Effects of Nitrogen Application Rate on Rhizosphere Microbial Diversity in Oilseed Rape (Brassica napus L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Test Design
2.3. Sampling
2.4. DNA Extraction
2.5. PCR Amplification
2.6. High Throughput Sequencing
2.7. Microbial Community Analysis
2.8. Statistical Analyses
3. Results
3.1. OTUs Number Analysis of Bacteria and Fungi
3.2. Alpha Diversity Index Analysis
3.3. Analysis of Microbial Community Structure
3.3.1. Isolation and Analysis of the Total Samples by the Colonization Structure of the Hydrophylum
3.3.2. The Whole Sample Belongs to the Breakdown Structure Analysis of Hydrophylla
3.4. Beta Diversity Analysis between Samples
4. Discussion
4.1. The Growth and Development Stages of Oilseedrape Determine the Composition of Rhizosphere Microbial Community
4.2. The Rhizosphere Microbiome Was Selectively Enriched by Different Nitrogen Application Rates
4.3. Correlation between Nitrogen Uptake and Utilization Characteristics and Microbial Community in Growth Stage of Oilseed Rape
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ren, T.; Li, H.; Lu, J.; Bu, R.; Li, X.; Cong, R.; Lu, M. Crop rotation-dependent yield responses to fertilization in winter oilseed rape (Brassica napus L.). Crop J. 2015, 3, 396–404. [Google Scholar] [CrossRef] [Green Version]
- Weiser, C.; Fuß, R.; Kage, H.; Flessa, H. Do farmers in Germany exploit the potential yield and nitrogen benefits from preceding oilseed rape in winter wheat cultivation? Arch. Agron. Soil Sci. 2018, 64, 25–37. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, B.; Ren, T.; Li, X.; Cong, R.; Zhang, M.; Yousaf, M.; Lu, J. Establishment Method Affects Oilseed Rape Yield and the Response to Nitrogen Fertilizer. Agron. J. 2014, 106, 131–142. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, T.; Li, X.-K.; Ren, T.; Cong, R.-H.; Lu, J.-W. Nutrient deficiency limits population development, yield formation, and nutrient uptake of direct sown winter oilseed rape. J. Integr. Agric. 2015, 14, 670–680. [Google Scholar] [CrossRef] [Green Version]
- Miller, A.J.; Fan, X.; Shen, Q.; Smith, S.J. Amino acids and nitrate as signals for the regulation of nitrogen acquisition. J. Exp. Bot. 2007, 59, 111–119. [Google Scholar] [CrossRef]
- Näsholm, T.; Kielland, K.; Ganeteg, U. Uptake of organic nitrogen by plants. New Phytol. 2009, 182, 31–48. [Google Scholar] [CrossRef]
- Brennan, R.F.; Bolland, M.D.A. Comparing the Nitrogen and Potassium Requirements of Canola and Wheat for Yield and Grain Quality. J. Plant Nutr. 2009, 32, 2008–2026. [Google Scholar] [CrossRef]
- Rathke, G.-W.; Behrens, T.; Diepenbrock, W. Integrated nitrogen management strategies to improve seed yield, oil content and nitrogen efficiency of winter oilseed rape (Brassica napus L.): A review. Agric. Ecosyst. Environ. 2006, 117, 80–108. [Google Scholar] [CrossRef]
- Gu, X.-B.; Li, Y.-N.; Du, Y.-D. Effects of ridge-furrow film mulching and nitrogen fertilization on growth, seed yield and water productivity of winter oilseed rape (Brassica napus L.) in Northwestern China. Agric. Water Manag. 2018, 200, 60–70. [Google Scholar] [CrossRef]
