Xenia and Deficit Nitrogen Influence the Iron and Zinc Concentration in the Grains of Hybrid Maize
Abstract
:1. Introduction
2. Materials and Methods
2.1. Germplasm and Locations
2.2. Self- and Open-Pollinated Seeds
2.3. Biochemical Analysis
2.4. Grain Yield
2.5. Statistical Analysis
3. Results
3.1. Season 1 (2016–2017)
3.2. Season 2 (2017–2018)
3.3. Both Seasons Combined
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Edmeades, G.O.; Trevisan, W.; Prasanna, B.M.; Campos, H. Tropical maize (Zea mays L.). In Genetic Improvement of Tropical Crops; Campos, H., Caligari, P.D.S., Eds.; Springer: Cham, Switzerland, 2017; pp. 57–109. [Google Scholar] [CrossRef]
- Tajwar, T.; Chakraborty, M. Combining ability and heterosis for grain yield and its components in maize inbreds over environments (Zea mays L.). Afr. J. Agric. Res. 2013, 8, 3276–3290. [Google Scholar]
- Chomba, E.; Westcott, C.M.; Westcott, J.E.; Mpabalwani, E.M.; Krebs, N.F.; Patinkin, Z.W.; Palacios, N.; Hambidge, K.M. Zinc absorption from biofortified maize meets the requirements of young rural Zambian children. J. Nutr. 2015, 145, 514–519. [Google Scholar] [CrossRef] [Green Version]
- De Groote, H.; Dema, G.; Sonda, G.; Gitonga, Z. Maize for food and feed in East Africa -The farmers’ perspective. Field Crops Res. 2013, 153, 22–36. [Google Scholar] [CrossRef]
- Mathenge, M.K.; Smale, M.; Olwande, J. The impacts of hybrid maize seed on the welfare of farming households in Kenya. Food Policy 2014, 44, 262–271. [Google Scholar] [CrossRef]
- Ureta, C.; González-Salazar, C.; González, E.J.; Álvarez-Buylla, E.R.; Martínez-Meyer, E. Environmental and social factors account for Mexican maize richness and distribution: A data mining approach. Agric. Ecosyst. Environ. 2013, 179, 25–34. [Google Scholar] [CrossRef]
- Stewart, C.P.; Dewey, K.G.; Ashorn, P. The undernutrition epidemic: An urgent health priority. Lancet 2010, 375, 282. [Google Scholar] [CrossRef]
- Welch, R.M.; Graham, R.D. Breeding for micronutrients in staple food crops from a human nutrition perspective. J. Exp. Bot. 2004, 55, 353–364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Misra, B.K.; Sharma, R.K.; Nagarajan, S. Plant breeding: A component of public health strategy. Curr. Sci. 2004, 86, 1210–1215. [Google Scholar]
- Bouis, H.E. Plant breeding: A new tool for fighting micronutrient malnutrition. J. Nutr. 2002, 132, 491S–494S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frossard, E.; Bucher, M.; Buchler, F.; Mozafar, A.; Hurrell, R. Potential for increasing the content and bioavailability of Fe, Zn and Ca in plants for human nutrition. J. Sci. Food Agric. 2000, 80, 861–879. [Google Scholar] [CrossRef]
