Development of a Five-Parameter Model to Facilitate the Estimation of Additive, Dominance, and Epistatic Effects with a Mediating Using Bootstrapping in Advanced Generations of Wheat (Triticum aestivum L.)
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO (Food and Agriculture Organization of the United Nations). FAOSTAT: World Crop Production Data. 2017. Available online: http://www.fao.org/giews/countrybrief/country.jsp?code=EGY (accessed on 21 September 2017).
- Chandra, D.; Islam, M.A.; Barma, N.C.D. Variability and interrelationship of nine quantitative characters in F5 bulks of five wheat crosses. Pak. J. Biol. Sci. 2004, 7, 1040–1045. [Google Scholar] [CrossRef][Green Version]
- Chowdhry, M.A.; Rafiq, M.; Alam, K. Genetic architecture of grain yield and certain other traits in bread wheat. Pak. J. Agric. Res. 1992, 13, 216–220. [Google Scholar]
- Larik, A.S.; Mahar, A.R.; Hafiz, H.M.I. Heterosis and combining ability estimates in diallel crosses of six cultivars of spring wheat. Wheat Inform. Serv. 1995, 80, 12–19. [Google Scholar]
- Srivastava, R.B.; Paroda, R.S.; Sharma, S.C.; Yunus, M.D. Genetic variability and advance under four selection procedures in wheat pedigree breeding programme. Theor. Appl. Genet. 1989, 77, 516–520. [Google Scholar] [CrossRef] [PubMed]
- El-Ameen, T.A.; Hossain, A.; Teixeira da Silva, J.A. Genetic analysis and selection for bread wheat (Triticum aestivum L.) yield and agronomic traits under drought conditions. Int. J. Plant Breed. 2013, 7, 61–68. [Google Scholar]
- Mahdy, E.E.; Ismail, A.A.; Kheiralla, K.A. The relative merits of selection index and pedigree selection in improving grain yield of spring wheat. Assiut J. Agric. Sci. 1996, 27, 18–33. [Google Scholar]
- Hamam, K.A. Late and early pedigree selection for grain yield with three selection criteria in two populations in bread wheat. J. Plant Prod. Mansoura Univ. 2014, 5, 1831–1847. [Google Scholar] [CrossRef]
- Erkul, A.; Ünay, A.; Konak, C. Inheritance of yield and yield components in a bread wheat (Triticum aestivum L.) cross. Turk. J. Field Crops 2010, 15, 137–140. [Google Scholar]
- Hayman, B.I. The separation of epistatic from additive and dominance variation in generation means. Heredity 1958, 12, 371–390. [Google Scholar] [CrossRef]
- Jinks, J.L.; Jones, R.M. Estimation of the components of heterosis. Genetics 1958, 43, 223–234. [Google Scholar] [CrossRef]
- Kearsey, M.J.; Pooni, H.S. The Genetical Analysis of Quantitative Traits, 1st ed.; Chapman and Hall: London, UK, 1996. [Google Scholar]
- Mather, K.; Jinks, J.L. Biometrecal Genetics; Chapman and Hall: London, UK, 1971. [Google Scholar]
- Abdel Nour, N.A.R.; Moshref, K.H.M. Gene effects and variances in three wheat crosses using the five parameters model. Egypt. J. Plant Breed. 2006, 10, 305–318. [Google Scholar]
- Hamam, K.A. Estimation of genetic parameters using five populations model in three bread wheat crosses under normal irrigation and drought stress. Egypt. J. Plant Breed. 2013, 17, 63–79. [Google Scholar]
- Khaled, M.A.I. Analysis of yield and yield components in two bread wheat crosses under water stress conditions. Egypt. J. Agric. Res. 2013, 91, 1489–1501. [Google Scholar]
