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Abstract: The yield and fruit quality parameters of tomatoes are influenced by environmental
conditions, and cultivation systems play an important role in improving quality, apart from breeding.
We examined five breeding lines and one cultivar in five cultivation systems for yield and fruit
quality parameters. The cultivation systems include a single-glazed greenhouse with and without
supplementary LED interlighting; a double-glazed greenhouse with and without supplementary
LED interlighting; and an organic cultivation system on the field with a rainout shelter. Plants and
fruits grown in the double glazing system showed significantly lower values for plant height, yield,
DM, TSS, fructose, glucose, antioxidant capacity (DPPH, TEAC), TPC, calcium, phosphorus, and
manganese content than in the single-glazed greenhouse, which can be explained by the lower light
transmittance. However, it could be seen that the additional LED interlighting could lower the
negative effect on yield and quality traits due to double glazing.

Keywords: glazing; LED interlighting; antioxidant capacity; aroma compounds; metabolite profile;
breeding lines; tomato (Solanum lycopersicum L.)

1. Introduction

Tomato is one of the world’s favorite vegetables, with 182 million tons produced
worldwide in 2018 [1]. It is an important nutrient source for the human diet and rich in
antioxidants [2,3]. Nevertheless, due to breeding for increased shelf life, yield, and disease
resistance, tomato producers face consumer complaints about unsatisfactory fruits [4].
Therefore, a lot of research has been carried out in recent years to map quantitative trait
loci (QTL) for sensory traits or aroma compounds [5], as well as for agronomical and
consumer-related quality traits (e.g., fruits size, color intensity, firmness, and shape) [6].
Furthermore, breeding programs began to focus on improving quality traits and flavor [7].
Factors influencing quality traits during production are light, nutrient supply, temperature,
in season and off season production, water availability, and humidity [8,9]. However,
different studies have discussed supplemental lighting with light-emitting diodes (LED) as
a possibility to maintain plant and fruit quality, while increasing sustainable production in
terms of reduced energy consumption [10–12]. In comparison with high-pressure sodium
lamps (HPS lamps), LED lamps can be used as intracanopy lighting because of their
reduced heat emission [11]. In general, tomatoes contain health-promoting compounds,
which mainly include antioxidant properties [3,13]. Increased consumer awareness of food
with high nutritional value, has also strengthened the focus on the antioxidant capacity of
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fresh fruits and vegetables [2]. Antioxidants are important to protect cells against damage,
which is mediated through oxidative stress, and are important for plants and humans [13].
In their review, Max et al. [14] pointed out the quantity of the literature discussing the
effects of light, temperature, or humidity on plant physiology or performance, but not
in direct relation to the greenhouse covers. To the best of our knowledge, there are no
studies available yet that have comprehensively examined the influence of single glazing
or double glazing on fruit quality parameters in tomato production. The reduction of light
transmission in double glazing can be up to 20% compared to single glazing, depending
on the material [15]. Despite the reduction in solar radiation, double glazing systems could
be a possibility to allow economic and energy-saving year-round production in temperate
climates such as Germany [15].

The aim of this study was to investigate to what extent different cultivation systems
affect the yield and fruit quality parameters of advanced breeding lines. The parameters
were examined in five different environments: in a single-glazed greenhouse with and
without supplementary LED interlighting; in a double-glazed greenhouse with and without
supplementary LED interlighting; and in an organic cultivation system on the field with
a rainout shelter. We focused on the impact of the cultivation systems on fructose and
glucose content, total acidity, minerals, antioxidant capacity, total phenolic content, and
aroma compounds of the breeding lines and the cultivar Lyterno F1. We also investigated
the effect of the two glazing systems and additional LED interlighting on the plants and
fruits in more detail by examining the metabolite profile of the fruits and performing a
sensory analysis.

2. Materials and Methods
2.1. Plant Material

Five breeding lines of a targeted selection up to the F5 generation, aimed at adapted
cultivars with high nutritional value, preferred flavor compounds, as well as yield parame-
ters (Table 1), were cultivated in 2019 in five cultivation systems (Table 2), together with
the cultivar Lyterno F1 (Rijk Zwaan®, De Lier, The Netherlands). The three salad tomato
types had been grown and selected at the University of Applied Sciences in Osnabrueck
and the two cocktail tomato types had been grown and selected by Culinaris (Saatgut für
Lebensmittel, Goettingen, Germany) under organic low-input conditions. Lyterno F1 has
been chosen because it is a parental cultivar and widely used in commercial production.

Table 1. Breeding lines and the cultivar used in this study.

Breeding Line/
Cultivar

Genotype
Number Genotype Tomato Fruit Type

1 45 Lyterno F1 × Primabella salad
2 157 Paul Robson × Sakura F1 salad
3 170 Paul Robson × Sakura F1 salad
4 781-11 Black Cherry × Sakura F1 cocktail
5 791-11 Resi × Bocati F1 cocktail
6 Lyterno F1 salad

