Global Trends in Coffee Agronomy Research
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Scientific Production Environments
3.1.1. Bibliographic Environments of Scientific Production
3.1.2. Geographical Environments of Scientific Production
3.2. Actors of Scientific Production in Coffee Agronomy
3.2.1. Author Affiliation Organizations Network
3.2.2. Prolific Coauthors Network
3.3. Subjects of Scientific Production in Coffee Agronomy
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Relevant Journals in Coffee Agronomy
Journals | Full Name | ISSN | Publisher | 1960–2020 | 2009–2020 | WoS Category |
---|---|---|---|---|---|---|
Cienc. Agrotec. | Ciencia e Agrotecnologia | 1413-7054 | Univ Fed Lavras | 197 | 94 | Agriculture, Multidisciplinary; Agronomy |
Agrofor. Syst. | Agroforestry Systems | 0167-4366 | Springer | 153 | 97 | Agronomy; Forestry |
Cafe Cacao The | Cafe Cacao The | 0007-9510 | CIRAD- Cultures Perennes | 132 | 0 * | Agronomy |
Turrialba | Turrialba | 0041-4360 | Inter-Amer Inst Cooperat Agric | 127 | 0 ** | Agronomy |
Biosci. J. | Bioscience Journal | 1516-3725 | Univ Fed Uberlandia | 61 | 57 | Agriculture, Multidisciplinary; Agronomy; Biology |
Cienc. Rural | Ciencia Rural | 0103-8478 | Univ Fed Santa Maria | 57 | 48 | Agronomy |
Euphytica | Euphytica | 0014-2336 | Springer | 52 | 21 | Agronomy; Plant Sciences; Horticulture |
Crop Prot. | Crop Protection | 0261-2194 | Elsevier | 45 | 28 | Agronomy |
Crop. Breed. Appl. Biotechnol. | Crop Breeding and Applied Biotechnology | 1984-7033 | Brazilian Soc Plant Breeding | 43 | 35 | Agronomy; Biotechnology & Applied Microbiology |
Exp. Agric. | Experimental Agriculture | 0014-4797 | Cambridge Univ Press | 41 | 13 | Agronomy |
Ind. Crop. Prod. | Industrial Crops and Products | 0926-6690 | Elsevier | 37 | 36 | Agricultural Engineering; Agronomy |
Acta Sci.-Agron. | Acta Scientiarum-Agronomy | 1807-8621 | Univ Estadual Maringa | 36 | 35 | Agronomy |
Eur. J. Plant Pathol. | European Journal of Plant Pathology | 0929-1873 | Springer | 35 | 28 | Agronomy; Plant Sciences; Horticulture |
Plant Pathol. | Plant Pathology | 0032-0862 | Wiley | 31 | 16 | Agronomy; Plant Sciences |
Rev. Agrogeoambiental *** | Revista Agrogeoambiental | 1984-428X | Inst Fed Sul Minas Gerais | 27 | 27 | Agronomy |
Appendix B. Prolific Authors by Cluster
Cluster | Authors |
---|---|
Cluster 1 | Bartholo, Gabriel Ferreira |
Botelho, Cesar Elias | |
Carvalho, Gladyston Rodrigues | |
De Rezende, Juliana Costa | |
Guimaraes Mendes, Antonio Nazareno | |
Guimaraes, Rubens Jose | |
Pasqual, Moacir | |
Vallone, Haroldo Silva | |
Cluster 2 | Baiao De Oliveira, Antonio Carlos |
Caixeta, Eveline Teixeira | |
Cruz, Cosme Damiao | |
Pereira, Antonio Alves | |
Prieto Martinez, Herminia Emilia | |
Sakiyama, Ney Sussumu | |
Zambolim, Laercio | |
Cluster 3 | Alves, Eduardo |
Alves, Jose Donizeti | |
Curi, Nilton | |
De Abreu, Mario Sobral | |
Gontijo Guimaraes, Paulo Tacito | |
Pereira, Igor Souza | |
Pozza, Edson Ampelio | |
Cluster 4 | Fazuoli, Luiz Carlos |
Guerreiro Filho, Oliveiro | |
Ito, Dhalton Shiguer | |
Sera, Gustavo Hiroshi | |
Sera, Tumoru | |
Silvarolla, Maria Bernadete | |
Cluster 5 | Borem, Flavio Meira |
Da Silva, Fabio Moreira | |
Fonseca Alvarenga Pereira, Rosemary Gualberto | |
Malta, Marcelo Ribeiro | |
Veiga Franco Da Rosa, Sttela Dellyzete |
References
- Byrareddy, V.; Kouadio, L.; Kath, J.; Mushtaq, S.; Rafiei, V.; Scobie, M.; Stone, R. Win-win: Improved irrigation management saves water and increases yield for robusta coffee farms in Vietnam. Agric. Water Manag. 2020, 241, 106350. [Google Scholar] [CrossRef]
- Venturin, A.Z.; Guimarafes, C.M.; de Sousa, E.F.; Machado, F.; Josa, A.; Rodrigues, W.P.; Serrazine Ãcaro, D.; Bressan-Smith, R.; Marciano, C.R.; Campostrini, E. Using a crop water stress index based on a sap flow method to estimate water status in conilon coffee plants. Agric. Water Manag. 2020, 241, 106343. [Google Scholar] [CrossRef]
- Lyngbaek, A.E.; Muschler, R.G.; Sinclair, F.L. Productivity and profitability of multistrata organic versus conventional coffee farms in Costa Rica. Agrofor. Syst. 2001, 53, 205–213. [Google Scholar] [CrossRef]
- De Souza, H.N.; De Graaff, J.; Pulleman, M.M. Strategies and economics of farming systems with coffee in the Atlantic Rainforest Biome. Agrofor. Syst. 2011, 84, 227–242. [Google Scholar] [CrossRef] [Green Version]