- Ozer, H. Sowing date and nitrogen rate effects on growth, yield and yield components of two summer rapeseed cultivars. Eur. J. Agron. 2003, 19, 453–463. [Google Scholar] [CrossRef]
- Berry, P.; Spink, J.; Foulkes, J.; White, P. The physiological basis of genotypic differences in nitrogen use efficiency in oilseed rape (Brassica napus L.). Field Crops Res. 2010, 119, 365–373. [Google Scholar] [CrossRef]
- Malagoli, P.; Laine, P.; Rossato, L.; Ourry, A. Dynamics of Nitrogen Uptake and Mobilization in Field-grown Winter Oilseed Rape (Brassica napus) From Stem Extension to Harvest. II. An 15N-labelling-based Simulation Model of N Partitioning between Vegetative and Reproductive Tissues. Ann. Bot. 2005, 95, 1187–1198. [Google Scholar] [CrossRef] [Green Version]
- Diepenbrock, W. Yield analysis of winter oilseed rape (Brassica napus L.): A review. Field Crops Res. 2000, 67, 35–49. [Google Scholar] [CrossRef]
- Labra, M.H.; Struik, P.C.; Evers, J.B.; Calderini, D.F. Plasticity of seed weight compensates reductions in seed number of oilseed rape in response to shading at flowering. Eur. J. Agron. 2017, 84, 113–124. [Google Scholar] [CrossRef]
- Ulas, A.; Behrens, T.; Wiesler, F.; Horst, W.J.; Erley, G.S.A. Defoliation affects seed yield but not N uptake and growth rate in two oilseed rape cultivars differing in post-flowering N uptake. Field Crops Res. 2015, 179, 1–5. [Google Scholar] [CrossRef]
- Li, X.; Li, Q.; Yang, T.; Nie, Z.; Chen, G.; Hu, L. Responses of plant development, biomass and seed production of direct sown oilseed rape (Brassica napus) to nitrogen application at different stages in Yangtze River Basin. Field Crops Res. 2016, 194, 12–20. [Google Scholar] [CrossRef]
- Ahmad, A.; Abdin, M.Z. Interactive Effect of Sulphur and Nitrogen on the Oil and Protein Contents and on the Fatty Acid Profiles of Oil in the Seeds of Rapeseed (Brassica campestris L.) and Mustard (Brassica juncea L. Czern. and Coss.). J. Agron. Crop. Sci. 2000, 185, 49–54. [Google Scholar] [CrossRef]
- Li, X.; Wu, L.; Qiu, G.; Wang, T.; Liu, C.; Yang, Y.; Feng, B.; Chen, C.; Zhang, W.; Liu, Z. Effects of Sowing Season on Agronomic Traits and Fatty Acid Metabolic Profiling in Three Brassica napus L. Cultivars. Metabolites 2019, 9, 37. [Google Scholar] [CrossRef] [Green Version]
- Bardgett, R.D.; van der Putten, W. Belowground biodiversity and ecosystem functioning. Nat. Cell Biol. 2014, 515, 505–511. [Google Scholar] [CrossRef]
- Nielsen, U.N.; Wall, D.H.; Six, J. Soil Biodiversity and the Environment. Annu. Rev. Environ. Resour. 2015, 40, 63–90. [Google Scholar] [CrossRef]
- Jobard, M.; Pessiot, J.; Nouaille, R.; Sime-Ngando, T. Microbial diversity supporting dark fermentation of waste. Trends Biotechnol. 2014, 32, 549–550. [Google Scholar] [CrossRef]
- Bertrand, I.; Delfosse, O.; Mary, B. Carbon and nitrogen mineralization in acidic, limed and calcareous agricultural soils: Apparent and actual effects. Soil Biol. Biochem. 2007, 39, 276–288. [Google Scholar] [CrossRef]