2.2. Growth Conditions
2.2.1. Conventional Hydroponic Cultivation Systems

Cultivation in a hydroponic system took place in two greenhouses at the University
of Applied Sciences Osnabrueck (52◦16′47.68′′ N, 8◦2′49.84′′ E), which were identical in
construction but different in roofing materials—a 4 mm single-pane float glass versus a
double glazing thermal insulation glass. Overall, plants received 53% of the solar PAR
(photosynthetic active radiation) in the single glazing system and 45% in the double glazing
system [16]. This shows the large impact of the greenhouse construction, as the transmis-
sivity of the single-pane glass is about 90%, whereas the double-pane glass transmits only
about 75% of the incoming radiation [16]. Compared to the single glazing, this resulted in
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a reduction in light intensity for the double glazing of 8%. Each greenhouse contained two
treatments with either LED interlighting from sunrise to sunset on the level of the maturing
fruits or no additional lighting. The LEDs (Hortiled® Inter, Hortilux Schréder, Monster, The
Netherlands) emitted 125 µmol m−2 s−1 with 95% in the red and 5% in the blue spectrum,
with an integrated optic to light the leaves only from above, with a high proportion of
diffused light. Plants were sown in week 16 in Seedlingsubstrat (Klasmann-Deilmann,
Geeste, Germany) in the greenhouse (22 ◦C day/20 ◦C night). After two weeks, they were
transplanted to rockwool cubes (Grodan®, Roermond, The Netherlands) at 20 ◦C day and
18 ◦C night temperatures. Planting took place in week 24, with a distance of 0.33 m within
the row (three plants per one substrate slab) and 1.4 m distance between the rows in a
complete randomized block design, with four biological replications and three plants per
replication. Temperature and relative humidity were recorded every 10 min by sensors
hanging between the plants in the height of 1.5 m. The vapor pressure deficit (VPD) was
calculated according to Shamshiri et al. [9]. To exclude fringe effects, each treatment was
bordered with one enclosing row. Plants were fertigated with a nutrient solution for tomato
cultivation conventionally used in horticulture in a recirculating system depending on the
state of development [17]. The fertilizer concentration was adjusted by the continuous
measurement of the electric conductivity in the backflow of the system; it ranged between
1.8 and 3.5 mS/cm. Only beneficial arthropods were used for biological pest control.

Table 2. Characterization of the five cultivation systems (CS).

CS Characterization

1 Single-glazed greenhouse with LED interlighting, conventional hydroponic cultivation system
2 Single-glazed greenhouse without LED interlighting, conventional hydroponic cultivation system
3 Double-glazed greenhouse (low-energy-greenhouse) with LED interlighting, conventional hydroponic cultivation system
4 Double-glazed greenhouse (low-energy-greenhouse) without LED interlighting, conventional hydroponic cultivation system
5 Organic low-input cultivation system on the field with a rainout shelter

2.2.2. Organic Low-Input Cultivation System

The organic low-input cultivation took place on a field at the experimental station
Reinshof, Goettingen (51◦30′17.6′′ N, 9◦55′16.2′′ E) at the University of Goettingen. For
the minimization of Phytophthora infestans and Cladosporium fulvum infestation, the plants
were sheltered with a rainout shelter. The roofing material was a highly transparent UV
stabilized film with a transmission of up to 89% between 400–700 nm, resulting in a share
of about 23% diffused light (Euro 4, FVG Folien-Vertriebs GmbH, Dernbach, Germany).
The plant material was sown in week 16, in Bio-Traysubstrat (Klasmann-Deilmann, Geeste,
Germany) in the greenhouse (22 ◦C day/18 ◦C night). After two weeks, plants were
transferred to bigger pots (22 ◦C day/15 ◦C night). With the end of week 22, the plants
were cultivated on the field in a complete randomized block design, with 4 biological
replications (between four to five plants per replication) and 1 m distances between the
rows and 0.5 m distances within the rows. The plants were bordered with three plants
at the end of each row and one edge row on each side. In total, 18 Lyterno F1 plants and
17 plants of each F5 breeding line were cultivated. No fertilizer was applied during the
entire cultivation period. Neudosan Neu (Neudorff®, Emmerthal, Germany) was applied
twice against mites. The pre-crop in the field was winter wheat. Plants were watered with
a dripping system and a total amount of 187 L/m2.

2.3. Agronomic and Yield Parameters

To evaluate the plant performance, plants in all cultivation systems were monitored
up to 2.5 m in plant height. The growth rate was determined by recording the time from
planting to 2.5 m height for every plant. Counting the trusses up to this height allowed
the calculation of the number of trusses build by the plant per week. The single fruit
weight was determined from truss one to three to calculate the overall yield up to 2.5 m
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plant height and the average weight of fruits built per week since planting. According to
commercial tomato production, trusses were limited to a certain number of fruits to ensure
uniform fruit weight per truss. Six fruits for breeding lines/cultivar above 40 g fruit weight
(breeding lines/cultivar 1, 2, 3, 6) and ten fruits for breeding lines below 40 g fruit weight
(breeding lines 4 and 5) were allowed per truss.

2.4. Harvest and Sample Processing

Harvesting took place in weeks 33 and 34. For each of the four replications, ripe fruits
were harvested. Three to six fruits per biological replication were used for analyses. Two
biological replications were pooled for the panel evaluation. Color measurements and
panel sensory analysis were directly conducted on fresh fruits. For aroma analysis, fruits
were processed, and, subsequently, frozen at −20 ◦C until analysis. Some of the fruits were
cut and frozen at −20 ◦C until they were used for the measurement of total soluble solids
(TSS), titratable acidity (TA), dry matter (DM), and pH analyses. Further sample material
was freeze-dried (EPSILON 2-40, Christ, Osterode am Harz, Germany), and, subsequently,
ground with a ball mill before being used for mineral, glucose, and fructose extraction, and
to determine total phenolic content and antioxidant capacity.