- Sibelet, N.; Ba, S.N. Strategies of Ugandan farmers facing coffee wilt disease. Cah. Agric. 2012, 21, 258–268. [Google Scholar] [CrossRef]
- Bertrand, B.; Montagnon, C.; Georget, F.; Charmetant, P.; Etienne, H. Creation and dissemination of Arabica coffee varieties: What varietal innovations? Cah. Agric. 2012, 21, 77–88. [Google Scholar] [CrossRef]
- Labouisse, J.P.; Adolphe, C. Preservation and management of the genetic resources of Arabica coffee (Coffea arabica L): A challenge for Ethiopia. Cah. Agric. 2012, 21, 98–105. [Google Scholar] [CrossRef]
- Vagneron, I.; Daviron, B. Coffee in the jungle of environmental and social sustainability standards. Cah. Agric. 2012, 21, 154–161. [Google Scholar] [CrossRef]
- Sibelet, N.; Montzieux, M. Resilience factors in the coffee sector of Kenya: From food security to product removal. Cah. Agric. 2012, 21, 179–191. [Google Scholar] [CrossRef]
- Fournier, S. Geographical Indications: A way to perpetuate collective action processes within Localized Agrifood Systems? Cah. Agric. 2008, 17, 547–551. [Google Scholar] [CrossRef]
- Ellis, E.A.; Baerenklau, K.A.; Marcos-Martínez, R.; Chávez, E. Land use/land cover change dynamics and drivers in a low-grade marginal coffee growing region of Veracruz, Mexico. Agrofor. Syst. 2010, 80, 61–84. [Google Scholar] [CrossRef] [Green Version]
- Ávalos-Sartorio, B.; Blackman, A. Agroforestry price supports as a conservation tool: Mexican shade coffee. Agrofor. Syst. 2009, 78, 169–183. [Google Scholar] [CrossRef]
- Leme, P.; Pinto, C. Sistemas de certificação do café sob a ótica dos Pilares da Qualidade. Rev. Agrogeoambient. 2019, 10, 9–26. [Google Scholar] [CrossRef]
- Faure, G.; Le Coq, J.F.; Vagneron, I.; Hocde, H.; Munoz, G.S.; Kessari, M. Strategies of coffee producers’ organizations in Costa Rica toward environmental and social certification processes. Cah. Agric. 2012, 21, 162–168. [Google Scholar] [CrossRef]
- Aguilar, P.; Ribeyre, F.; Escarraman, A.; Bastide, P.; Berthiot, L. Sensory profiles of coffee in the Dominican Republic are linked to the terroirs. Cah. Agric. 2012, 21, 169–178. [Google Scholar] [CrossRef]
- Galtier, F.; Pedregal, V.D. Can the development of Fair Trade improve justice? Some insights from the coffee case. Cah. Agric. 2010, 19, 50–57. [Google Scholar] [CrossRef]
- Negash, M.; Starr, M.; Kanninen, M.; Berhe, L. Allometric equations for estimating aboveground biomass of Coffea arabica L. grown in the Rift Valley escarpment of Ethiopia. Agrofor. Syst. 2013, 87, 953–966. [Google Scholar] [CrossRef]
- Coltri, P.P.; Zullo, J.J.; Dubreuil, V.; Ramirez, G.M.; Pinto, H.S.; Coral, G.; Lazarim, C.G. Empirical models to predict LAI and aboveground biomass of Coffea arabicaunder full sun and shaded plantation: A case study of South of Minas Gerais, Brazil. Agrofor. Syst. 2015, 89, 621–636. [Google Scholar] [CrossRef]
- Jose, S.; Bardhan, S. Agroforestry for biomass production and carbon sequestration: An overview. Agrofor. Syst. 2012, 86, 105–111. [Google Scholar] [CrossRef]
- Soto-Pinto, L.; Anzueto, M.; Mendoza, J.; Ferrer, G.J.; De Jong, B. Carbon sequestration through agroforestry in indigenous communities of Chiapas, Mexico. Agrofor. Syst. 2009, 78, 39–51. [Google Scholar] [CrossRef]
- Schmitt-Harsh, M.; Evans, T.P.; Castellanos, E.; Randolph, J.C. Carbon stocks in coffee agroforests and mixed dry tropical forests in the western highlands of Guatemala. Agrofor. Syst. 2012, 86, 141–157. [Google Scholar] [CrossRef]
- Häger, A. The effects of management and plant diversity on carbon storage in coffee agroforestry systems in Costa Rica. Agrofor. Syst. 2012, 86, 159–174. [Google Scholar] [CrossRef]
- Pezzopane, J.R.M.; Souza, P.S.; Rolim, G.D.S.; Gallo, P.B. Microclimate in coffee plantation grown under grevillea trees shading. Acta Sci. Agron. 2011, 33. [Google Scholar] [CrossRef] [Green Version]
- Alvarado-Huaman, L.; Borjas-Ventura, R.R.; Castro-Cepero, V.; Garcia-Nieves, L.; Jimenez-Davalos, J.; Julca-Otiniano, A.; Gomez-Pando, L. Dynamics of severity of coffee leaf rust (Hemileia vastatrix) on Coffee, in Chanchamayo (Junin-Peru). Agron. Mesoam. 2020, 31, 517–529. [Google Scholar] [CrossRef]
- Lin, B.B. Agroforestry management as an adaptive strategy against potential microclimate extremes in coffee agriculture. Agric. For. Meteorol. 2007, 144, 85–94. [Google Scholar] [CrossRef]