- Fageria, N.K.; Moraes, M.F.; Ferreira, E.P.B.; Knupp, A.M. Biofortification of trace elements in food crops for human health. Commun. Soil Sci. Plant Anal. 2012, 43, 556–570. [Google Scholar] [CrossRef]
- Babu, R.; Palacios, N.; Prasanna, B. Biofortified maize—A genetic avenue for nutritionalsecurity. In Translational Genomics for Crop Breeding: Abiotic Stress, Yield and Quality; Varshney, R.K., Tuberosa, R., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2013; pp. 161–176. [Google Scholar]
- Gibson, R.S. Zinc deficiency and human health: Etiology, health consequences, and future solutions. Plant Soil 2012, 361, 291–299. [Google Scholar] [CrossRef]
- Bouis, H.E.; Saltzman, A. Improving nutrition through biofortification: A review of evidence from HarvestPlus, 2003 through 2016. Glob. Food Sec. 2017, 12, 49–58. [Google Scholar] [CrossRef]
- Pujar, M.; Govindaraj, M.; Gangaprasad, S.; Kanatti, A.; Shivade, H. Genetic variation and diversity for grain iron, zinc, protein and agronomic traits in advanced breeding lines of pearl millet [Pennisetum glaucum (L.) R. Br.] for biofortification breeding. Genet. Resour. Crop Evol. 2020, 67, 2009–2022. [Google Scholar] [CrossRef]
- White, P.J.; Broadley, M.R. Biofortification of crops with seven mineral elements often lacking in human diets—Iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phyt. 2009, 182, 49–84. [Google Scholar] [CrossRef]
- Zangani, E.; Afsahi, K.; Shekari, F.; Mac Sweeney, E.; Mastinu, A. Nitrogen and Phosphorus Addition to Soil Improves Seed Yield, Foliar Stomatal Conductance, and the Photosynthetic Response of Rapeseed (Brassica napus L.). Agriculture 2021, 11, 483. [Google Scholar] [CrossRef]
- Noëlle, M.A.H.; Richard, K.; Vernon, G.; Martin, Y.A.; Laouali, M.N.; Liliane, T.N.; Godswill, N.N. Combining ability and gene action of tropical maize (Zea mays L.) inbred lines under low and high nitrogen conditions. J. Agric. Sci. 2017, 9, 222–235. [Google Scholar] [CrossRef] [Green Version]
- Ige, S.A.; Bello, O.B.; Alake, O. Combining ability and heterosis of tolerance to low soil nitrogen in tropical maize cultivars derived from two breeding eras. Open Agric. 2018, 3, 339–347. [Google Scholar] [CrossRef]
- Bänzinger, M.; Edmeades, G.O.; Beck, D.; Bellon, M. Breeding for Drought and Nitrogen Stress Tolerance in Maize from Theory to Practice; International Maize and Wheat Improvement Center (CIMMYT), CIMMYT: Texcoco, México, 2000; Available online: https://repository.cimmyt.org/bitstream/handle/10883/765/68579.pdf?sequence=1&isAllowed=y (accessed on 20 May 2021).
- Pfeiffer, W.H.; McClafferty, B. HarvestPlus: Breeding crops for better nutrition. Crop Sci. 2007, 47, S88–S105. [Google Scholar] [CrossRef]