2.5. Fruit Quality Parameters and Chemical Analyses

Color measurements were implemented on two to five fruits on opposite equatorial
sites for each replication with a Minolta Chroma meter CR-400 (Konica Minolta, Inc.,
Marunouchi, Japan). For the TSS, TA, and DM content, the frozen material was thawed and
analyzed, as described in Kanski et al. [18]. The pH value was recorded with the pH titrator
(Titroline 96, SCHOTT AG, Mainz, Germany) at the beginning of the titration for the TA. For
the concentrations of fructose, glucose, and minerals, methods were applied as previously
described [18] with some modifications. A total of 100 mg of freeze-dried material was
used for the glucose and fructose extraction. The aroma compounds were extracted and
analyzed as well, as described in Kanski et al. [18]. The calculation was done as described
in Zhang et al. [19], with 1-octanol as the internal standard. The relative concentration
in relation to 1-octanol was expressed in ng/mL sample. The aroma compounds were
log2-transformed before performing ANOVA analyses.

2.6. Total Phenolic Content and Antioxidant Capacity

To measure the total phenolic content and the antioxidant capacity of the fruits,
50 mg of freeze-dried material were weighed in 2 mL tubes. For the extraction, 1 mL of
methanol (Rotislov®, HPLC Gradient Grade, Roth, Germany) was pipetted to the sample,
shaken for 15 min at 600 rpm, and, subsequently, centrifuged for 10 min at 10,000 rpm
(Centrifuge 5804 R, Eppendorf, Hamburg, Germany). The supernatant was transferred to
a new tube and the extraction was repeated. The two supernatants were combined and
filled up to 2 mL with methanol. This extraction method was used for the total phenolic
content (TPC), the Trolox equivalent antioxidant capacity (TEAC), and the 2,2-diphenyl-1-
picrylhydrazyl (DPPH) radical scavenging assay. The TPC in the fruits were determined
with Folin–Ciocalteu reagent and expressed as mg gallic-acid equivalent per 100 g fresh
weight. The method of Asami et al. (2003) was applied with some modifications. Instead of
a photometer, a plate reader (Synergy HTX multi-mode reader, BioTek, Bad Friedrichshall,
Germany) was used, the quantities were accordingly adjusted, and NaOH was used as a
buffer instead of Na2CO3. The absorbance was measured at 736 nm. For the TEAC assay,
first, the stock solution was prepared through the reaction of 0.7 mM ABTS (2,2′-azino-bis
(3-ethylbenzothiazoline-6-sulfonic acid)) with 0.25 mM K2S2O8. For the ABTS•+ working
solution, the stock solution was diluted five times with methanol. A total of 10 µL of the
extracted sample was mixed with 150 µL ABTS•+ working solution and incubated at room
temperature for 6 min with orbital shaking (425 rpm). The absorption was measured at
734 nm and the results were expressed as Trolox equivalents (µmol TE/100 g FW). All
samples and standards were measured in triplicates. For the DPPH radical scavenging
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assay, 20 µL sample extract was added to 180 µL 0.2 mM DPPH dissolved in methanol,
incubated for 30 min at room temperature, and the absorption was measured at 515 nm.
All measurements were performed in triplicate and expressed as Trolox equivalents (µmol
TE/100 g FW).

2.7. Sensory Evaluation by a Trained Panel

The sensory evaluation was conducted in a sensory lab with 10 selected assessors,
in accordance with DIN EN ISO 8586 [20] guidelines for their selection. The assessors
were trained over nine sessions twice a week, with a total of 16 h training. The panel
leader acted as a consultant, listing a selection of references for the selected attributes,
and assisting the panel in reaching a consensus. However, the panel leader did not
specify the attributes; rather, the attributes were collected by the panel and selected by
consensus. The compiled attributes evaluated by the assessors were overall intensity–
odor, green/grassy odor, tomato–typical odor, overall intensity–flavor, tomato–typical
flavor, fruity flavor, sweetness, sourness, bitterness, saltiness, umami, juiciness, firmness,
and aftertaste. Unstructured line scales were used for the evaluation, ranging from not
perceptible or weak to strongly perceptible or very strong, depending on the attribute. The
data evaluation was performed in four sessions with a randomized sample order. The
assessors received at least half a fruit for each evaluation. The samples were evaluated
in duplicates and for neutralization tap water, unsalted cracker (P. Heumann’s Matzen,
Aerzen, Germany), and peeled cucumber pieces were served to clean the palate as well as
coffee beans to neutralize the olfactory sense. The sensory test was always carried out the
day after harvest. The fruits were stored overnight at room temperature. During the test
sessions, assessors sat separated in individual booths in the sensory lab of the University
of Goettingen, designed in accordance with DIN EN ISO 8589 [21].

2.8. Metabolite Profiling

Metabolite profiling was performed for the breeding lines 2 and 3, and the cultivar
Lyterno F1, grown in two cultivation systems: the single-glazed greenhouse without
additional LED interlighting (CS 2) and the double-glazed greenhouse without additional
LED interlighting (CS 4). The analysis and the extraction were conducted at lifespin GmbH,
Germany. Fresh material was immediately frozen in liquid nitrogen and stored at −80 ◦C
until preparation. Freeze-dried material was milled with a ball mill and an aliquot of
100 mg was weighed and extracted with 1500 µL of a phosphate buffer containing 5%
D2O. The mixture was incubated for 20 min at 85 ◦C and cooled down for 40 min to room
temperature under continuous shaking at 1000 rpm. After centrifugation at 20,000× g, the
aqueous supernatant was spiked with a 10% lifespin additive solution (internal standard
and NMR-reference for aqueous samples). Subsequently, 600 µL of the mixtures were
filled in 5 mm NMR tubes and measured by a nuclear magnetic resonance spectrometer
(Bruker AVANCE III HD 600 MHz; method: 1D 1H noesygppr, NS = 32, T = 298 K). All
spectra passed lifespin QC-routine and were approved for data analysis. The spectra
that were obtained were analyzed using lifespin’s proprietary profiling software (V1.2.3,
customized for tomato extracts). The metabolites were identified by comparison with
lifespin’s database and subsequently quantified against TSP (trimethylsilylpropanoic acid)
(0.0 ppm, 9 protons). The concentration of each metabolite was expressed as mg per g dry
matter (mg/g DM).