- Molin, R.; Andreotti, M.; Reis, A.; Furlani Junior, E.; Braga, G.; Scholz, M.B. Physical and sensory characterization of coffee produced in the topoclimatic conditions at Jesuítas, Paraná State (Brazil). Acta Sci. Agron. 2008, 30, 353–358. [Google Scholar] [CrossRef]
- Peters, V.E.; Carroll, C.R. Temporal variation in coffee flowering may influence the effects of bee species richness and abundance on coffee production. Agrofor. Syst. 2012, 85, 95–103. [Google Scholar] [CrossRef]
- Dauzat, J.; Rapidel, B.; Berger, A. Simulation of leaf transpiration and sap flow in virtual plants: Model description and application to a coffee plantation in Costa Rica. Agric. For. Meteorol. 2001, 109, 143–160. [Google Scholar] [CrossRef]
- Dossa, E.L.; Fernandes, E.C.M.; Reid, W.S.; Ezui, K. Above- and belowground biomass, nutrient and carbon stocks contrasting an open-grown and a shaded coffee plantation. Agrofor. Syst. 2007, 72, 103–115. [Google Scholar] [CrossRef]
- Piato, K.; Lefort, F.; Subía, C.; Calderon, D.; Pico, J.; Norgrove, L.; Caicedo, C. Effects of shade trees on robusta coffee growth, yield and quality. A meta-analysis. Agron. Sustain. Dev. 2020. [Google Scholar] [CrossRef]
- Lin, B.B. The role of agroforestry in reducing water loss through soil evaporation and crop transpiration in coffee agroecosystems. Agric. For. Meteorol. 2010, 150, 510–518. [Google Scholar] [CrossRef]
- Flumignan, D.L.; De Faria, R.T.; Prete, C.E. Evapotranspiration components and dual crop coefficients of coffee trees during crop production. Agric. Water Manag. 2011, 98, 791–800. [Google Scholar] [CrossRef]
- Lin, B.B.; Richards, P.L. Soil random roughness and depression storage on coffee farms of varying shade levels. Agric. Water Manag. 2007, 92, 194–204. [Google Scholar] [CrossRef]
- Holwerda, F.; Bruijnzeel, L.A.; Barradas, V.L.; Cervantes, J. The water and energy exchange of a shaded coffee plantation in the lower montane cloud forest zone of central Veracruz, Mexico. Agric. For. Meteorol. 2013, 173, 1–13. [Google Scholar] [CrossRef]
- Pereira, M.W.; Arêdes, A.F.; Santos, M.L. A irrigação do cafezal como alternativa econômica ao produtor. Acta Sci. Agron. 2010, 32. [Google Scholar] [CrossRef]
- Arantes, K.R.; de Faria, M.A.; Rezende, F.C. Recuperação do cafeeiro (Coffea arábica L.) após recepa, submetido a diferentes lâminas de água e parcelamentos da adubação. Acta Sci. Agron. 2009, 31. [Google Scholar] [CrossRef] [Green Version]
- Herpin, U.; Gloaguen, T.V.; Da Fonseca, A.F.; Montes, C.R.; Mendonça, F.C.; Piveli, R.P.; Melfi, A.J. Chemical effects on the soil–plant system in a secondary treated wastewater irrigated coffee plantation—A pilot field study in Brazil. Agric. Water Manag. 2007, 89, 105–115. [Google Scholar] [CrossRef]
- D’haeze, D.; Raes, D.; Deckers, J.; Phong, T.A.; Loi, H.V. Groundwater extraction for irrigation of Coffea canephora in Ea Tul watershed, Vietnam—a risk evaluation. Agric. Water Manag. 2005, 73, 1–19. [Google Scholar] [CrossRef]
- D’haeze, D.; Deckers, J.; Raes, D.; Phong, T.A.; Minh Chanh, N.D. Over-irrigation of Coffea canephora in the Central Highlands of Vietnam revisited. Agric. Water Manage. 2003, 63, 185–202. [Google Scholar] [CrossRef]
- Siles, P.; Harmand, J.M.; Vaast, P. Effects of Inga densiflora on the microclimate of coffee (Coffea arabica L.) and overall biomass under optimal growing conditions in Costa Rica. Agrofor. Syst. 2009, 78, 269–286. [Google Scholar] [CrossRef]
- Liu, X.; Qi, Y.; Li, F.; Yang, Q.; Yu, L. Impacts of regulated deficit irrigation on yield, quality and water use efficiency of Arabica coffee under different shading levels in dry and hot regions of southwest China. Agric. Water Manag. 2018, 204, 292–300. [Google Scholar] [CrossRef]
- Boreux, V.; Vaast, P.; Madappa, L.; Cheppudira, K.G.; Garcia, C.; Ghazoul, J. Agroforestry coffee production increased by native shade trees, irrigation, and liming. Agron. Sustain. Dev. 2016, 36, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Li, F.; Zhang, Y.; Yang, Q. Effects of deficit irrigation on yield and nutritional quality of Arabica coffee (Coffea arabica) under different N rates in dry and hot region of southwest China. Agric. Water Manag. 2016, 172, 1–8. [Google Scholar] [CrossRef]