- Koumber, R.M.; El-Gammaal, A.A. Inheritance and gene action for yield and its attributes in three bread wheat crosses (Triticum aestivum L.). World J. Agric. Sci. 2012, 8, 156–162. [Google Scholar] [CrossRef]
- Abbasi, S.; Baghizadeh, A.; Mohammadi-Nejad, G.; Nakhoda, B. Genetic Analysis of Grain Yield and Its Components in Bread Wheat (Triticum aestivum L.). Annu. Res. Rev. Biol. 2014, 24, 3636–3644. [Google Scholar] [CrossRef]
- Khalaf, A.; Yassein, A.; Sabet, T. Genetic Statistical Model to Estimate Epistasis, Additive and Dominance Genetic Effects Using Advanced Populations. Egypt. J. Agron. 2017, 39, 127–135. [Google Scholar] [CrossRef]
- Fisher, R.X.V. The Correlation between Relatives on the Supposition of Mendelian Inheritance. Earth Environ. Sci. Trans. R. Soc. Edinb. 1919, 52, 399–433. [Google Scholar] [CrossRef]
- Mather, K.; Jinks, J.L. Biometrical Genetic, 3rd ed.; Chapman and Hall: London, UK, 1982. [Google Scholar]
- Dewey, D.R.; Lu, K.H. A correlation and path coefficient analysis of components of crested wheat grass seed production. Agron. J. 1959, 51, 515–518. [Google Scholar] [CrossRef]
- Arbuckle, J.L. IBM SPSS Amos 24 User’s Guide; Amos Development Corporation, SPSS Inc.: Crawfordville, FL, USA, 2017. [Google Scholar]
- Hayes, A.F.; Montoya, A.K.; Rockwood, N.J. The analysis of mechanisms and their contingencies: PROCESS versus structural equation modeling. Australas. Mark. J. 2017, 25, 76–81. [Google Scholar] [CrossRef]
- Amin, I.A. Genetic behaviour of some agronomic traits in two durum wheat crosses under heat stress. Alex. J. Agric. Res. 2013, 58, 53–66. [Google Scholar]
- Farshadfar, E.; Aghaie, M.; Sharifi, M.; Yaghotipoor, A. Assessment of salt tolerance inheritance in barley via generation mean analysis. J. Biol. Sci. 2008, 8, 461–465. [Google Scholar] [CrossRef]
- Tammam, A.M. Generation mean analysis in bread wheat under different environmental conditions. Minufiy J. Agric. Res. 2005, 30, 937–956. [Google Scholar]
- Lakens, D. Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Front. Psychol. 2013, 4, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Levine, T.R.; Hullett, C.R. Eta Squared, Partial Eta Squared, and Misreporting of Effect Size in Communication Research. Hum. Commun. Res. 2002, 28, 612–625. [Google Scholar] [CrossRef]
- Norouzian, R.; Plonsky, L. Eta- and partial eta-squared in L2 research: A cautionary review and guide to more appropriate usage. Second Lang. Res. 2018, 34, 257–271. [Google Scholar] [CrossRef]
- Cohen, J. A power primer. Psychol. Bullet. 1992, 112, 155–159. [Google Scholar] [CrossRef]
- Gadolina, I.; Papic, L.; Zaynetdinov, R. Statistical bootstrap in the problem of availability factor estimating: Example of SRs 1200 excavator reliability. Int. J. Syst. Assur. Eng. Manag. 2019, 10, 21–28. [Google Scholar] [CrossRef]
- Jung, K.; Lee, J.; Gupta, V.; Cho, G. Comparison of Bootstrap Confidence Interval Methods for GSCA Using a Monte Carlo Simulation. Front. Psychol. 2019, 10, 24–25. [Google Scholar] [CrossRef]
Populations | Gene Actions | ||||
---|---|---|---|---|---|
Additive-Dominance Model | Non-Allelic (Epistasis) | ||||
m | a | D | I = aa | L = DD | |