- Hindu, V.; Palacios-Rojas, N.; Raman, B.; Suwarno, W.; Rashid, Z.; Usha, R.; Gajanan, S.R.; Nair, S. Identification and validation of genomic regions influencing kernel zinc and iron in maize. Theor. Appl. Genet. 2018, 131, 1443–1457. [Google Scholar] [CrossRef] [Green Version]
- Bulant, C.; Gallais, A.; Matthys-Rochon, E.; Prioul, J.L. Xenia effects in maize with normal endosperm. Crop Sci. 2000, 40, 182–189. [Google Scholar] [CrossRef]
- Burton, G. The immediate effect of gametic relationship upon seed production in pearl millet, Pennisetum glaucum. Agron. J. 1952, 44, 424. [Google Scholar] [CrossRef]
- Burton, G.W.; Rabson, R.; Axmann, H. Immediate effect of male and female gametes and N on five pearl millet grain characteristics. Crop Sci. 1980, 20, 7–9. [Google Scholar] [CrossRef]
- Rai, K.N.; Govindaraj, M.; Pfeiffer, W.H.; Rao, A.S. Seed set and xenia effects on grain iron and zinc density in pearl millet. Crop Sci. 2015, 55, 821–827. [Google Scholar] [CrossRef] [Green Version]
- Oikeh, S.O.; Menkir, A.; Maziya-Dixon, B.; Welch, R.; Glahn, R.P. Assessment of concentrations of iron and zinc and bioavailable iron in grains of early-maturing tropical maize varieties. J. Agric. Food Chem. 2003, 51, 3688–3694. [Google Scholar] [CrossRef] [PubMed]
- Oikeh, S.O.; Menkir, A.; Maziya-Dixon, B.; Welch, R.; Glahn, R.P. Genotypic differences in concentration and bioavailability of kernel—iron in tropical maize varieties grown under field conditions. J. Plant Nutr. 2003, 26, 2307–2319. [Google Scholar] [CrossRef] [Green Version]
- Ndhlela, T. Improvement Strategies for Yield Potential, Disease Resistance and Drought Tolerance of Zimbabwean Maize Inbred Lines. Ph.D. Thesis, University of the Free State, Bloemfontein, South Africa, 2012. [Google Scholar]
- AOAC Official Methods of Analysis. Official Methods 985.01, 17th ed.; The Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2000; Volume 1. [Google Scholar]
- Dragičević, V.; Sredojević, S.; Peric, V.; Nisavic, A.; Srebric, M. Validation study of a rapid colorimetric method for the determination of phytic acid and inorganic phosphorus from seeds. Acta Period. Technol. 2011, 42, 11–21. [Google Scholar] [CrossRef]
- Latta, M.; Eskin, M.A. Simple and rapid colorimetric method for phytate determination. J. Agric. Food Chem. 1980, 28, 1313–1315. [Google Scholar] [CrossRef]
- Norhaizan, M.; Nor Faizadatul Ain, A.W. Determination of phytate, iron, zinc, calcium contents and their molar ratios in commonly consumed raw and prepared food in malaysia. Malas. J. Nutr. 2009, 15, 213–222. [Google Scholar]