- Silva, N.; Assunção, W. Constatação do “efeito sombra” e economia de recursos hídricos e de energia na irrigação do cafeeiro por meio de um pivô central convencional. Rev. Agrogeoambiental. 2016, 8, 23–32. [Google Scholar] [CrossRef] [Green Version]
- Marin, F.R.; Angelocci, L.R.; Nassif, D.S.P.; Costa, L.G.; Vianna, M.S.; Carvalho, K.S. Crop coefficient changes with reference evapotranspiration for highly canopy-atmosphere coupled crops. Agric. Water Manag. 2016, 163, 139–145. [Google Scholar] [CrossRef]
- Sakai, E.; Barbosa, E.; Silveira, J.; Pires, R. Coffee productivity and root systems in cultivation schemes with different population arrangements and with and without drip irrigation. Agric. Water Manag. 2015, 148, 16–23. [Google Scholar] [CrossRef]
- Suhartono, D.; Aditya, W.; Lestari, M.; Yasin, M. Expert System in Detecting Coffee Plant Diseases. Int. J. Electr. Energy 2013, 1, 156–162. [Google Scholar] [CrossRef]
- Silva, M.C.; Varzea, V.; Guerra-Guimaraes, L.; Azinheira, H.; Fernandez, D.; Petitot, A.S.; Bertrand, B.; Lashermes, P.; Nicole, M. Coffee resistance to the main diseases: Leaf rust and coffee berry disease. Braz. J. Plant Physiol. 2006, 18, 119–147. [Google Scholar] [CrossRef] [Green Version]
- Talhinhas, P.; Batista, D.; Diniz, I.; Vieira, A.; Silva, D.N.; Loureiro, A.; Tavares, S.; Pereira, A.P.; Azinheira, H.G.; Guerra-Guimarães, L.; et al. The Coffee Leaf Rust pathogen Hemileia vastatrix; One and a half centuries around the tropics. Mol. Plant Pathol. 2016, 18, 1039–1051. [Google Scholar] [CrossRef] [Green Version]
- Zambolim, L. Current status and management of coffee leaf rust in Brazil. Trop. Plant Pathol. 2016, 41, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Capucho, A.S.; Zambolim, L.; Lopes, U.N.; Milagres, N.S. Chemical control of coffee rust in Coffea canephora cv conilon. Australas. Plant Pathol. 2013, 42, 667–673. [Google Scholar] [CrossRef]
- Durand, N.; Gueule, D.; Fourny, G. Contaminants in coffee. Cah. Agric. 2012, 21, 192–196. [Google Scholar] [CrossRef]
- Chemura, A.; Mutanga, O.; Sibanda, M.; Chidoko, P. Machine learning prediction of coffee rust severity on leaves using spectroradiometer data. Trop. Plant Pathol. 2018, 43, 117–127. [Google Scholar] [CrossRef]
- Honorato-Junior, J.; Zambolim, L.; Aucique-Pérez, C.E.; Resende, R.S.; Rodrigues, F.A. Photosynthetic and antioxidative alterations in coffee leaves caused by epoxiconazole and pyraclostrobin sprays and Hemileia vastatrix infection. Pest. Biochem. Physiol. 2015, 123, 31–39. [Google Scholar] [CrossRef]
- Dias, R.A.; Ribeiro, M.R.; Carvalho, A.M.; Botelho, C.E.; Mendes, A.G.; Ferreira, A.D.; Fernandes, F.C. Selection of coffee progenies for resistance to leaf rust and favorable agronomic traits. Coffee Sci. 2019, 14, 173–182. Available online: http://www.coffeescience.ufla.br/index.php/Coffeescience/article/view/1564 (accessed on 17 July 2021). [CrossRef]
- De Carvalho, F.P.; França, A.C.; Lemos, V.T.; Ferreira, E.A.; Santos, J.B.; Dos Silva, A.A. Photosynthetic activity of coffee after application of glyphosate subdoses. Acta Sci. Agron. 2013, 35, 109–115. [Google Scholar] [CrossRef]
- Oliveira, G.H.H.; Corrêa, P.C.; Botelho, F.M.; Goneli, A.L.D.; Afonso Júnior, P.C.; Campos, S.C. Modeling of the shrinkage kinetics of coffee berries during drying. Acta Sci. Agron. 2011, 33, 423–428. [Google Scholar] [CrossRef] [Green Version]
- Tully, K.L.; Wood, S.A.; Lawrence, D. Fertilizer type and species composition affect leachate nutrient concentrations in coffee agroecosystems. Agrofor. Syst. 2013, 87, 1083–1100. [Google Scholar] [CrossRef] [Green Version]
- Silva, C.F.; Ramos, D.M.B.; Batista, L.R.; Schwan, R.F. Inibição in vitro de fungos toxigênicos por Pichia sp. e Debaryomyces sp. isoladas de frutos de café (Coffea arabica). Acta Sci. Agron. 2010, 32, 397–402. [Google Scholar] [CrossRef] [Green Version]
- Santa-Cecília, L.V.C.; Correa, L.R.B.; Souza, B.; Prado, E.; Alcantra, E. Desenvolvimento de Planococcus citri (Risso, 1813) (Hemiptera: Pseudococcidae) em cafeeiros. Acta Sci. Agron. 2009, 31, 13–15. [Google Scholar] [CrossRef]
- Rodarte, M.P.; Dias, D.R.; Vilela, D.M.; Schwan, R.F. Proteolytic activities of bacteria, yeasts and filamentous fungi isolated from coffee fruit (Coffea arabica L.). Acta Sci. Agron. 2011, 33, 457–464. [Google Scholar] [CrossRef] [Green Version]