1 | +1 | 0 | +1 | 0 | |
1 | −1 | 0 | +1 | 0 | |
1 | 0 | +1/16 | 0 | +1/256 | |
1 | 0 | +1/32 | 0 | +1/1024 | |
1 | 0 | +1/64 | 0 | +1/4096 |
Source of Variation | df | Mean Square | |||||
---|---|---|---|---|---|---|---|
N. Spikelet | 1000-Weight | Grain y/Plant | |||||
Cross I (P1 × P2) | 2017 | 2018 | 2017 | 2018 | 2017 | 2018 | |
Rep. | 2 | 5.48 ns | 1.75 ns | 1.11 ns | 0.23 ns | 0.59 ns | 0.18 ** |
Populations | 4 | 226.97 ** | 160.80 ** | 620.50 ** | 532.54 ** | 341.12 ** | 353.90 ** |
Error | 61 | 1.85 | 1.71 | 0.76 | 0.68 | 0.56 | 0.25 |
Effect Size η2% | 89.00 | 89.3 | 98.2 | 96.7 | 97.5 | 94.8 | |
Cross II (P1 × P3) | |||||||
Rep. | 2 | 0.09 ns | 1.26 ns | 2.63 ns | 0.02 ns | 1.09 ns | 3.17 ns |
Populations | 4 | 220.16 ** | 242.21 ** | 496.20 ** | 511.42 ** | 338.01 ** | 370.12 ** |
Error | 61 | 1.73 | 1.39 | 1.125 | 0.77 | 1.23 | 0.96 |
Effect Size η2% | 86.00 | 91.9 | 99.10 | 97.7 | 98.1 | 96.20 |
Generations | No. | Traits | |||||
---|---|---|---|---|---|---|---|
N. Spikelet (n) | 1000-Weight (g) | Grain Yield/Plant (g) | |||||
Mean ± S.E | Mean ± S.E | Mean ± S.E | |||||
Cross I (P1 × P2) | 2017 | 2018 | 2017 | 2018 | 2017 | 2018 | |
Sakha93 (P1) | 10 | 20.00 ± 0.45 | 20.20 ± 0.54 | 37.96 ± 0.28 | 38.60 ± 0.15 | 15.97 ± 0.08 | 15.72 ± 0.21 |
Gimmiza5 (P2) | 10 | 16.60 ± 0.65 | 17.80 ± 0.74 | 33.90 ± 0.31 | 34.30 ± 0.30 | 12.56 ± 0.14 | 12.47 ± 0.15 |
t-value | 4.29 ** | 2.49 ** | 9.65 ** | 12.99 ** | 20.95 ** | 12.74 ** | |
F5 | 18 | 25.00 ± 0.27 | 24.17 ± 0.26 | 48.30 ± 0.24 | 47.57 ± 0.24 | 22.99 ± 0.29 | 23.20 ± 0.13 |
F6 | 15 | 26.73 ± 0.32 | 25.97 ± 0.13 | 49.28 ± 0.23 | 48.85 ± 0.24 | 24.33 ± 0.16 | 24.24 ± 0.11 |
F7 | 15 | 26.76 ± 0.34 | 26.47 ± 0.08 | 49.69 ± 0.15 | 49.31 ± 0.11 | 24.53 ± 0.11 | 24.50 ± 0.09 |
Cross II (P1 × P3) | |||||||
Sakha93 (P1) | 10 | 19.80 ± 0.44 | 19.60 ± 0.60 | 38.10 ± 0.28 | 37.90 ± 0.23 | 15.83 ± 0.12 | 15.93 ± 0.19 |
Sids1 (P3) | 10 | 21.80 ± 0.33 | 22.00 ± 0.33 | 43.90 ± 0.31 | 43.79 ± 0.29 | 20.03 ± 0.12 | 19.77 ± 0.18 |
t-value | 3.64 ** | 3.49 ** | 13.84 ** | 15.82 ** | 24.15 ** | 14.77 ** | |
F5 | 18 | 27.60 ± 0.33 | 28.00 ± 0.25 | 51.40 ± 0.29 | 51.67 ± 0.23 | 25.57 ± 0.30 | 26.40 ± 0.30 |
F6 | 15 | 28.29 ± 0.32 | 29.27 ± 0.25 | 52.77 ± 0.25 | 52.82 ± 0.24 | 28.02 ± 0.39 | 28.30 ± 0.28 |
F7 | 15 | 29.29 ± 0.34 | 29.54 ± 0.25 | 53.10 ± 0.30 | 52.92 ± 0.17 | 28.30 ± 0.27 | 28.55 ± 0.28 |
Generations | No. | Traits | |||||
---|---|---|---|---|---|---|---|
N. Spikelet | 1000−Weight | Grain y/Plant | |||||
Mean | Mean | Mean | |||||
Cross I | 2017 | 2018 | 2017 | 2018 | 2017 | 2018 | |
Scaling test | A | 20.31 ** | 17.55 ** | 28.66 ** | 27.38 ** | 22.81 ** | 22.36 ** |
B | 16.97 ** | 15.94 ** | 28.34 ** | 26.63 ** | 20.93 ** | 21.33 ** | |
C | −8.74 ** | −8.41 ** | −18.08 ** | −18.52 ** | −5.18 ** | −4.98 ** | |
Gene Actions | m | 26.23 ** | 26.70 ** | 50.05 ** | 49.64 ** | 24.42 ** | 24.59 ** |
a | 1.70 ** | 1.20 ** | 2.03 ** | 2.15 ** | 1.71 ** | 1.63 ** | |
D | 51.41 ns | −6.25 ns | −21.12 ns | −17.28 ns | 17.28 ns | −0.11 ns | |
I | −7.93 ** | −7.70 ** | −14.12 ** | −13.19 ** | −10.15 ** | −10.49 ** | |
L | −1137.78 ns | −548.86 ns | −109.23 ns | −254.86 ns | −641.71 ns | −352.71 ns | |