2.9. Statistical Analyses

Two- and three-way analysis of variance (ANOVA), followed by Tukey’s HSD Test
(p ≤ 0.05), were conducted to show significant differences. For the metabolite analysis,
a t-test was conducted to show the influence of the single glazing and double glazing
(CS 2 and CS 4). Statistical analyses were performed using SPSS statistical software (IBM
statistics Version 25.0, Armond, NY, USA).
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3. Results
3.1. Environmental Conditions in the Cultivation Systems

Temperature, relative humidity, and vapor pressure deficit were measured over the
entire growth period (Figure S1). For the different growth conditions shown in Figure 1,
data from planting until the end of fruit harvest in week 34 were summarized. Depending
on their effects on plant and fruit development, they were divided into three classes:
optimum, below optimum, and above optimum, in accordance with Shamshiri et al. [9]. The
cultivation systems were grouped, distinguishing between the single-glazed (CS 1 and CS 2)
and the double-glazed (CS 3 and CS 4) greenhouse, and the organic cultivation system (CS 5)
(Figure 1 and Figure S1). Temperature and relative humidity values showed that more than
95% and 97% of the measurements were in the optimum range in CS 1 to 4. Meanwhile,
in the organic cultivation system (CS 5), only 68.51% of the temperature values were in
the optimum range and 24.96% were below this range. Furthermore, 24.8% of the relative
humidity values in CS 5 were above the optimum range (Figure 1A,B). Figure 1C shows the
distribution of the vapor pressure deficit (VPD). According to Shamshiri et al. [9], groups
for VPD were formed to distinguish between the optimum range for plant growth and fruit
development (0.4–1.3 kPa) and values that are supposed to be below (<0.4 kPa = too wet,
limited transpiration) or above the optimum (>1.3 kPa = too dry, heavy transpiration).
Corresponding to the temperature and the relative humidity values, the distribution
of the VPD values showed that more than 50% of the values, during the period under
investigation, were in the optimum range in the CSs 1 to 4, while the optimum VPD was
achieved only in 23.8% for CS 5. Moreover, 41.4% of the values in the organic cultivation
system (CS 5) ranged in the group below 0.4 kPa. Meanwhile, the values higher than
1.3 kPa ranged from 32% to 34.9% between the CSs. Hence, it can be summarized that,
in comparison with CSs 1 to 4, for the organic cultivation system (CS 5), periods outside
the optimum occurred in a VPD lower than 0.4 kPa. Depending on the covering material
and the construction, light intensity differed among the cultivation systems. Long term
measurements showed an amount of PAR on plant level of 53% in CS 1 and 2 and of 45%
in CS 3 and 4. For CS 5, it can be assumed that light intensity was higher than in CS 1 to 4,
due to a plastic cover and the light construction with little shading. Covering of CS 1 to 4
showed only marginal effects in temperature and relative humidity, due to precise climate
control (Figure S1).

3.2. Comparison of Yield, Fruit Quality Attributes, Antioxidant Capacity, and Mineral Content

Fruits from the organic cultivation system (CS 5) and the single-glazed greenhouse
with supplementary LED lighting (CS 1) resulted in the highest fruit weights (Table S1).
However, as plants in CS 5 required about 4.4 weeks longer to reach the height of 2.5 m, it
can be estimated that fruit harvest was also delayed in comparison with CS 1 (Table S1).
The TSS content of the fruits only differed significantly between the greenhouse with
single glazing without LED (CS 2), and double glazing without LED (CS 4), while the TA
fruit content from the organic cultivation system (CS 5) was significantly lower (Table 3).
Glucose content showed a similar pattern, such as the TSS value, with fruits from CS 2
showing the highest concentrations and CS 4 the lowest (Table 3). However, glucose content
was significantly different between fruits from the single-glazed greenhouse without LED
interlighting (CS 2) and the double-glazed greenhouse, whether with or without additional
interlighting (CS 3–4). Fructose content was significantly lower in fruits from the double-
glazed greenhouse with no supplementary interlighting (CS 4) compared to fruits from
the organic cultivation system (CS 5) and the single-glazed greenhouses (CS 1 and 2)
(Table 3). The antioxidant capacity measured within the TEAC and DPPH assay showed
the lowest values in fruits from CS 4 (Table 3), corresponding to the concentration of total
phenolics, which also showed the significant lowest concentration in fruits from CS 4
(Table 3). Furthermore, the antioxidant capacity was significantly different between fruits
from the double-glazed cultivation system without additional interlighting (CS 4) and
both single-glazed greenhouse environments (CS 1 and 2) (Table 3). Mineral content in
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the fruits differ significantly between the organic cultivation system (CS 5) and the four
conventional hydroponic systems (CS 1–4) (Table 4). Thereby, the contents were significantly
lower in fruits from CS 5, except for calcium, which was found in a significantly higher
concentration in these fruits compared to fruits grown in the hydroponic systems (CS 1–4)
(Table 4). In contrast, other immobile nutrients like iron and manganese did not show a
significant increase in CS 5 (Table 4). The soil analyses from CS 5 showed that the amounts
of potassium, phosphorus, and magnesium were at either the targeted level (C) or even
highly available (level D) in the soil (Table S2). The relative concentration of 18 different
showed no clear pattern in the fruits for one cultivation system (Table S3). The relative
concentrations of 6-methyl-5-hepten-2-one, phenylacetaldehyde, methyl salicylate, and
ß-damascenone in the fruits were not significantly different between all CSs. The fruits
from the breeding lines/cultivar showed significant differences for all quality parameters,
except for the relative concentrations of geranial (Table 3, Table 4 and S3). The smaller fruit
types contained higher fructose concentrations than the larger fruited breeding lines, and
the lowest fructose contents were found in fruits from the cultivar Lyterno F1 (Table 3).
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Table 3. Mean values ± standard deviation of quality parameters, fructose and glucose content, antioxidant capacity, and total phenolic content in five cultivation systems of five breeding
lines and Lyterno F1, calculated on fresh matter basis.