- Bedimo, J.A.; Dufour, B.P.; Cilas, C.; Avelino, J. Effects of shade trees on Coffea Arabica pests and diseases. Cah. Agric. 2012, 21, 89–97. [Google Scholar] [CrossRef]
- Malta, M.R.; Chagas, S.J. Avaliação de compostos não-voláteis em diferentes cultivares de cafeeiro produzidas na região sul de Minas Gerais. Acta Sci. Agron. 2009, 31, 57–61. [Google Scholar] [CrossRef] [Green Version]
- Pedrosa, A.W.; Prieto Martinez, H.E.; Cruz, C.D.; DaMata, F.M.; Clemente, J.M.; Paula Neto, A. Characterizing zinc use efficiency in varieties of Arabica coffee. Acta Sci. Agron. 2013, 35, 57–61. [Google Scholar] [CrossRef] [Green Version]
- Pozza, A.A.; Guimarães, P.T.; Silva, E.D.; Bastos, A.R.; Nogueira, F.D. Adubação foliar de sulfato de zinco na produtividade e teores foliares de zinco e fósforo de cafeeiros arábica. Acta Sci. Agron. 2009, 31, 49–55. [Google Scholar] [CrossRef] [Green Version]
- Mora, A.; Beer, J. Geostatistical modeling of the spatial variability of coffee fine roots under Erythrina shade trees and contrasting soil management. Agrofor. Syst. 2012, 87, 365–376. [Google Scholar] [CrossRef]
- Gomes, J.; Ponzo, A.; Oliveira, A. Viability of a terrace covered with porous concrete paving blocks for coffee bean drying. Rev. Agrogeoambient. 2021, 12, 98–109. [Google Scholar] [CrossRef]
- Santos, F.L.; Queiroz, D.M.; Pinto, F.D.; Santos, N.T. Analysis of the coffee harvesting process using an electromagnetic shaker. Acta Sci. Agron. 2010, 32, 373–378. [Google Scholar] [CrossRef]
- Greco, M.; Campos, A.T.; Klosowski, E.S. Variação de diferentes tempos de revolvimento em secador de camada fixa para café. Acta Sci. Agron. 2010, 32, 577–583. [Google Scholar] [CrossRef]
- Resende, O.; Arcanjo, R.V.; Siqueira, V.C.; Rodrigues, S. Modelagem matemática para a secagem de clones de café (Coffea canephora Pierre) em terreiro de concreto. Acta Sci. Agron. 2009, 31, 189–196. [Google Scholar] [CrossRef] [Green Version]
- Greco, M.; Campos, A.T.; Klosowski, E.S. Perdas térmicas em secador de café. Acta Sci. Agron. 2010, 32, 209–212. [Google Scholar] [CrossRef]
- Chalfoun, S.M.; Pereira, M.C.; Carvalho, G.R.; Savian, T.V. Multivariate analysis of sensory characteristics of coffee grains (Coffea arabica L.) in the region of upper Paranaíba. Acta Sci. Agron. 2010, 32, 635–641. [Google Scholar] [CrossRef] [Green Version]
- Fujisawa, N.; Roubik, D.W. Inoue, Makoto. Farmer influence on shade tree diversity in rustic plots of Coffea canephora in Panama coffee-agroforestry. Agrofor. Syst. 2020, 94, 2301–2315. [Google Scholar] [CrossRef]
- Chaiyarat, R.; Sripho, S.; Ardsungnoen, S. Small mammal diversity in agroforestry area and other plantations of Doi Tung Development Project, Thailand. Agrofor. Syst. 2020, 94, 2099–2107. [Google Scholar] [CrossRef]
- Mahata, A.; Samal, K.T.; Sharat, K.P. Butterfly diversity in agroforestry plantations of Eastern Ghats of southern Odisha, India. Agrofor. Syst. 2018, 93, 1423–1438. [Google Scholar] [CrossRef]
- McDermott, M.E.; Rodewald, A.D.; Matthews Stephen, N. Managing tropical agroforestry for conservation of flocking migratory birds. Agrofor. Syst. 2015, 89, 383–396. [Google Scholar] [CrossRef]
- Caudill, S.A.; Vaast, P.; Husband, T.P. Assessment of small mammal diversity in coffee agroforestry in the Western Ghats, India. Agrofor. Syst. 2014, 88, 173–186. [Google Scholar] [CrossRef]
- Mukashema, A.; Veldkamp, T.; Amer, S. Sixty percent of small coffee farms have suitable socio-economic and environmental locations in Rwanda. Agron. Sustain. Dev. 2016, 36, 31. [Google Scholar] [CrossRef] [Green Version]
- Valencia, V.; Naeem, S.; Garcıa, B. Conservation of tree species of late succession and conservation concern in coffee. Agric. Ecosyst. Environ. 2016, 219, 32–41. [Google Scholar] [CrossRef]
- Sri, A.; Kemp, R.C. The Impact of Coffee Certification on the Economic Performance of Indonesian Actors. Asian J. Agric. Dev. 2015, 12, 1–16. [Google Scholar] [CrossRef]
- Martins, M.; Mendes, A.N.; Alvarenga, M. Incidência de pragas e doenças em agroecossistemas de café orgânico de agricultores familiares em Poço Fundo-MG. Cienc. Agrotec. 2004, 28, 1306–1313. [Google Scholar] [CrossRef]
- Clarivate Web of Science. Available online: http://www.webofknowledge.com/ (accessed on 22 May 2021).
