil and the chemical species in solution. R. Bras. Ci. Solo. 2015, 39, 774–787. [Google Scholar] [CrossRef]
- Sinaj, S.; Stamm, C.; Toor, G.S.; Condron, L.M.; Hendry, T.; Di, H.J.; Cameron, K.C.; Frossard, E. Phosphorus exchangeability and leaching losses from two grassland soils. J. Environ. Qual. 2002, 31, 319–330. [Google Scholar] [CrossRef] [PubMed]
- Andersson, H.; Bergström, L.; Djodjic, F.; Ulén, B.; Kirchmann, H. Topsoil and subsoil properties influence phosphorus leaching from four agricultural soils. J. Environ. Qual. 2013, 42, 455–463. [Google Scholar] [CrossRef]
- Andersson, H.; Bergström, L.; Ulén, B.; Djodjic, F.; Kirchmann, H. The role of subsoil as a source or sink for phosphorus leaching. J. Environ. Qual. 2015, 44, 535–544. [Google Scholar] [CrossRef]
- Syers, J.K.; Johnston, A.E.; Curtin, D. Efficiency of soil and fertilizer phosphorus use. In FAO Fertilizer and Plant Nutrition Bulletin 18; FAO: Rome, Italy, 2008; pp. 27–45. [Google Scholar]
- Johnston, A.E.; Poulton, P.R.; Fixen, P.E.; Curtin, D. Phosphorus: Its efficient use in agriculture. Adv. Agron. 2014, 123, 177–228. [Google Scholar] [CrossRef]
- Johnston, A.E.; Syers, J.K. A New Approach to Assessing Phosphorus Use Efficiency in Agriculture. Better Crops 2009, 93, 14–16. [Google Scholar]
- Eghball, B.; Ginting, D.; Gilley, J.E. Residual effects of manure and compost applications on corn production and soil properties. Agron. J. 2004, 96, 442–447. [Google Scholar] [CrossRef][Green Version]
- Hedley, M.; McLaughlin, M.; Michael, J. Reactions of phosphate fertilizers and by-products in soils. In Phosphorus: Agriculture and the Environment; Sims, J.T., Sharpley, A.N., Eds.; American Society of Agronomy, Soil Science Society of America: Madison, WI, USA, 2005; pp. 181–252. [Google Scholar]
- Hao, X.J.; Zhang, T.Q.; Wang, Y.T.; Tan, C.S.; Qi, Z.M.; Welacky, T.; Hong, J.P. Soil Test Phosphorus and Phosphorus Availability of Swine Manures with Long-Term Application. Agron. J. 2018, 110, 1–8. [Google Scholar] [CrossRef]
- Hao, X.J.; Zhang, T.Q.; Tan, C.S.; Welacky, T.; Wang, Y.T.; Lawrence, D.; Hong, J.P. Crop yield and phosphorus uptake as affected by phosphorus-based swine manure application under long-term corn-soybean rotation. Nutr. Cycl. Agroecosyst. 2015, 103, 217–228. [Google Scholar] [CrossRef]
- USEPA. Method 258.1, 351.2, 365.4, Methods for the Chemical Analysis of Water and Wastes; EPA-600/4-79-020; USEPA: Washington, DC, USA, 1983.
- Ontario Ministry of Agriculture, Food, and Rural Affairs (OMAFRA). Agronomy Guide for Field Crops; Pub 811; Queen’s Printer for Ontario: Toronto, ON, Canada, 2002.