- Ros, G.H. Predicting soil N mineralization using organic matter fractions and soil properties: A re-analysis of literature data. Soil Biol. Biochem. 2012, 45, 132–135. [Google Scholar] [CrossRef]
- Bu, R.; Lu, J.; Ren, T.; Liu, B.; Li, X.; Cong, R. Particulate Organic Matter Affects Soil Nitrogen Mineralization under Two Crop Rotation Systems. PLoS ONE 2015, 10, e0143835. [Google Scholar] [CrossRef]
- Paterson, E.; Gebbing, T.; Abel, C.; Sim, A.; Telfer, G. Rhizodeposition shapes rhizosphere microbial community structure in organic soil. New Phytol. 2007, 173, 600–610. [Google Scholar] [CrossRef]
- Eisenhauer, N.; Scheu, S.; Jousset, A. Bacterial Diversity Stabilizes Community Productivity. PLoS ONE 2012, 7, e34517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishaq, S.L. Plant-microbial interactions in agriculture and the use of farming systems to improve diversity and productivity. AIMS Microbiol. 2017, 3, 335–353. [Google Scholar] [CrossRef]
- Ge, T.; Chen, X.; Yuan, H.; Li, B.; Zhu, H.; Peng, P.; Li, K.; Jones, D.L.; Wu, J. Microbial biomass, activity, and community structure in horticultural soils under conventional and organic management strategies. Eur. J. Soil Biol. 2013, 58, 122–128. [Google Scholar] [CrossRef]
- García-Orenes, F.; Morugán-Coronado, A.; Zornoza, R.; Scow, K. Changes in Soil Microbial Community Structure Influenced by Agricultural Management Practices in a Mediterranean Agro-Ecosystem. PLoS ONE 2013, 8, e80522. [Google Scholar] [CrossRef]
- Bossio, D.; Girvan, M.S.; Verchot, L.; Bullimore, J.; Borelli, T.; Albrecht, A.; Scow, K.; Ball, A.; Pretty, J.; Osborn, A.M. Soil Microbial Community Response to Land Use Change in an Agricultural Landscape of Western Kenya. Microb. Ecol. 2005, 49, 50–62. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.Y.; Chen, H.; Yang, Y.H.; Chen, T.; Lin, R.Y.; Chen, X.J.; Lin, W.X. Effects of contiInuous cropping on bacterial community diversity in rhizosphere soil of Rehmanniaglutinosa. Chin. J. Appl. Ecol. 2010, 21, 2843–2848. [Google Scholar] [CrossRef]
- Mougel, C.; Offre, P.; Ranjard, L.; Corberand, T.; Gamalero, E.; Robin, C.; Lemanceau, P. Dynamic of the genetic structure of bacterial and fungal communities at different developmental stages of Medicago truncatulaGaertn. cv. Jemalong line J5. New Phytol. 2006, 170, 165–175. [Google Scholar] [CrossRef]
- Houlden, A.; Timms-Wilson, T.M.; Day, M.J.; Bailey, M.J. Influence of plant developmental stage on microbial community structure and activity in the rhizosphere of three field crops. FEMS Microbiol. Ecol. 2008, 65, 193–201. [Google Scholar] [CrossRef] [Green Version]
- Zhalnina, K.; Louie, K.B.; Hao, Z.; Mansoori, N.; da Rocha, U.N.; Shi, S.; Cho, H.; Karaoz, U.; Loqué, D.; Bowen, B.P.; et al. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nat. Microbiol. 2018, 3, 470–480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Gao, J.; Bai, Z.; Wu, S.; Li, X.; Wang, N.; Du, X.; Fan, H.; Zhuang, G.; Bohu, T.; et al. Unraveling Mechanisms and Impact of Microbial Recruitment on Oilseed Rape (Brassica napus L.) and the Rhizosphere Mediated by Plant Growth-Promoting Rhizobacteria. Microorganisms 2021, 9, 161. [Google Scholar] [CrossRef]