- Dorsey-Redding, C.; Hurburgh, C.R., Jr.; Johnson, L.A.; Fox, S.R. Adjustment of maize quality data for moisture content. Cereal Chem. 1990, 67, 292–295. [Google Scholar]
- Agrobase. Agrobase Generation II User’s Manual, revised ed.; Agronomix software Inc.: Winnipeg, MB, Canada, 2017; Available online: www.agronomix.com (accessed on 1 March 2021).
- Bello, O.B.; Olawuyi, O.J.; Lawal, M.; Ige, S.A.; Mahamood, J.; Afolabi, M.S.; Azeez, M.A.; Abdulmaliq, S.Y. Genetic gains in three breeding eras of maize hybrids under low and optimum nitrogen fertilization. J. Agric. Sci. 2014, 59, 227–242. [Google Scholar] [CrossRef] [Green Version]
- Zambezi, B.T.; Mwambula, C. The impact of drought and low soil nitrogen on maize production in the SADC region. In Developing Drought and Lown N Tolerant Maize; Edmeades, G., Bänziger, M., Mickelson, H., Peña-Valdivia, C., Eds.; CIMMYT: Texcoco, México, 1997; pp. 29–34. [Google Scholar]
- Zaidi, P.H.; Rafique, S.; Singh, N.N. Response of maize (Zea mays L.) genotypes to excess soil moisture stress: Morpho-physiological effects and basis of tolerance. Eur. J. Agron. 2003, 19, 383–399. [Google Scholar] [CrossRef]
- Šimić, D.; Sudar, R.; Ledenčan, T.; Jambrović, A.; Zdunić, Z.; Brkić, I.; Kovačević, V. Genetic variation of bioavailable iron and zinc in grain of a maize population. J. Cereal Sci. 2009, 50, 392–397. [Google Scholar] [CrossRef]
- Šimić, D.; Drinic, S.M.; Zdunic, Z.; Jambrovic, A.; Ledencan, T.; Brkic, J.; Brkic, A.; Brkic, I. Quantitative trait loci for biofortification traits in maize grain. J. Hered. 2011, 103, 47–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oikeh, S.O.; Menkir, A.; Maziya-Dixon, B.; Welch, R.M.; Glahn, R.P.; Gauch, G. Environmental stability of iron and zinc concentrations in grain of elite early-maturing tropical maize genotypes grown under field conditions. J. Agric. Sci. 2004, 142, 543–551. [Google Scholar] [CrossRef]
- Bello, O.; Afolabi, M.; Ige, S.; Abdulmaliq, S.; Azeez, M.; Mahmud, J. Yield response of diallelic crossed maize (Zea mays L.) genotypes to varying nitrogen regimes in Nigeria. J. Bio-Sci. 2011, 19, 43–52. [Google Scholar] [CrossRef] [Green Version]
Parents | Pedigree | Fe (mg kg−1) | Zn (mg kg−1) | Concentration |
---|---|---|---|---|
Line-1 (F1) | CBY075 LM-1574 | 340.0 | 105.0 | High |
Line-2 (F2) | CBY101 LM-1600 | 287.0 | 103.0 | High |
Line-3 (F3) | CBY102 LM-1601 | 116.5 | 49.5 | Medium |
Line-4 (F4) | CBY359 LM-1858 | 101.0 | 47.5 | Medium |
Line-5 (F5) | CBY017 LM-1516 | 55.5 | 18.0 | Low |
Line-6 (F6) | CBY014 LM-1513 | 45.0 | 10.5 | Low |
Tester-1 (M1) | CBY358 LM-1857 | 139.5 | 56.0 | High |
Tester-2 (M2) | CBY104 LM-1603 | 121.5 | 35.0 | Medium |