- Thomas, R.L.; Sheard, R.W.; Moyer, J.R. Comparison of conventional and automated procedures for nitrogen, phosphorus, and potassium analysis of plant material using a single digestion. Agron. J. 1967, 59, 240–243. [Google Scholar] [CrossRef]
- Murphy, J.; Riley, J.P. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 1962, 27, 31–36. [Google Scholar] [CrossRef]
- Sims, J.T. Soil test phosphorus: Olsen, P. In Methods of Phosphorus Analysis for Soils, Sediments, Residuals, and Waters Southern Cooperative Series Bulletin no. 396; North Carolina State University: Raleigh, NC, USA, 2000; pp. 20–21. [Google Scholar]
- Ribey, M.A.; O’Halloran, I.P. Consequences of Ontario P index recommendations for reduced manure and fertilizer phosphorus applications on corn yields and soil phosphorus. Can. J. Soil. Sci. 2016, 96, 191–198. [Google Scholar] [CrossRef]
- Celestina, C.; Wood, J.L.; Manson, J.B.; Wang, X.; Sale, P.; Tang, C.; Franks, A. Microbial communities in top- and subsoil of repacked soil columns respond differently to amendments but their diversity is negatively correlated with plant productivity. Sci. Rep. 2019, 9, 8890. [Google Scholar] [CrossRef]
- Miller, J.J.; Beasley, B.W.; Yanke, L.J.; Larney, F.J.; McAllister, T.A.; Olson, B.M.; Selinger, L.B.; Chanasyk, D.S.; Hasselback, P. Bedding and Seasonal Effects on Chemical and Bacterial Properties of Feedlot Cattle Manure. J. Environ. Qual. 2003, 32, 1887–1894. [Google Scholar] [CrossRef] [PubMed]
- Calderón, F.J.; Mccarty, G.W.; Reeves III, J.B. Analysis of manure and soil nitrogen mineralization during incubation. Biology & Fertility of Soils. Biol. Fertil. Soils 2005, 41, 328–336. [Google Scholar] [CrossRef]
- Wilhelm, W.W.; Wortmann, C.S. Tillage and Rotation Interactions for Corn and Soybean Grain Yield as Affected by Precipitation and Air Temperature. Agron. J. 2004, 96, 425–432. [Google Scholar] [CrossRef]
- Hu, Q.; Buyanovsky, G. Climate Effects on Corn Yield in Missouri. J. Appl. Meteorol. 2003, 42, 1626–1635. [Google Scholar] [CrossRef]
- Hollinger, S.E.; Hoeft, R.G. Influence of weather on year-to-year yield response of corn to ammonia fertilization. Agron.J. 1986, 78, 818–823. [Google Scholar] [CrossRef]
- Yamoah, C.F.; Walters, D.T.; Shapiro, C.A.; Francis, C.A.; Hayes, M.J. Standardized precipitation index and nitrogen rate effects on crop yields and risk distribution in maize. Agric. Ecosyst. Environ. 2000, 80, 113–120. [Google Scholar] [CrossRef]
- Schmidt, J.P.; Schmidt, M.A.; Randall, G.W.; Lamb, J.A.; Orf, J.H.; Gollany, H.T. Swine manure application to nodulating and nonnodulating soybean. Agron. J. 2000, 92, 987–992. [Google Scholar] [CrossRef]
- Killorn, R. Effect of Frequency of Swine Manure Application on the Yield of Corn and Soybean. In 1998 Swine Research Report. AS-640; Iowa State Univ.: Ames, LA, USA, 1998; pp. 161–163. [Google Scholar]
- Mallarino, A.P.; Prater, J. Corn and soybean grain yield, phosphorus removal, and soil-test responses to long-term phosphorus fertilization strategies. In Proceedings of the 2007 Integrated Crop Management Conference, Iowa State University, Ames, IA, USA, 29 November 2007; pp. 241–254. Available online: https://lib.dr.iastate.edu/icm/2007/proceedings/35 (accessed on 1 August 2021).