- Gray, E.; Smith, D. Intracellular and extracellular PGPR: Commonalities and distinctions in the plant–bacterium signaling processes. Soil Biol. Biochem. 2005, 37, 395–412. [Google Scholar] [CrossRef]
- Lee, K.J.; Kamala-Kannan, S.; Sub, H.S.; Seong, C.K.; Lee, G.W. Biological control of Phytophthora blight in red pepper (Capsicum annuum L.) using Bacillus subtilis. World J. Microbiol. Biotechnol. 2008, 24, 1139–1145. [Google Scholar] [CrossRef]
- Li, X.; Yan, Z.; Gu, D.; Li, D.; Tao, Y.; Zhang, D.; Su, L.; Ao, Y. Characterization of cadmium-resistant rhizobacteria and their promotion effects on Brassica napus growth and cadmium uptake. J. Basic Microbiol. 2019, 59, 579–590. [Google Scholar] [CrossRef] [PubMed]
- González, P.S.; Ontañon, O.M.; Armendariz, A.L.; Talano, M.A.; Paisio, C.E.; Agostini, E. Brassica napus hairy roots and rhizobacteria for phenolic compounds removal. Environ. Sci. Pollut. Res. 2012, 20, 1310–1317. [Google Scholar] [CrossRef] [PubMed]
- Pareniuk, O.; Shavanova, K.; Laceby, J.P.; Illienko, V.; Tytova, L.; Levchuk, S.; Gudkov, I.; Nanba, K. Modification of 137Cs transfer to rape (Brassica napus L.) phytomass under the influence of soil microorganisms. J. Environ. Radioact. 2015, 149, 73–80. [Google Scholar] [CrossRef]
- Jing, Y.X.; Yan, J.L.; He, H.D.; Yang, D.J.; Xiao, L.; Zhong, T.; Yuan, M.; De Cai, X.; Bin Li, S. Characterization of Bacteria in the Rhizosphere Soils of Polygonum Pubescens and Their Potential in Promoting Growth and Cd, Pb, Zn Uptake by Brassica napus. Int. J. Phytoremediat. 2013, 16, 321–333. [Google Scholar] [CrossRef]
- Munyaka, P.M.; Eissa, N.; Bernstein, C.N.; Khafipour, E.; Ghia, J.-E. Antepartum Antibiotic Treatment Increases Offspring Susceptibility to Experimental Colitis: A Role of the Gut Microbiota. PLoS ONE 2015, 10, e0142536. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 2013, 10, 996–998. [Google Scholar] [CrossRef]
- Cole, J.R.; Wang, Q.; Cardenas, E.; Fish, J.; Chai, B.; Farris, R.J.; Kulam-Syed-Mohideen, A.S.; McGarrell, D.M.; Marsh, T.; Garrity, G.; et al. The Ribosomal Database Project: Improved alignments and new tools for rRNA analysis. Nucleic Acids Res. 2008, 37, D141–D145. [Google Scholar] [CrossRef] [Green Version]
- Jami, E.; Israel, A.; Kotser, A.; Mizrahi, I. Exploring the bovine rumen bacterial community from birth to adulthood. ISME J. 2013, 7, 1069–1079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Sheng, H.-F.; He, Y.; Wu, J.-Y.; Jiang, Y.-X.; Tam, N.F.-Y.; Zhou, H.-W. Comparison of the Levels of Bacterial Diversity in Freshwater, Intertidal Wetland, and Marine Sediments by Using Millions of Illumina Tags. Appl. Environ. Microbiol. 2012, 78, 8264–8271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, X.-T.; Peng, X.; Deng, G.-H.; Sheng, H.-F.; Wang, Y.; Zhou, H.-W.; Tam, N.F.-Y. Illumina Sequencing of 16S rRNA Tag Revealed Spatial Variations of Bacterial Communities in a Mangrove Wetland. Microb. Ecol. 2013, 66, 96–104. [Google Scholar] [CrossRef]