Tester-3 (M3) | CBY013 LM-1512 | 44.5 | 9.0 | Low |
Hybrids | Codes | Pedigree |
---|---|---|
Line-1 × Tester-1 | SMH1 | CBY075 LM-1574 × CBY358 LM-1857 |
Line-1 × Tester-2 | SMH7 | CBY075 LM-1574 × CBY104 LM-1603 |
Line-1 × Tester-3 | SMH13 | CBY075 LM-1574 × CBY013 LM-1512 |
Line-2 × Tester-1 | SMH2 | CBY075 LM-1574 × CBY358 LM-1857 |
Line-2 × Tester-2 | SMH8 | CBY075 LM-1574 × CBY104 LM-1603 |
Line-2 × Tester-3 | SMH14 | CBY075 LM-1574 × CBY013 LM-1512 |
Line-3 × Tester-1 | SMH3 | CBY075 LM-1574 × CBY358 LM-1857 |
Line-3 × Tester-2 | SMH9 | CBY075 LM-1574 × CBY104 LM-1603 |
Line-3 × Tester-3 | SMH15 | CBY075 LM-1574 × CBY013 LM-1512 |
Line-4 × Tester-1 | SMH4 | CBY075 LM-1574 × CBY358 LM-1857 |
Line-4 × Tester-2 | SMH10 | CBY075 LM-1574 × CBY104 LM-1603 |
Line-4 × Tester-3 | SMH16 | CBY075 LM-1574 × CBY013 LM-1512 |
Line-5 × Tester-1 | SMH5 | CBY075 LM-1574 × CBY358 LM-1857 |
Line-5 × Tester-2 | SMH11 | CBY075 LM-1574 × CBY104 LM-1603 |
Line-5 × Tester-3 | SMH17 | CBY075 LM-1574 × CBY013 LM-1512 |
Line-6 × Tester-1 | SMH6 | CBY075 LM-1574 × CBY358 LM-1857 |
Line-6 × Tester-2 | SMH12 | CBY075 LM-1574 × CBY104 LM-1603 |
Line-6 × Tester-3 | SMH18 | CBY075 LM-1574 × CBY013 LM-1512 |
Minerals | Soil Depth (cm) | Potchefstroom | Cedara | Vaalharts | |||
---|---|---|---|---|---|---|---|
High N | Low N | High N | Low N | High N | Low N | ||
2016–17 | 2016–17 | 2016–17 | 2016–17 | 2016–17 | 2016–17 | ||
Fe (mg kg−1) | 0–30 | 11.9 | 10.0 | 13.5 | 9.6 | 7.0 | 5.9 |
30–60 | 10.6 | 8.4 | 11.9 | 10.1 | 6.6 | 5.9 | |
Zn (mg kg−1) | 0–30 | 9.4 | 9.0 | 1.3 | 3.2 | 3.3 | 2.5 |
30–60 | 8.6 | 5.6 | 1.4 | 2.2 | 2.9 | 2.3 | |
P (mg kg−1) | 0–30 | 27.9 | 15.5 | 11.7 | 12.8 | 52.3 | 32.4 |
30–60 | 35.7 | 12.6 | 10.5 | 10.1 | 44.7 | 29.3 | |
K (mg kg−1) | 0–30 | 278.5 | 198.4 | 77.0 | 174.5 | 123 | 163 |
30–60 | 314.9 | 209.7 | 70.5 | 120.0 | 114 | 149 | |
Ca (mg kg−1) | 0–30 | 830.0 | 666.0 | 513.0 | 699.0 | 436 | 535 |
30–60 | 952.0 | 887.0 | 511.0 | 694.0 | 402 | 500 | |
Mg (mg kg−1) | 0–30 | 384.9 | 328.5 | 99.0 | 166.0 | 141 | 174 |
30–60 | 440.7 | 438.9 | 99.5 | 154.0 | 128 | 169 | |
Mn (mg kg−1) | 0–30 | 38.9 | 35.1 | 3.6 | 3.4 | 11.1 | 13.2 |
30–60 | 43.8 | 26.9 | 3.6 | 2.3 | 9.2 | 13.1 | |
Soil pH | 0–30 | 6.5 | 6.1 | 4.3 | 4.4 | 6.0 | 6.3 |
30–60 | 6.6 | 6.0 | 4.4 | 4.5 | 6.1 | 6.3 |
Hybrids | Pollination | Fe (mg kg−1) | Zn (mg kg−1) | Pa (mg g−1) | Fe:Pa | Zn:Pa |
---|---|---|---|---|---|---|
SMH1 | Self | 21.36 | 22.53 | 5.68 | 22.70 | 24.89 |
Open | 16.84 | 21.22 | 5.89 | 25.56 | 26.75 | |
SMH2 | Self | 16.91 | 21.93 | 5.10 | 26.63 | 23.85 |
Open | 17.29 | 20.85 | 5.11 | 21.71 | 23.57 | |