- Vega-Muñoz, A.; Arjona-Fuentes, J.M. Social networks and graph theory in the search for distant knowledge in the field of industrial engineering. In Handbook of Research on Advanced Applications of Graph Theory in Modern Society; Pal, M., Samanta, S., Pal, A., Eds.; IGI-Global: Hershey, PA, USA, 2020; Volume 17, pp. 397–418. [Google Scholar] [CrossRef]
- Price, D. A general theory of bibliometric and other cumulative advantage processes. J. Assoc. Inf. Sci. 1976, 27, 292–306. [Google Scholar] [CrossRef] [Green Version]
- Dobrov, G.M.; Randolph, R.H.; Rauch, W.D. New options for team research via international computer networks. Scientometrics 1979, 1, 387–404. [Google Scholar] [CrossRef]
- Bulik, S. Book use as a Bradford-Zipf Phenomenon. Coll. Res. Libr. 1978, 39, 215–219. [Google Scholar] [CrossRef]
- Morse, P.M.; Leimkuhler, F.F. Technical note—Exact solution for the Bradford distribution and its use in modeling informational data. Oper. Res. 1979, 27, 187–198. [Google Scholar] [CrossRef] [Green Version]
- Pontigo, J.; Lancaster, F.W. Qualitative aspects of the Bradford distribution. Scientometrics 1986, 9, 59–70. [Google Scholar] [CrossRef]
- Swokowski, E.W. Calculus with Analytic Geometry, 4th ed.; Grupo Editorial Planeta: Mexico City, Mexico, 1988. [Google Scholar]
- Kumar, S. Application of Bradford’s law to human-computer interaction research literature. DESIDOC J. Libr. Inf. Technol. 2014, 34, 223–231. [Google Scholar]
- Shelton, R.D. Scientometric laws connecting publication counts to national research funding. Scientometrics 2020, 123, 181–206. [Google Scholar] [CrossRef]
- Lotka, A.J. The frequency distribution of scientific productivity. J. Wash. Acad. Sci. 1926, 16, 317–321. [Google Scholar]
- Hirsch, J.E. An index to quantify an individual’s scientific research output. Proc. Natl. Acad. Sci. USA 2005, 102, 16569–16572. [Google Scholar] [CrossRef] [Green Version]
- Crespo, N.; Simoes, N. Publication performance through the lens of the h-index: How can we solve the problem of the ties? Soc. Sci. Q. 2019, 100, 2495–2506. [Google Scholar] [CrossRef]
- Zipf, G.K. Selected Studies of the Principle of Relative Frequency in Language; Harvard University Press: Cambridge, MA, USA, 1932. [Google Scholar]
- Moravcsik, M.J. Applied Scientometrics: An Assessment Methodology for Developing Countries. Scientometrics 1985, 7, 165–176. [Google Scholar] [CrossRef]
- Frenken, K.; Hardeman, S.; Hoekman, J. Spatial scientometrics: Towards a cumulative research program. J. Informetr. 2009, 3, 222–232. [Google Scholar] [CrossRef] [Green Version]
- Albort-Morant, G.; Henseler, J.; Leal-Millán, A.; Cepeda-Carrión, G. Mapping the field: A bibliometric analysis of green innovation. Sustainability 2017, 9, 1011. [Google Scholar] [CrossRef] [Green Version]
- Mikhaylov, A.; Mikhaylova, A.; Hvaley, D. Knowledge Hubs of Russia: Bibliometric Mapping of Research Activity. J. Scientometr. Res. 2020, 9, 1–10. [Google Scholar] [CrossRef]
- Acevedo-Duque, Á.; Vega-Muñoz, A.; Salazar-Sepúlveda, G. Analysis of Hospitality, Leisure, and Tourism Studies in Chile. Sustainability 2020, 12, 7238. [Google Scholar] [CrossRef]
- Uribe-Toril, J.; Ruiz-Real, J.L.; Haba-Osca, J.; de Pablo Valenciano, J. Forests’ First Decade: A Bibliometric Analysis Overview. Forests 2019, 10, 72. [Google Scholar] [CrossRef] [Green Version]
- Bondanini, G.; Giorgi, G.; Ariza-Montes, A.; Vega-Muñoz, A.; Andreucci-Annunziata, P. Technostress Dark Side of Technology in the Workplace: A Scientometric Analysis. Int. J. Environ. Res. Public Health 2020, 17, 8013. [Google Scholar] [CrossRef]