- Bulgarelli, D.; Schlaeppi, K.; Spaepen, S.; Van Themaat, E.V.L.; Schulze-Lefert, P. Structure and Functions of the Bacterial Microbiota of Plants. Annu. Rev. Plant Biol. 2013, 64, 807–838. [Google Scholar] [CrossRef] [Green Version]
- Bulgarelli, D.; Garrido-Oter, R.; Münch, P.C.; Weiman, A.; Dröge, J.; Pan, Y.; McHardy, A.C.; Schulze-Lefert, P. Structure and Function of the Bacterial Root Microbiota in Wild and Domesticated Barley. Cell Host Microbe 2015, 17, 392–403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Venturi, V.; Keel, C. Signaling in the Rhizosphere. Trends Plant Sci. 2016, 21, 187–198. [Google Scholar] [CrossRef]
- Fitzpatrick, C.R.; Copeland, J.; Wang, P.W.; Guttman, D.S.; Kotanen, P.M.; Johnson, M.T.J. Assembly and ecological function of the root microbiome across angiosperm plant species. Proc. Natl. Acad. Sci. USA 2018, 115, E1157–E1165. [Google Scholar] [CrossRef] [Green Version]
- Hartmann, A.; Rothballer, M.; Schmid, M. Lorenz Hiltner, a pioneer in rhizosphere microbial ecology and soil bacteriology research. Plant Soil 2007, 312, 7–14. [Google Scholar] [CrossRef]
- Swarnalakshmi, K.; Yadav, V.; Tyagi, D.; Dhar, D.W.; Kannepalli, A.; Kumar, S. Significance of Plant Growth Promoting Rhizobacteria in Grain Legumes: Growth Promotion and Crop Production. Plants 2020, 9, 1596. [Google Scholar] [CrossRef] [PubMed]
- Edwards, J.A.; Santos-Medellin, C.M.; Liechty, Z.S.; Nguyen, B.; Lurie, E.; Eason, S.; Phillips, G.; Sundaresan, V. Compositional shifts in root-associated bacterial and archaeal microbiota track the plant life cycle in field-grown rice. PLoS Biol. 2018, 16, e2003862. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.-C.; Han, Z.-Z.; Ruan, X.-Y.; Chai, J.; Jiang, S.-W.; Zheng, R. Composting swine carcasses with nitrogen transformation microbial strains: Succession of microbial community and nitrogen functional genes. Sci. Total. Environ. 2019, 688, 555–566. [Google Scholar] [CrossRef]
- Gkarmiri, K.; Mahmood, S.; Ekblad, A.; Alström, S.; Högberg, N.; Finlay, R. Identifying the Active Microbiome Associated with Roots and Rhizosphere Soil of Oilseed Rape. Appl. Environ. Microbiol. 2017, 83, e01938-17. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Dong, Y.; Hou, L.; Deng, N.; Jiao, R. Acidobacteria Community Responses to Nitrogen Dose and Form in Chinese Fir Plantations in Southern China. Curr. Microbiol. 2017, 74, 396–403. [Google Scholar] [CrossRef] [PubMed]
- Fierer, N.; Bradford, M.; Jackson, R.B. Toward an ecological classification of soil bacteria. Ecology 2007, 88, 1354–1364. [Google Scholar] [CrossRef]
- Singh, J.S.; Kumar, A.; Rai, A.N.; Singh, D.P. Cyanobacteria: A Precious Bio-resource in Agriculture, Ecosystem, and Environmental Sustainability. Front. Microbiol. 2016, 7, 529. [Google Scholar] [CrossRef] [Green Version]
- Singh, M.; Sharma, N.K.; Prasad, S.B.; Yadav, S.S.; Narayan, G.; Rai, A. The freshwater cyanobacterium Anabaena doliolum transformed with ApGSMT-DMT exhibited enhanced salt tolerance and protection to nitrogenase activity, but became halophilic. Microbiology 2013, 159, 641–648. [Google Scholar] [CrossRef] [Green Version]