SMH3 | Self | 15.93 | 22.99 | 5.28 | 31.22 | 23.66 |
Open | 19.12 | 21.18 | 5.53 | 23.85 | 25.11 | |
SMH4 | Self | 20.14 | 24.34 | 5.56 | 24.34 | 23.72 |
Open | 17.67 | 23.27 | 5.53 | 21.94 | 22.92 | |
SMH5 | Self | 19.80 | 19.66 | 5.24 | 22.65 | 27.05 |
Open | 17.61 | 21.06 | 5.14 | 22.07 | 23.34 | |
SMH6 | Self | 18.60 | 19.63 | 5.11 | 24.77 | 27.11 |
Open | 15.50 | 20.00 | 5.35 | 26.31 | 25.50 | |
SMH7 | Self | 17.10 | 19.23 | 5.84 | 29.79 | 30.08 |
Open | 15.65 | 17.92 | 5.42 | 27.04 | 28.54 | |
SMH8 | Self | 19.11 | 19.31 | 5.39 | 24.16 | 29.29 |
Open | 15.89 | 17.27 | 5.00 | 25.52 | 27.69 | |
SMH9 | Self | 18.66 | 19.05 | 5.42 | 24.45 | 27.93 |
Open | 16.24 | 19.50 | 5.52 | 24.28 | 26.84 | |
SMH10 | Self | 17.60 | 20.02 | 5.20 | 25.81 | 27.56 |
Open | 17.26 | 19.19 | 5.32 | 24.14 | 26.54 | |
SMH11 | Self | 19.25 | 18.50 | 5.26 | 24.41 | 28.87 |
Open | 18.12 | 18.36 | 5.15 | 22.20 | 26.92 | |
SMH12 | Self | 18.12 | 20.33 | 4.63 | 21.99 | 23.76 |
Open | 18.23 | 18.88 | 5.31 | 23.23 | 26.98 | |
SMH13 | Self | 17.57 | 20.08 | 5.81 | 29.07 | 29.31 |
Open | 15.25 | 20.01 | 5.87 | 28.22 | 28.17 | |
SMH14 | Self | 16.53 | 20.01 | 4.83 | 25.75 | 23.53 |
Open | 14.34 | 17.99 | 4.96 | 25.23 | 26.26 | |
SMH15 | Self | 16.97 | 19.12 | 5.75 | 29.23 | 30.16 |
Open | 16.70 | 17.99 | 5.49 | 27.58 | 29.37 | |
SMH16 | Self | 16.33 | 19.55 | 5.54 | 28.96 | 28.66 |
Open | 15.66 | 19.92 | 5.70 | 25.95 | 27.79 | |
SMH17 | Self | 20.44 | 19.82 | 5.12 | 23.20 | 26.89 |
Open | 16.33 | 18.43 | 5.26 | 24.39 | 27.57 | |
SMH18 | Self | 19.72 | 19.62 | 5.10 | 21.97 | 25.84 |
Open | 19.08 | 20.08 | 5.15 | 20.90 | 24.72 | |
Mean | Self | 18.34 | 20.32 | 5.33 | 25.62 | 26.79 |
Open | 16.82 | 19.62 | 5.37 | 24.45 | 26.37 | |
LSD0.05 | Self | 0.60 | 0.73 | 0.37 | 2.44 | 2.25 |
Open | 0.65 | 0.88 | 0.17 | 1.47 | 1.38 |
Source | df | Pollination | Fe (mg kg−1) | Zn (mg kg−1) | Pa (mg g−1) | Fe:Pa | Zn:Pa |
---|---|---|---|---|---|---|---|
Block in (L × Y) | 4 | Self | 1.00 | 0.59 | 1.01 | 36.51 | 27.76 |
Open | 0.96 | 1.16 | 0.12 | 3.37 | 5.46 | ||
Location (L) | 1 | Self | 6.27 *** | 259.13 *** | 10.82 *** | 104.24 *** | 1743.20 *** |
Open | 56.32 *** | 114.92 *** | 11.81 *** | 125.28 *** | 724.93 *** | ||
Entry (E) | 17 | Self | 19.85 *** | 19.67 *** | 0.88 *** | 67.27 *** | 45.55 *** |
Open | 21.42 *** | 20.20 *** | 0.89 *** | 55.45 *** | 40.40 *** | ||
Year (Y) | 1 | Self | 0.01 | 22.35 *** | 48.28 *** | 1351.05 *** | 2214.33 *** |
Open | 1158.42 *** | 108.08 *** | 24.58 *** | 538.72 *** | 599.33 *** | ||
L × E | 17 | Self | 23.25 *** | 7.67 *** | 0.45 ** | 55.23 *** | 28.86 *** |
Open | 17.77 *** | 12.21 *** | 0.52 *** | 27.75 *** | 22.59 *** | ||