Cultivation System (CS) Breeding Line (BL)/Cultivar (CV) BL/CV
× CS

1 2 3 4 5 1 2 3 4 5 6

Dry matter [%] 7.33 ±
1.07 a

7.22 ±
1.39 a

6.88 ±
1.01 ab

6.58 ±
1.34 b

6.97 ±
0.86 ab *** 6.5 ±

0.68 b
7.68 ±
0.83 a

6.1 ±
0.45 bc

7.86 ±
0.67 a

8.14 ±
0.77 a

5.67 ±
0.61 c *** **

TSS [◦ Brix] 6.56 ±
1.10 ab

6.78 ±
1.18 a

6.19 ±
0.89 ab

6.15 ±
1.16 b

6.33 ±
0.97 ab ** 5.75 ±

0.79 b
6.93 ±
0.85 a

5.8 ±
0.87 b

7.45 ±
0.42 a

6.99 ±
0.80 a

5.47 ±
0.84 b *** ns

TA [%] 0.58 ±
0.14 a

0.58 ±
0.16 a

0.56 ±
0.13 a

0.57 ±
0.15 a

0.47 ±
0.09 b *** 0.43 ±

0.13 c
0.51 ±
0.07 bc

0.48 ±
0.07 bc

0.67 ±
0.11 a

0.71 ±
0.12 a

0.52 ±
0.09 b *** ns

pH 4.2 ±
0.14 ab

4.27 ±
0.18 a

4.22 ±
0.13 ab

4.21 ±
0.16 ab

4.14 ±
0.08 b ** 4.22 ±

0.10 bc
4.26 ±
0.11 b

4.36 ±
0.14 a

4.14 ±
0.07 c

4.14 ±
0.12 c

4.13 ±
0.16 c *** ns

a* value 14.03 ±
4.29 b

13.92 ±
4.71 b

14.01 ±
4.48 b

13.59 ±
4.26 b

15.23 ±
4.17 a ** 18.01 ±

1.58 a
14.54 ±
1.87 b

10.54 ±
2.17 c

7.4 ±
0.89 d

18.75 ±
1.54 a

15.7 ±
1.46 b *** ***

Hue angle [◦] 62.09 ±
4.64 ab

61.78 ±
5.72 ab

62.37 ±
5.06 a

62.52 ±
5.17 a

60.73 ±
3.80 b * 58.09 ±

2.19 c
61.62 ±
2.89 b

67.07 ±
3.45 a

67.59 ±
1.81 a

56.52 ±
2.42 c

60.5 ±
2.20 b *** ***

Fructose [g/100 g] 1.89 ±
0.36 ab

1.98 ±
0.42 a

1.85 ±
0.28 ab

1.76 ±
0.42 b

1.98 ±
0.44 a *** 1.78 ±

0.21 c
2.07 ±
0.32 b

1.58 ±
0.14 d

2.26 ±
0.21 a

2.24 ±
0.19 a

1.42 ±
0.18 e *** ***

Glucose [g/100 g] 1.7 ±
0.35 ab

1.8 ±
0.42 a

1.63 ±
0.25 b

1.58 ±
0.40 b

1.7 ±
0.37 ab *** 1.51 ±

0.21 b
1.91 ±
0.30 a

1.39 ±
0.11 bc

2.04 ±
0.18 a

1.98 ±
0.17 a

1.26 ±
0.19 c *** **

DPPH [µmol/100 g] 138.45 ±
28.45 ab

140.19 ±
28.54 a

123.91 ±
21.61 bc

119.82 ±
27.90 c

124.55 ±
24.07 bc *** 134.22 ±

17.68 bc
128.31 ±
24.73 c

109.16 ±
12.75 d

152.28 ±
18.96 a

151.59 ±
21.01 ab

101.47 ±
18.59 d *** ns

TEAC [µmol/100 g] 164.46 ±
29.95 ab

174.33 ±
33.50 a

157.22 ±
25.35 bc

149.19 ±
29.13 c

152.53 ±
25.53 bc *** 166.38 ±

19.39 ab
161.6 ±
29.60 b

141.79 ±
14.12 c

182.81 ±
21.09 a

182.39 ±
21.79 a

123.18 ±
15.94 d *** ns

TPC [mg/100 g] 48.65 ±
7.95 ab

48.27 ±
8.74 ab

46.33 ±
6.48 b

37.12 ±
7.49 c

52.24 ±
9.96 a *** 45.91 ±

7.75 b
53.06 ±
9.50 a

43.33 ±
6.35 b

51.15 ±
5.40 a

51.25 ±
8.43 a

34.88 ±
5.52 c *** ns

ns ≥ 0.05, * < 0.05, ** ≤ 0.01, *** ≤ 0.001. Small letters indicate significant differences between either the cultivation systems or the breeding lines/cultivar (Tukey’s HSD, p ≤ 0.05). BL/CV = Breeding
lines/Cultivar. TSS = Total soluble solids, TA = Total acidity, DPPH = 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay, TEAC = Trolox equivalent antioxidant capacity (TEAC) assay, TPC = Total
phenolic content.
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Table 4. Mean values ± standard deviation of minerals in five cultivation systems of five breeding lines and Lyterno F1, calculated on fresh matter basis.