- Klatt, C.G.; Liu, Z.; Ludwig, M.; Kühl, M.; Jensen, S.I.; A Bryant, D.; Ward, D.M. Temporal metatranscriptomic patterning in phototrophic Chloroflexi inhabiting a microbial mat in a geothermal spring. ISME J. 2013, 7, 1775–1789. [Google Scholar] [CrossRef] [Green Version]
- Schiltz, S.; Munier-Jolain, N.; Jeudy, C.; Burstin, J.; Salon, C. Dynamics of Exogenous Nitrogen Partitioning and Nitrogen Remobilization from Vegetative Organs in Pea Revealed by 15N in Vivo Labeling throughout Seed Filling. Plant Physiol. 2005, 137, 1463–1473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Treatment | Sampling | Dominant Phylum of Bacteria | Dominant Phylum of Fungi | ||||||
---|---|---|---|---|---|---|---|---|---|
Proteobacteria | Actinobacteria | Acidobacteria | Bacteroidetes | Cyanobacteria | Ascomycota | Olpidiomycota | Basidiomycota | ||
N | seedling stage | 46.05% a | 8.10% ab | 12.23% a | 8.29% b | 3.73% b | 45.82% a | 0.33% b | 1.82% b |
N50% | 46.75% a | 3.04% c | 3.05% b | 15.32% a | 18.52% a | 42.15% a | 0.21% b | 3.50% ab | |
N70% | 48.20% a | 5.55% bc | 8.66% a | 20.74% a | 1.50% b | 56.40% a | 24.95% a | 5.53% a | |
N150% | 44.47% a | 9.54% a | 9.28% a | 15.81% a | 0.93% b | 41.95% a | 10.68% ab | 6.53% a | |
N | flowering stage | 32.58% a | 28.30% ab | 3.15% c | 5.99% a | 12.21% a | 97.42% a | 0.09% b | 0.70% b |
N50% | 27.99% ab | 33.78% a | 6.76% b | 5.71% a | 6.80% b | 92.16% b | 0.10% b | 4.68% b | |
N70% | 24.63% b | 24.51% bc | 11.86% a | 1.88% b | 3.98% b | 75.43% c | 5.52% a | 15.98% a | |
N150% | 31.02% a | 21.97% c | 5.01% bc | 7.65% a | 5.32% b | 91.02% b | 1.36% b | 4.19% b | |
N | maturity stage | 46.47% a | 7.67% a | 14.95% ab | 7.36% a | 2.78% ab | 57.84% ab | 29.49% a | 4.61% b |
N50% | 41.59% a | 5.57% b | 22.62% a | 4.57% a | 1.92% b | 72.07% a | 11.00% ab | 3.54% b | |
N70% | 44.50% a | 8.01% a | 13.19% b | 8.49% a | 7.50% a | 49.94% b | 25.88% a | 5.92% b | |
N150% | 40.92% a | 6.67% ab | 22.04% a | 4.82% a | 1.16% b | 78.91% a | 1.63% b | 14.55% a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xing, M.; Zhang, Y.; Guan, C.; Guan, M. Effects of Nitrogen Application Rate on Rhizosphere Microbial Diversity in Oilseed Rape (Brassica napus L.). Agronomy 2021, 11, 1539. https://doi.org/10.3390/agronomy11081539
Xing M, Zhang Y, Guan C, Guan M. Effects of Nitrogen Application Rate on Rhizosphere Microbial Diversity in Oilseed Rape (Brassica napus L.). Agronomy. 2021; 11(8):1539. https://doi.org/10.3390/agronomy11081539
Chicago/Turabian StyleXing, Man, Ye Zhang, Chunyun Guan, and Mei Guan. 2021. "Effects of Nitrogen Application Rate on Rhizosphere Microbial Diversity in Oilseed Rape (Brassica napus L.)" Agronomy 11, no. 8: 1539. https://doi.org/10.3390/agronomy11081539
APA StyleXing, M., Zhang, Y., Guan, C., & Guan, M. (2021). Effects of Nitrogen Application Rate on Rhizosphere Microbial Diversity in Oilseed Rape (Brassica napus L.). Agronomy, 11(8), 1539. https://doi.org/10.3390/agronomy11081539