L × Y | 1 | Self | 350.19 *** | 384.98 *** | 13.40 *** | 1631.62 *** | 2257.99 *** |
Open | 22.24 *** | 63.96 *** | 6.34 *** | 168.81 *** | 515.03 *** | ||
E × Y | 17 | Self | 13.41 *** | 3.22 *** | 0.53 ** | 37.21 *** | 10.37 |
Open | 12.23 *** | 6.73 *** | 0.29 *** | 34.25 *** | 15.46 *** | ||
L × E × Y | 17 | Self | 18.00 *** | 16.28 *** | 0.51 ** | 61.63 *** | 46.30 *** |
Open | 15.72 *** | 5.89 *** | 0.56 *** | 31.03 *** | 20.42 *** | ||
Residual | 68 | Self | 0.51 | 0.77 | 0.20 | 8.58 | 7.28 |
Open | 0.91 | 1.69 | 0.06 | 4.68 | 4.17 | ||
R2 value | Self | 0.98 | 0.97 | 0.90 | 0.92 | 0.94 | |
Open | 0.97 | 0.91 | 0.95 | 0.91 | 0.93 |
Hybrids | Pollination | Fe (mg kg−1) | Zn (mg kg−1) | Pa (mg g−1) | Fe:Pa | Zn:Pa |
---|---|---|---|---|---|---|
SMH1 | Self | 15.11 | 20.21 | 6.37 | 44.54 | 33.19 |
Open | 18.39 | 19.20 | 5.81 | 27.90 | 31.98 | |
SMH2 | Self | 19.12 | 23.50 | 6.13 | 26.51 | 28.20 |
Open | 15.96 | 20.93 | 6.13 | 33.89 | 30.74 | |
SMH3 | Self | 16.83 | 20.19 | 5.89 | 32.82 | 30.45 |
Open | 13.59 | 19.81 | 6.00 | 37.52 | 30.96 | |
SMH4 | Self | 14.72 | 21.37 | 6.39 | 38.32 | 30.38 |
Open | 17.80 | 19.70 | 6.08 | 31.67 | 32.61 | |
SMH5 | Self | 15.80 | 20.71 | 6.48 | 39.51 | 32.41 |
Open | 16.29 | 18.97 | 6.13 | 34.72 | 35.15 | |
SMH6 | Self | 15.85 | 18.41 | 5.62 | 28.88 | 29.55 |
Open | 16.66 | 18.97 | 5.30 | 29.44 | 27.95 | |
SMH7 | Self | 19.29 | 17.49 | 6.29 | 27.46 | 33.40 |
Open | 13.69 | 18.58 | 6.17 | 38.57 | 33.39 | |
SMH8 | Self | 13.28 | 18.30 | 5.95 | 38.76 | 33.42 |
Open | 12.81 | 18.04 | 6.14 | 38.75 | 33.91 | |
SMH9 | Self | 13.56 | 17.37 | 5.70 | 35.03 | 34.37 |
Open | 16.11 | 16.94 | 5.74 | 33.65 | 33.43 | |
SMH10 | Self | 17.63 | 21.01 | 6.21 | 31.79 | 29.64 |
Open | 15.20 | 18.15 | 5.94 | 35.59 | 32.30 | |
SMH11 | Self | 15.64 | 20.72 | 5.05 | 30.63 | 27.70 |
Open | 17.18 | 18.15 | 5.81 | 31.36 | 31.78 | |
SMH12 | Self | 15.26 | 17.14 | 5.80 | 38.03 | 34.04 |
Open | 15.12 | 17.67 | 5.48 | 31.15 | 31.28 | |
SMH13 | Self | 15.18 | 17.35 | 5.87 | 36.82 | 33.01 |
Open | 15.88 | 18.47 | 6.13 | 33.74 | 33.39 | |
SMH14 | Self | 12.76 | 17.63 | 5.83 | 42.11 | 29.41 |
Open | 12.54 | 17.04 | 5.47 | 34.76 | 31.91 | |
SMH15 | Self | 14.03 | 17.11 | 5.84 | 31.82 | 35.94 |
Open | 14.40 | 18.13 | 6.07 | 38.53 | 34.09 | |
SMH16 | Self | 18.32 | 21.07 | 5.97 | 29.63 | 27.19 |
Open | 15.38 | 17.82 | 6.16 | 33.86 | 36.34 | |
SMH17 | Self | 16.81 | 19.42 | 5.14 | 26.12 | 25.44 |
Open | 17.21 | 18.39 | 5.45 | 28.20 | 29.82 | |
SMH18 | Self | 14.83 | 16.78 | 5.27 | 32.32 | 30.56 |
Open | 14.64 | 18.01 | 5.48 | 33.06 | 31.11 | |
Mean | Self | 15.78 | 19.21 | 5.88 | 33.95 | 31.02 |
Open | 15.49 | 18.50 | 5.88 | 33.69 | 32.34 | |