Cultivation System (CS) Breeding Line (BL)/Cultivar (CV) BL/CV × CS

[mg/100 g] 1 2 3 4 5 1 2 3 4 5 6

Ca 7.9 ±
1.69 b

7.82 ±
1.87 b

7.23 ±
1.28 b

7.39 ±
1.17 b

12.27 ±
1.52 a *** 9.42 ±

2.77 a
8.76 ±
1.92 a

7.43 ±
2.36 b

9.07 ±
2.09 a

9.23 ±
2.55 a

7.31 ±
2.18 b *** ns

K 295.72 ±
49.19 a

285.03 ±
38.08 a

293.74 ±
47.42 a

280.11 ±
49.79 a

200.87 ±
24.84 b *** 233.56 ±

38.81 c
284.17 ±
43.16 b

267.29 ±
38.85 b

286.31 ±
56.23 b

323.07 ±
56.64 a

228.7 ±
36.67 c *** **

Mg 11.98 ±
2.18 a

12.01 ±
2.12 a

12.34 ±
2.62 a

11.84 ±
2.75 a

9.25 ±
1.81 b *** 9.65 ±

1.77 c
10.61 ±
1.24 b

11.13 ±
1.32 b

14.34 ±
2.17 a

14.03 ±
1.59 a

9.17 ±
1.24 c *** *

P 47.94 ±
6.56 a

47.25 ±
6.06 a

47.28 ±
6.79 a

45.33 ±
7.63 a

37.99 ±
6.49 b *** 42.73 ±

5.45 b
48.31 ±
4.71 a

43.5 ±
5.60 b

50.32 ±
6.62 a

50.87 ±
4.62 a

35.08 ±
4.62 c *** **

N 5.81 ±
0.82 a

5.47 ±
0.63 a

5.52 ±
0.66 a

5.48 ±
0.91 a

4.78 ±
0.71 b *** 5.13 ±

0.50 b
5.86 ±
0.70 a

5.00 ±
0.52 b

6.00 ±
0.68 a

5.95 ±
0.61 a

4.5 ±
0.55 c *** *

Fe 0.74 ±
0.28

0.63 ±
0.19

0.64 ±
0.20

0.64 ±
0.31 0.6 ± 0.18 ns 0.56 ±

0.10 cd
0.67 ±
0.14 bc

0.6 ±
0.30 bcd

0.86 ±
0.28 a

0.75 ±
0.14 ab

0.44 ±
0.14 d *** ns

M 0.29 ±
0.09 a

0.29 ±
0.10 a

0.26 ±
0.08 a

0.26 ±
0.06 a

0.08 ±
0.02 b *** 0.24 ±

0.10 b
0.25 ±
0.12 b

0.2 ±
0.07 c

0.31 ±
0.12 a

0.26 ±
0.10 b

0.17 ±
0.07 c *** ***

ns ≥ 0.05, * < 0.05, ** ≤ 0.01, *** ≤ 0.001. Small letters indicate significant differences between either the cultivation systems or the breeding lines/cultivar (Tukey’s HSD, p ≤ 0.05). BL/CV = Breeding
lines/Cultivar.
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3.3. Influence of Glass Cover and Supplementary LED Interlighting on Yield, Fruit Quality, and
Flavor Compounds

Since the differences in the growing conditions between the hydroponic cultivation
systems and the organic cultivation system are high, we took a closer look at the four
hydroponic cultivation systems, which differ only in the covering (single glazing or double
glazing), or the additional interlighting in the form of LED lamps. Most yield parameters
showed significant differences between the two glass covers and the additional interlight-
ing (Table 5). Plants grown in the single-glazed greenhouse were significantly shorter than
plants grown in the double-glazed greenhouse (Table 5). The supplementary interlighting
had a significant influence on the length as well, with smaller plants in the cultivation
systems with additional interlighting (Table 5), while leaf development was not affected.
The truss development and the fruit yield were significantly higher for plants in the single-
glazed cultivation systems (CS 1 and 2), and in the cultivation systems with additional
interlighting (CS 1 and 3) compared to the combination of double glazing without addi-
tional interlighting (Table 5). For the fruit quality parameters DM and TSS, only the glazing
system had a significant impact on the fruits, but not the supplementary interlighting
(Table 6). The values were significantly higher in fruits from the single-glazed greenhouse
(CS 1 and 2) than in the double-glazed greenhouse (CS 3 and 4). The TA content, pH
value, a* value, and the hue angle did not show significant differences in the fruits com-
paring the factors lighting and glazing (Table 6). The DPPH and TEAC values and the
TPC were significantly lower in the fruits from the double-glazed greenhouse (Table 6).
TPC was lower in fruits from the cultivation systems without additional interlighting,
while no significant difference was found for DPPH and TEAC (Table 6). The influence
of the two greenhouse glazing systems and the additional interlighting on the mineral
concentrations in the fruits is not easy to explain because a significant interaction between
breeding lines (BL)/cultivar (CV) and the glazing (G) could be found (Table 6). Mineral
concentration of the fruits, comparing the two glazing types, was mostly dependent on
the breeding line/cultivar. The aroma compounds 1-hexanol, Z-3-hexenol, benzaldehyde,
and 2-phenylethanol showed significantly lower relative amounts from fruits in the culti-
vation systems without supplementary interlighting (Table 7). E-2-hexenal, Z-3-hexenol,
and ß-damascenone had significantly lower relative concentrations in the fruits from the
single-glazed greenhouse, while benzaldehyde, neral, and geranial showed significantly
higher relative concentrations in the fruits (Table 7).