Cross II | |||||||
Scaling test | A | 18.92 ** | 19.48 ** | 26.28 ** | 26.24 ** | 25.08 ** | 24.69 ** |
B | 17.70 ** | 18.01 ** | 24.86 ** | 24.34 ** | 21.30 ** | 21.91 ** | |
C | −9.75 ** | −9.19 ** | −22.07 ** | −22.59 ** | −7.30 ** | −7.11 ** | |
Gene Actions | m | 29.45 ** | 29.56 ** | 53.19 ** | 52.70 ** | 27.95 ** | 28.34 ** |
a | −1.00 ** | −1.2 ** | −2.09 ** | −2.95 ** | −2.10 ** | −1.92 ** | |
D | −3.25 ns | 6.51 ns | 1.6 ns | 24.00 ns | 42.56 ns | 28.31 ns | |
I | −8.65 ** | −8.76 ** | −12.19 ** | −11.85 ** | −10.02** | −10.49 ** | |
L | −416.63 ns | −502.90 ns | −484.69 ns | −648.53 ns | −1290.24 ns | −949.36 ns |
Effect | Traits | Season | Value | Confidence Interval Using Bootstrapping | p-Value by Bootstrapping | Sig. | |
---|---|---|---|---|---|---|---|
Lower | Upper | ||||||
Direct Effect via | TW | First | 0.89 | 0.80 | 0.96 | 0.003 | ** |
Second | 0.73 | 0.64 | 0.83 | 0.008 | ** | ||
NS | First | 0.10 | 0.17 | 0.19 | 0.04 | * | |
Second | 0.25 | 0.15 | 0.35 | 0.006 | ** | ||
Indirect Effect of NS via | TW | First | =(0.93) (0.89) =0.83 | 0.73 | 0.92 | 0.04 | * |
Second | =(0.91) (0.73) =0.66 | 0.56 | 0.77 | 0.003 | ** | ||
Total effect | TW | First | =0.89 + 0.83 =1.72 | 0.91 | 0.93 | 0.015 | * |
Second | =0.73 + 0.66 =1.39 | 0.87 | 0.92 | 0.005 | ** | ||
NS | First | 0.1 | 0.89 | 0.94 | 0.007 | ** | |
Second | 0.25 | 0.88 | 0.93 | 0.006 | ** | ||
Type of mediation | First season | Partial mediation | |||||
Second season | Partial mediation |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khalaf, A.E.A.; Eid, M.A.M.; Ghallab, K.H.; El-Areed, S.R.M.; Yassein, A.A.M.; Rady, M.M.; Ali, E.F.; Majrashi, A. Development of a Five-Parameter Model to Facilitate the Estimation of Additive, Dominance, and Epistatic Effects with a Mediating Using Bootstrapping in Advanced Generations of Wheat (Triticum aestivum L.). Agronomy 2021, 11, 1325. https://doi.org/10.3390/agronomy11071325
Khalaf AEA, Eid MAM, Ghallab KH, El-Areed SRM, Yassein AAM, Rady MM, Ali EF, Majrashi A. Development of a Five-Parameter Model to Facilitate the Estimation of Additive, Dominance, and Epistatic Effects with a Mediating Using Bootstrapping in Advanced Generations of Wheat (Triticum aestivum L.). Agronomy. 2021; 11(7):1325. https://doi.org/10.3390/agronomy11071325
Chicago/Turabian StyleKhalaf, Ahmed E. A., Mohamed A. M. Eid, Kamal H. Ghallab, Sherif R. M. El-Areed, Ahmed A. M. Yassein, Mostafa M. Rady, Esmat F. Ali, and Ali Majrashi. 2021. "Development of a Five-Parameter Model to Facilitate the Estimation of Additive, Dominance, and Epistatic Effects with a Mediating Using Bootstrapping in Advanced Generations of Wheat (Triticum aestivum L.)" Agronomy 11, no. 7: 1325. https://doi.org/10.3390/agronomy11071325
APA StyleKhalaf, A. E. A., Eid, M. A. M., Ghallab, K. H., El-Areed, S. R. M., Yassein, A. A. M., Rady, M. M., Ali, E. F., & Majrashi, A. (2021). Development of a Five-Parameter Model to Facilitate the Estimation of Additive, Dominance, and Epistatic Effects with a Mediating Using Bootstrapping in Advanced Generations of Wheat (Triticum aestivum L.). Agronomy, 11(7), 1325. https://doi.org/10.3390/agronomy11071325