LSD0.05 | Self | 1.09 | 1.14 | 0.38 | 3.20 | 2.93 |
Open | 0.57 | 1.05 | 0.33 | 2.55 | 2.82 |
Source | df | Pollination | Fe (mg kg−1) | Zn (mg kg−1) | Pa (mg g−1) | Fe:Pa | Zn:Pa |
---|---|---|---|---|---|---|---|
Block in (L × Y) | 4 | Self | 5.33 | 4.27 | 0.36 | 51.68 | 9.78 |
Open | 0.51 | 1.05 | 0.10 | 9.69 | 8.91 | ||
Location (L) | 1 | Self | 1.60 | 74.29 *** | 2.47 *** | 1.59 | 25.58 |
Open | 249.80 *** | 245.53 *** | 15.85 *** | 763.17 *** | 1260.10 *** | ||
Entry (E) | 17 | Self | 29.16 *** | 30.41 *** | 1.38 *** | 237.70 *** | 65.42 *** |
Open | 33.32 *** | 11.44 *** | 1.09 *** | 135.20 *** | 46.77 *** | ||
Year (Y) | 1 | Self | 244.98 *** | 400.10 *** | 1.10 * | 1780.21 *** | 704.77 *** |
Open | 24.71 *** | 1060.63 *** | 62.44 *** | 3034.43 *** | 436.82 *** | ||
L × E | 17 | Self | 21.97 *** | 20.94 *** | 0.81 *** | 87.00 *** | 58.69 *** |
Open | 13.60 *** | 13.83 *** | 0.63 *** | 86.05 *** | 65.11 *** | ||
L × Y | 1 | Self | 572.80 *** | 34.98 *** | 11.12 *** | 1130.02 *** | 137.93 *** |
Open | 6.74 *** | 75.21 *** | 1.43 ** | 111.27 *** | 156.08 *** | ||
E × Y | 17 | Self | 33.59 *** | 19.39 *** | 0.42 * | 234.87 *** | 40.66 *** |
Open | 26.65 *** | 18.64 *** | 0.53 ** | 158.26 *** | 96.74 *** | ||
L × E × Y | 17 | Self | 13.34 *** | 6.73 *** | 0.75 *** | 123.43 *** | 74.89 *** |
Open | 24.20 *** | 12.87 *** | 0.69 *** | 119.07 *** | 78.21 *** | ||
Residual | 68 | Self | 1.71 | 1.88 | 0.21 | 14.69 | 12.32 |
Open | 0.71 | 2.42 | 0.24 | 14.16 | 17.30 | ||
R2 value | Self | 0.96 | 0.94 | 0.84 | 0.94 | 0.86 | |
Open | 0.98 | 0.93 | 0.87 | 0.92 | 0.86 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akhtar, S.; Labuschagne, M.; Osthoff, G.; Mashingaidze, K.; Hossain, A. Xenia and Deficit Nitrogen Influence the Iron and Zinc Concentration in the Grains of Hybrid Maize. Agronomy 2021, 11, 1388. https://doi.org/10.3390/agronomy11071388
Akhtar S, Labuschagne M, Osthoff G, Mashingaidze K, Hossain A. Xenia and Deficit Nitrogen Influence the Iron and Zinc Concentration in the Grains of Hybrid Maize. Agronomy. 2021; 11(7):1388. https://doi.org/10.3390/agronomy11071388
Chicago/Turabian StyleAkhtar, Sajjad, Maryke Labuschagne, Gernot Osthoff, Kingston Mashingaidze, and Akbar Hossain. 2021. "Xenia and Deficit Nitrogen Influence the Iron and Zinc Concentration in the Grains of Hybrid Maize" Agronomy 11, no. 7: 1388. https://doi.org/10.3390/agronomy11071388
APA StyleAkhtar, S., Labuschagne, M., Osthoff, G., Mashingaidze, K., & Hossain, A. (2021). Xenia and Deficit Nitrogen Influence the Iron and Zinc Concentration in the Grains of Hybrid Maize. Agronomy, 11(7), 1388. https://doi.org/10.3390/agronomy11071388