3.4. Comparison of Fruits from CSs with and without Supplementary LED Interlighting in Terms
of Sensory Analysis and Their Metabolite Profile in Single Glazing and Double Glazing

Sensory analysis was conducted with fruits from the single-glazed greenhouse with
and without additional LED interlighting (CS 1 and 2); they did not show significant
differences in the sensory attributes (Table S4). Since higher differences between quality
parameters due to different glazing systems were found, we focused on the fruits of
these two cultivation systems and selected two salad-type breeding lines and the cultivar
Lyterno F1 for metabolite analysis. We compared the metabolite profile from the fruits
in the two cultivation systems. Fruits from the single-glazed greenhouse (CS 2) and the
double-glazed greenhouse (CS 4)—both without additional LED interlighting—showed
significant differences in the amounts of some amino acids and two sugars (Figure 2). We
found that the significant different concentrations always indicated a lower production
of metabolites in fruits from the double-glazed cultivation system (CS 4) compared to the
single-glazed cultivation system (CS 2) (Figure 2; Table S5).
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Table 5. Mean values ± standard deviation of agronomic traits of the five breeding lines and Lyterno F1, distinguished between
single-glazed and double-glazed greenhouses, or with and without supplementary LED lighting.

Glazing (G) Lighting (L) BL/CV BL/CV
× G

BL/CV
× L

G ×
L

BL/CV
× G × L

Single
Glazing

Double
Glazing without with

length [m] 3.31 ± 0.30 3.44 ± 0.34 ** 3.43 ± 0.32 3.31 ± 0.32 * *** ns ns ns ns
leaves up to truss 3 3.12 ± 0.40 3.13 ± 0.48 ns 3.16 ± 0.53 3.09 ± 0.34 ns *** ns ns * ns
trusses up to 2.5 m 9.16 ± 1.34 8.7 ± 1.25 ** 8.59 ± 1.19 9.27 ± 1.34 *** *** ns ns ns ns
trusses per week
since planting 0.91 ± 0.13 0.88 ± 0.14 ns 0.86 ± 0.14 0.93 ± 0.12 *** *** * ns * ns

trusses whole plant 12.52 ± 1.50 12.08 ± 1.33 * 11.95 ± 1.54 12.65 ± 1.23 ** *** ns ns ** ns
time from planting
to 2.5 m plant
height [weeks]

10.2 ± 0.93 9.9 ± 0.93 * 10.01 ± 0.99 10.09 ± 0.90 ns *** ns ns ns ns

single fruit
weight [g] 58.11 ± 29.18 52.09 ± 25.71 ** 52.64 ± 25.53 57.56 ± 29.43 ** *** ns ** * ns

yield [g per week
and plant since
planting]

327.36 ± 150.21 282.48 ± 131.37 *** 282.17 ± 128.99 327.66 ± 152.17 *** *** ns ns ns ns

calculated yield
[kg per plant] 3.23 ± 1.33 2.68 ± 1.01 *** 2.75 ± 1.09 3.17 ± 1.30 *** *** * ns * *

ns ≥ 0.05, * < 0.05, ** ≤ 0.01, *** ≤ 0.001 based on three-way ANOVA. BL/CV = Breeding lines/Cultivar.
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Table 6. Mean values ± standard deviation of quality parameters, fructose and glucose content, antioxidant capacity, total
phenolic content, and minerals of five breeding lines and Lyterno F1, distinguished between single-glazed and double-glazed
greenhouses, or with and without supplementary LED lighting.

Glazing (G) Lighting (L) BL/CV BL/CV
× G

BL/CV
× L

G ×
L

BL/CV
× G × L

Single
Glazing

Double
Glazing without with

Dry matter [%] 7.27 ± 1.23 6.73 ± 1.18 *** 6.9 ± 1.39 7.11 ± 1.06 ns *** *** ns ns ns
TSS [◦ Brix] 6.67 ± 1.13 6.17 ± 1.02 ** 6.46 ± 1.20 6.38 ± 1.01 ns *** ns ns ns ns
TA [%] 0.58 ± 0.15 0.57 ± 0.14 ns 0.57 ± 0.15 0.57 ± 0.14 ns *** ns ns ns ns
pH 4.23 ± 0.16 4.21 ± 0.14 ns 4.24 ± 0.17 4.21 ± 0.14 ns *** ns ns ns ns
a* value 13.98 ± 4.46 13.8 ± 4.33 ns 13.76 ± 4.45 14.02 ± 4.34 ns *** * ns ns ns
Hue angle [◦] 61.93 ± 5.15 62.45 ± 5.06 ns 62.15 ± 5.41 62.23 ± 4.81 ns *** * ns ns ns
Fructose [g/100 g] 1.93 ± 0.39 1.81 ± 0.35 *** 1.87 ± 0.43 1.86 ± 0.32 ns *** *** ns ** *
Glucose [g/100 g] 1.75 ± 0.39 1.61 ± 0.33 *** 1.69 ± 0.42 1.67 ± 0.30 ns *** ** ns * *
DPPH
[µmol/100 g] 139.32 ± 28.20 121.91 ± 24.70 *** 130.22 ± 29.76 131.18 ± 26.05 ns *** ns ns ns ns

TEAC
[µmol/100 g] 169.4 ± 31.82 153.29 ± 27.27 *** 162.03 ± 33.59 160.84 ± 27.69 ns *** ns ns * ns