- Köseoglu, M.A.; Okumus, F.; Putra, E.D.; Yildiz, M.; Dogan, I.C. Authorship Trends, Collaboration Patterns, and Co-Authorship Networks in Lodging Studies (1990–2016). J. Hosp. Mark. Manag. 2018, 27, 561–582. [Google Scholar] [CrossRef]
- Lojo, A.; Li, M.; Cànoves, G. Co-authorship Networks and Thematic Development in Chinese Outbound Tourism Research. J. Chin. Tour. Res. 2019, 15, 295–319. [Google Scholar] [CrossRef]
- Vega-Muñoz, A.; Arjona-Fuentes, J.M.; Ariza-Montes, A.; Han, H.; Law, R. In search of ‘a research front’ in cruise tourism studies. Int. J. Hosp. Manag. 2020, 85, 102353. [Google Scholar] [CrossRef]
- Gureev, V.N.; Mazov, N.A. Themes of the publications of an organization as a basis for forming an objective and optimal repertoire of scientific periodicals. Sci. Tech. Inf. Proc. 2013, 40, 195–204. [Google Scholar] [CrossRef]
- Vega-Muñoz, A.; Gónzalez-Gómez-del-Miño, P.; Espinosa-Cristia, J.F. Recognizing New Trends in Brain Drain Studies in the Framework of Global Sustainability. Sustainability 2021, 13, 3195. [Google Scholar] [CrossRef]
- Karakose, T.; Demirkol, M. Exploring the emerging COVID-19 research trends and current status in the field of education: A bibliometric analysis and knowledge mapping. Educ. Process Int. J. 2021, 10, 7–27. [Google Scholar] [CrossRef]
- Zhu, X.A.; Liu, W.J.; Chen, J.; Bruijnzeel, L.A.; Mao, Z.; Yang, X.D.; Cardinael, R.; Meng, F.R.; Sidle, R.C.; Seitz, S.; et al. Reductions in water, soil and nutrient losses and pesticide pollution in agroforestry practices: A review of evidence and processes. Plant Soil 2020, 453, 45–86. [Google Scholar] [CrossRef]
- Kullenberg, C.; Kasperowski, D. What is citizen science?—A scientometric meta-analysis. PLoS ONE 2016, 11, e0147152. [Google Scholar] [CrossRef] [Green Version]
- Arun, K.B.; Madhavan, A.; Sindhu, R.; Binod, P.; Pandey, A.; Reshmy, R.; Sirohi, R. Remodeling agro-industrial and food wastes into value-added bioactives and biopolymers. Ind. Crop. Prod. 2020, 154, 112621. [Google Scholar] [CrossRef]
Zone | Number of Articles in Thirds (%) | Journals (%) | Bradford Multipliers | Journals (Theoretical Serie (SSB)) | |||
---|---|---|---|---|---|---|---|
Nucleus | 482 | (30%) | 3 | (2%) | 3 × (n0) | 3 | |
Zone 1 | 592 | (37%) | 12 | (10%) | 4.0 | 3 × (n1) | 20 |
Zone 2 | 544 | (34%) | 110 | (88%) | 9.2 | 3 × (n2) | 130 |
Total | 1618 | (100%) | 125 * | (100%) | n = 6.6 | 153 * | |
% error (εp) = −22.2% |
Journals | 1960–2020 | 2009–2011 | 2012–2014 | 2015–2017 | 2018–2020 | Trends | JIF: JCR-WoS |
---|---|---|---|---|---|---|---|
Cienc. Agrotec. | 197 | 52 | 16 | 12 | 14 | ↓− | 1.390; Q2 |
Agrofor. Syst. | 153 | 21 | 28 | 12 | 36 | → | 2.549; Q2 |
Cafe Cacao The | 132 | 0 | 0 | 0 | 0 | 0 | 0; N/A |
Turrialba | 127 | 0 | 0 | 0 | 0 | 0 | 0; N/A |
Biosci. J. | 61 | 14 | 17 | 10 | 16 | → | 0.347; Q4 |
Cienc. Rural | 57 | 15 | 13 | 11 | 9 | ↓− | 0.843; Q4 |
Euphytica | 52 | 6 | 3 | 5 | 7 | → | 1.895; Q2 |
Crop Prot. | 45 | 3 | 5 | 2 | 18 | ↑+ | 2.571; Q2 |
Crop. Breed. Appl. Biotechnol. | 43 | 6 | 6 | 8 | 15 | ↑+ | 1.282; Q3 |
Exp. Agric. | 41 | 1 | 3 | 1 | 8 | → | 2.118; Q2 |
Ind. Crop. Prod. | 37 | 2 | 6 | 11 | 17 | ↑+ | 5.645; Q1 |
Acta Sci.-Agron. | 36 | 15 | 6 | 9 | 5 | ↓− | 2.042; Q2 |
Eur. J. Plant Pathol. | 35 | 6 | 10 | 7 | 5 | → | 1.907; Q2 |
Plant Pathol. | 31 | 5 | 2 | 4 | 5 | → | 2.590; Q2 |