- Römheld, V. Chapter 11: Diagnosis of Deficiency and Toxicity of Nutrients. In Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Marschner, P., Marschner, H., Eds.; Elsevier: Amsterdam, The Netherlands; Academic Press: Cambridge, MA, USA, 2011; pp. 301–312. [Google Scholar]
- Ritchie, S.W.; Hanway, J.J.; Benson, G.O. How a Corn Plant Develops? Iowa State University of Science and Technology/Cooperative Extention Service: Ames, IA, USA, 1986; pp. 19–20. [Google Scholar]
- Sims, J.T.; Simard, R.R.; Joern, B.C. Phosphorus loss in agricultural drainage: Historical perspective and current research. J. Environ. Qual. 1998, 27, 77–293. [Google Scholar] [CrossRef]
- Chang, C.; Whalen, J.K.; Hao, X. Increase in phosphorus concentration of a clay loam surface soil receiving repeated annual feedlot cattle manure applications in southern Alberta. Can. J. Soil Sci. 2005, 85, 589–597. [Google Scholar] [CrossRef]
- Wienhold, B.J. Changes in soil attributes following low phosphorus swine slurry application to no-tillage sorghum. Soil. Sci. Soc. Am. J. 2005, 69, 206–214. [Google Scholar] [CrossRef]
- Eghball, B.; Binford, G.D.; Baltensperger, D.D. Phosphorus movement and adsorption in a soil receiving long-term manure and fertilizer application. J. Environ. Qual. 1996, 25, 1339–1343. [Google Scholar] [CrossRef]
- Lamandé, M.; Hallaire, V.; Curmi, P.; Guénola Pérès, G.; Cluzeau, D. Changes of pore morphology, infiltration and earthworm community in a loamy soil under different agricultural managements. Catena 2003, 54, 637–649. [Google Scholar] [CrossRef]
- Wang, Y.T.; Zhang, T.Q.; Tan, C.S.; Qi, Z.M.; Welacky, T. Solid cattle manure less prone to phosphorus loss in tile drainage water. J. Environ. Qual. 2018, 47, 318–325. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.Q.; MacKenzie, A.F.; Liang, B.C.; Drury, I.F. Soil test phosphorus and phosphorus fractions with long-term phosphorus addition and depletion. Soil. Sci. Soc. Am. J. 2004, 68, 519–528. [Google Scholar] [CrossRef]
- Zhang, T.Q.; Mackenzie, A.F. Changes in soil phosphorous fractions under long-term corn (Zea mays L.) monoculture. Soil. Sci. Soc. Am. J. 1997, 61, 485–493. [Google Scholar] [CrossRef]
- Wang, Y.T.; O’Halloran, I.P.; Zhang, T.Q.; Hu, Q.C.; Tan, C.S. Phosphorus sorption parameters of soils and their relationships with soil test phosphorus. Soil. Sci. Soc. Am. J. 2015, 79, 672–680. [Google Scholar] [CrossRef]
- Wang, Y.T.; Zhang, T.Q.; O’Halloran, I.P.; Tan, C.S.; Hu, Q.C.; Reid, D.K. Soil tests as risk indicators for leaching of dissolved phosphorus from agricultural soils in Ontario. Soil. Sci. Soc. Am. J. 2012, 76, 220–229. [Google Scholar] [CrossRef]
- Leytem, A.B.; Sims, J.T.; Coale, F.J. Determination of Phosphorus Source Coefficients for Organic Phosphorus Sources: Laboratory Studies. J. Environ. Qual. 2004, 33, 380–388. [Google Scholar] [CrossRef] [PubMed]
- Sharpley, A.N.; Weld, J.L.; Beegle, D.B.; Kleinman, P.J.A.; Gburek, W.J.; Moore, P.A.; Mullins, G. Development of phosphorus indices for nutrient management planning strategies in the United States. J. Soil. Water Conserv. 2003, 58, 1983–1993. [Google Scholar] [CrossRef][Green Version]
- Smith, M.C.; White, J.W.; Coale, F.J. Evaluation of phosphorus source coefficients as predictors of runoff phosphorus concentrations. J. Environ. Qual. 2009, 38, 587–597. [Google Scholar] [CrossRef]
- Shober, A.L.; Sims, J.T. Integrating phosphorus source and soil properties into risk assessments for phosphorus loss. Soil. Sci. Soc. Am. J. 2007, 71, 551–560. [Google Scholar] [CrossRef]
- Zhang, T.Q.; Hu, Q.C.; Wang, Y.T.; Tan, C.S.; O’ Halloran, I.P.; Drury, C.F.; Reid, D.K.; Ball-Coelho, B.; Ma, B.L.; Welacky, T.W.; et al. Determination of Some Key Factors for Ontario Soil P Index and Effectiveness of Manure Application Practices for Mitigating Risk to Water Resource; Report NM8002 to the Nutrient Management Joint Research Program of Ontario Ministry of Agriculture; Food and Rural Affairs and Ontario Ministry of Environment: Toronto, ON, Canada, 2009. [Google Scholar]
- OMAFRA. Publication 611: Soil Fertility Handbook. 2018. Available online: http://www.omafra.gov.on.ca/english/crops/pub611/pub611.pdf (accessed on 20 October 2020).
- Watkins, M.; Castlehouse, H.; Hannah, M.; Nash, D.M. Nitrogen and phosphorus changes in soil and soil water after cultivation. Appl. Environ. Soil. Sci. 2012, 2012, 1–10. [Google Scholar] [CrossRef]
- Zvomuya, F.; Helgason, B.L.; Larney, F.J.; Janzen, H.H.; Akinremi, O.O.; Olson, B.M. Predicting Phosphorus Availability from Soil-Applied Composted and Non-Composted Cattle Feedlot Manure. J. Environ. Qual. 2006, 35, 928–937. [Google Scholar] [CrossRef] [PubMed]
Month | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 |
---|---|---|---|---|---|---|---|---|---|---|
March | 46.3 | 8.2 | 54.2 | 69 | 68.8 | 96.8 | 36.4 | 84.8 | 63.4 | 19.6 |
April | 47.5 | 62.2 | 57.4 | 66.8 | 36.8 | 114 | 61.2 | 128.4 | 30.4 | 106.4 |
May | 166 | 22.4 | 104.4 | 53 | 54.4 | 45 | 107.8 | 193 | 83.4 | 47.0 |
June | 79.4 | 22.8 | 66.8 | 58 | 186.2 | 85.6 | 113.2 | 62.6 | 16.8 | 162.8 |
July | 89.8 | 61.6 | 108.2 | 36 | 85.6 | 63.8 | 148.4 | 120 | 102.2 | 185.9 |
August | 124.2 | 51 | 76 | 111.2 | 12.8 | 90.6 | 9.2 | 104.8 | 109.6 | 36.6 |
September | 20 | 66.4 | 59.6 | 62.2 | 124.6 | 20.8 | 90.4 | 180.6 | 30.8 | 107.9 |
October | 56 | 8.6 | 108.2 | 58.6 | 28.8 | 75.8 | 63 | 112 | 58 | 64.0 |
November | 68.8 | 60.8 | 101.4 | 61.6 | 94.8 | 17.4 | 85.2 | 179 | 11.7 | 40.1 |
Total | 698 | 364 | 736.2 | 576.4 | 692.8 | 609.8 | 714.8 | 1165.2 | 506.3 | 521.7 |
Month | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | Average |
---|---|---|---|---|---|---|---|---|---|---|---|
March | 3.7 | 0.4 | 2.8 | 3.4 | 0.4 | 2.3 | 4.3 | 0.7 | 8.8 | 0.5 | 2.7 |
April | 8.8 | 9.5 | 10.2 | 8.4 | 9.6 | 8.1 | 11 | 6.7 | 8.2 | 7.1 | 8.8 |
May | 14.9 | 13.1 | 15.1 | 15.7 | 13 | 14.8 | 17.1 | 14.4 | 16.8 | 16 | 15.1 |
June | 19.2 | 22.9 | 20.1 | 21.4 | 20.7 | 19.4 | 21.9 | 20.3 | 21.5 | 20.2 | 20.8 |
July | 21.5 | 24.3 | 23.9 | 22 | 23.1 | 20.5 | 24.8 | 24.8 | 24.7 | 22.4 | 23.2 |
August | 20 | 23.8 | 22.4 | 22.9 | 21.7 | 21.6 | 23.6 | 22.2 | 22.2 | 21.4 | 22.2 |
September | 19.5 | 19.2 | 17.1 | 20.3 | 19 | 18.5 | 18.4 | 17.9 | 17.7 | 18.6 | 18.6 |
October | 12.7 | 12.9 | 10.2 | 15 | 11.1 | 10.1 | 12.3 | 11.8 | 11.6 | 13.5 | 12.1 |
November | 7.9 | 6.4 | 6 | 5 | 4.3 | 7.5 | 6.1 | 7.3 | 4.4 | 3.3 | 5.8 |
Factor | Corn | Soybean | ||||
---|---|---|---|---|---|---|
Grain Yield | Grain P Removal | Above-Ground-P Uptake | Grain Yield | Grain P Removal | Above-Ground-P Uptake | |