Rev. Agrogeoambiental | 27 | 0 | 0 | 12 | 15 | ↑+ | ESCI * |
Total | 1074 | 179 | 168 | 196 | 300 | ↑+ | — |
Rank | Country | Published Articles | Contribution at 1618 | Citations Received by WoS Core | Total Link Strength |
---|---|---|---|---|---|
1. | France | 150 | 9% | 2898 | 200 |
2. | Costa Rica | 80 | 5% | 2136 | 112 |
3. | Brazil | 655 | 40% | 4537 | 94 |
4. | USA | 113 | 7% | 2378 | 85 |
5. | United Kingdom | 35 | 2% | 641 | 42 |
6. | Kenya | 32 | 2% | 392 | 39 |
7. | Germany | 29 | 2% | 368 | 36 |
8. | Mexico | 45 | 3% | 670 | 34 |
9. | Nicaragua | 12 | 1% | 193 | 31 |
10. | Netherlands | 28 | 2% | 453 | 30 |
11. | Ethiopia | 27 | 2% | 285 | 28 |
12. | Colombia | 41 | 3% | 276 | 27 |
13. | Canada | 11 | 1% | 65 | 22 |
14. | Portugal | 25 | 2% | 484 | 20 |
15. | Japan | 16 | 1% | 220 | 20 |
16. | Uganda | 12 | 1% | 222 | 20 |
Language | Articles (1960–2020) | % of 1618 | Articles (2009–2020) | % of 846 | Avg. Cit. per Article (2009–2020) |
---|---|---|---|---|---|
English | 1120 | 69% | 652 | 77% | 5898/652 = 9.05 |
Portuguese | 269 | 17% | 135 | 16% | 577/135 = 4.27 |
French | 126 | 8% | 21 | 2% | 76/21 = 3.62 |
Spanish | 95 | 6% | 36 | 4% | 32/36 = 0.89 |
German | 3 | 0% | 0 | 0% | 0 |
Japanese | 2 | 0% | 0 | 0% | 0 |
Indonesian | 2 | 0% | 2 | 0% | 1/2 = 0.50 |
Hungarian | 1 | 0% | 0 | 0% | 0 |
Total | 1618 | 100% | 846 | 100% | 6584/846 = 7.78 |
Organization | Documents (A) | Citations (B) | Avg. Cit. (C = B/A) | Links | Total Link Strength | Avg. Pub. Year |
---|---|---|---|---|---|---|
Univ Fed Lavras (Federal University of Lavras) | 172 | 1113 | 6 | 20 | 87 | 2011 |
Univ Fed Vicosa (Federal University of Viçosa) | 122 | 1030 | 8 | 22 | 74 | 2012 |
Univ Fed Lavras UFLA (Federal University of Lavras) | 99 | 492 | 5 | 12 | 52 | 2012 |
CIRAD 1 | 64 | 855 | 13 | 26 | 78 | 2012 |
Univ Sao Paulo (University of Sao Paulo) | 53 | 456 | 9 | 22 | 36 | 2005 |
CATIE 2 | 43 | 1410 | 33 | 24 | 61 | 2012 |
EPAMIG 3 | 29 | 178 | 6 | 8 | 35 | 2008 |
Univ Fed Espirito Santo (Federal University of Espirito Santo) | 29 | 191 | 7 | 12 | 29 | 2014 |
Univ Fed Uberlandia (Federal University of Uberlandia) | 25 | 78 | 3 | 6 | 13 | 2014 |
Univ Estadual Paulista (Sao Paulo State University) | 23 | 246 | 11 | 7 | 15 | 2014 |
Authors | Articles | Citations | Total Link Strength | |
---|---|---|---|---|
1 | Paulo Tácito Gontijo Guimaraes | 20 | 128 | 9 |
2 | Philippe Lashermes | 18 | 897 | 16 |
3 | Rubens José Guimaraes | 18 | 96 | 35 |
4 | Antonio Nazareno Guimaraes Mendes | 17 | 82 | 27 |
5 | Gladyston Rodrigues Carvalho | 17 | 66 | 36 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Madrid-Casaca, H.; Salazar-Sepúlveda, G.; Contreras-Barraza, N.; Gil-Marín, M.; Vega-Muñoz, A. Global Trends in Coffee Agronomy Research. Agronomy 2021, 11, 1471. https://doi.org/10.3390/agronomy11081471
Madrid-Casaca H, Salazar-Sepúlveda G, Contreras-Barraza N, Gil-Marín M, Vega-Muñoz A. Global Trends in Coffee Agronomy Research. Agronomy. 2021; 11(8):1471. https://doi.org/10.3390/agronomy11081471
Chicago/Turabian StyleMadrid-Casaca, Héctor, Guido Salazar-Sepúlveda, Nicolás Contreras-Barraza, Miseldra Gil-Marín, and Alejandro Vega-Muñoz. 2021. "Global Trends in Coffee Agronomy Research" Agronomy 11, no. 8: 1471. https://doi.org/10.3390/agronomy11081471
APA StyleMadrid-Casaca, H., Salazar-Sepúlveda, G., Contreras-Barraza, N., Gil-Marín, M., & Vega-Muñoz, A. (2021). Global Trends in Coffee Agronomy Research. Agronomy, 11(8), 1471. https://doi.org/10.3390/agronomy11081471