Treat § (T) | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Year (Y) | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.002 |
T × Y | 0.012 | 0.038 | 0.105 | 0.105 | 0.258 | 0.398 |
Corn | Soybean | |||
---|---|---|---|---|
Factor | Above-Ground-P Uptake, kg ha−1 | Factor | Above-Ground-P Uptake, kg ha−1 | |
Treatment | CK | 13.2 ± 2.2 c | CK | 11.8 ± 1.8 c |
CFP | 19.8 ± 1.0 b | CFP | 18.2 ± 0.8 b | |
LMP | 20.7 ± 0.1 b | LMP | 19.4 ± 0.6 b | |
LMN | 19.3 ± 1.1 b | LMN | 18.5 ± 0.4 b | |
SMP | 20.1 ± 1.1 b | SMP | 19.8 ± 0.9 b | |
SMN | 25.5 ± 0.8 a | SMN | 24.1 ± 2.7 a | |
Year | 2004 | 20.6 ± 1.4 a | 2005 | 18.1 ± 1.5 ab |
2006 | 19.6 ± 1.1 a | 2007 | 16.6 ± 0.8 b | |
2008 | 16.4 ± 1.1b | 2009 | 17.9 ± 0.9 ab | |
2010 | 20.1 ± 1.0 a | 2011 | 19.7 ± 0.8 ab | |
2012 | 22.1 ± 1.0 a | 2013 | 20.8 ± 1.5 a |
Liquid Manure | Solid Manure | |||
---|---|---|---|---|
Cropping year | 0–15 cm | 0–30 cm | 0–15 cm | 0–30 cm |
2013 | 1.06 (0.01) † | 1.06 (0.01) | 1.07 (0.03) | 1.08 (0.05) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Zhang, T.; Wang, Y.; Tan, C.; Zhang, L.; He, X.; Welacky, T.; Che, X.; Tang, X.; Wang, Z. Crop Production and Phosphorus Legacy with Long-Term Phosphorus- and Nitrogen-Based Swine Manure Applications under Corn-Soybean Rotation. Agronomy 2021, 11, 1548. https://doi.org/10.3390/agronomy11081548
Zhang Y, Zhang T, Wang Y, Tan C, Zhang L, He X, Welacky T, Che X, Tang X, Wang Z. Crop Production and Phosphorus Legacy with Long-Term Phosphorus- and Nitrogen-Based Swine Manure Applications under Corn-Soybean Rotation. Agronomy. 2021; 11(8):1548. https://doi.org/10.3390/agronomy11081548
Chicago/Turabian StyleZhang, Yan, Tiequan Zhang, Yutao Wang, Chinsheng Tan, Lei Zhang, Xinhua He, Tom Welacky, Xiulan Che, Xiaodong Tang, and Zhengyin Wang. 2021. "Crop Production and Phosphorus Legacy with Long-Term Phosphorus- and Nitrogen-Based Swine Manure Applications under Corn-Soybean Rotation" Agronomy 11, no. 8: 1548. https://doi.org/10.3390/agronomy11081548
APA StyleZhang, Y., Zhang, T., Wang, Y., Tan, C., Zhang, L., He, X., Welacky, T., Che, X., Tang, X., & Wang, Z. (2021). Crop Production and Phosphorus Legacy with Long-Term Phosphorus- and Nitrogen-Based Swine Manure Applications under Corn-Soybean Rotation. Agronomy, 11(8), 1548. https://doi.org/10.3390/agronomy11081548