TPC [mg/100 g] 48.46 ± 8.27 41.82 ± 8.34 *** 42.81 ± 9.84 47.49 ± 7.27 *** *** ** ns *** ns
Ca [mg/100 g] 7.86 ± 1.76 7.3 ± 1.22 * 7.6 ± 1.56 7.57 ± 1.52 ns *** ns ns ns ns
K [mg/100 g] 290.37 ± 43.85 287.07 ± 48.55 ns 282.62 ± 43.78 294.73 ± 47.81 * *** ** ns ns ns
Mg [mg/100 g] 12 ± 2.12 12.16 ± 2.66 ns 11.99 ± 2.42 12.16 ± 2.39 ns *** ** ns ns ns
P [mg/100 g] 47.59 ± 6.26 46.33 ± 7.20 * 46.31 ± 6.87 47.61 ± 6.61 * *** *** ns ns ns
Na [mg/100 g] 5.64 ± 0.75 5.5 ± 0.79 ns 5.47 ± 0.77 5.66 ± 0.75 * *** ** ns ns ns
Fe [mg/100 g] 0.68 ± 0.24 0.64 ± 0.25 ns 0.64 ± 0.25 0.69 ± 0.24 ns *** ns ns ns ns
Mn [mg/100 g] 0.29 ± 0.09 0.26 ± 0.07 * 0.28 ± 0.08 0.28 ± 0.08 ns *** ** ns ns ns

ns ≥ 0.05, * < 0.05, ** ≤ 0.01, *** ≤ 0.001 based on three-way ANOVA. BL/CV = Breeding lines/Cultivar. TSS = Total soluble solids,
TA = Total acidity, DPPH = 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay, TEAC = Trolox equivalent antioxidant capacity
(TEAC) assay, TPC = Total phenolic content.

Table 7. Mean values ± standard deviation of 18 aroma compounds of five breeding lines and Lyterno F1, distinguished
between single-glazed and double-glazed greenhouses or with and without supplementary LED lighting.

Glazing (G) Lighting (L) BL/CV BL/CV
× G

BL/CV
× L

G ×
L

BL/CV
× G × L

[ng/mL sample] Single
Glazing

Double
Glazing without with

1-Penten-3-one 0.01 ± 0.00 0.01 ± 0.00 ns 0.01 ± 0.00 0.01 ± 0.00 ns *** ns ns ns ns
Hexanal 6.24 ± 3.71 7.59 ± 4.93 ns 6.92 ± 3.76 6.92 ± 4.98 ns *** ns ns * ns
Z-3-Hexenal 1.59 ± 0.69 1.46 ± 0.70 ns 1.27 ± 0.55 1.78 ± 0.73 *** *** ns ns * ns
E-2-Hexenal 3.98 ± 1.99 4.61 ± 1.96 *** 3.86 ± 1.74 4.73 ± 2.14 *** *** ns ns *** ns
6-Methyl-5-hepten-
2-one 2.87 ± 1.28 2.74 ± 1.15 ns 2.7 ± 1.16 2.9 ± 1.27 ns ns ns ns ns ns

1-Hexanol 0.14 ± 0.09 0.12 ± 0.08 ns 0.15 ± 0.10 0.1 ± 0.07 *** *** ns ns ns ns
Z-3-Hexenol 0.22 ± 0.05 0.23 ± 0.04 * 0.24 ± 0.04 0.21 ± 0.05 *** *** ns ns ns ns
2-Isobutylthiazole 2.19 ± 2.15 2.14 ± 1.44 ns 2.19 ± 2.00 2.14 ± 1.64 ns *** ** ns ns ns
Benzaldehyde 0.15 ± 0.05 0.13 ± 0.06 ** 0.16 ± 0.06 0.13 ± 0.05 ** *** *** ns * ns
Phenylacetaldeyde 0.09 ± 0.03 0.08 ± 0.03 ns 0.08 ± 0.03 0.08 ± 0.04 ns *** ns * ** ns
Neral 0.05 ± 0.04 0.04 ± 0.03 ** 0.05 ± 0.04 0.05 ± 0.03 ns *** ns ns ns ns
Geranial 0.31 ± 0.16 0.23 ± 0.14 *** 0.21 ± 0.11 0.32 ± 0.17 *** ns ns ns *** ns
Methyl salicylate 0.15 ± 0.27 0.09 ± 0.12 ns 0.14 ± 0.26 0.1 ± 0.14 ns *** ns ns ns ns
ß-Damascenone 0.15 ± 0.10 0.2 ± 0.17 * 0.18 ± 0.15 0.18 ± 0.14 ns *** * ns ns ns
Z-Geranylacetone 0.02 ± 0.01 0.02 ± 0.01 ns 0.02 ± 0.01 0.02 ± 0.01 ** *** * ns ns ns
E-Geranylacetone 2.13 ± 1.10 2.07 ± 1.10 ns 1.91 ± 0.95 2.27 ± 1.20 ns *** ns * ns ns
2-Phenylethanol 0.42 ± 0.18 0.4 ± 0.18 ns 0.45 ± 0.21 0.36 ± 0.14 *** *** ns ns ns ns
ß-Ionone 0.34 ± 0.20 0.33 ± 0.20 ns 0.28 ± 0.14 0.39 ± 0.23 *** *** ns ns ns ns

ns ≥ 0.05, * < 0.05, ** ≤ 0.01, *** ≤ 0.001 based on three-way ANOVA. BL/CV = Breeding lines/Cultivar.

4. Discussion
4.1. Comparison of the Cultivation Systems

Light emitting diodes (LEDs) are expected to become the main lighting technology
in horticulture because of their technical properties; higher energy efficiency, selectable
spectrum, and a cool photon-emitting surface [22]. This has already been shown by a
growing sector of horticultural LED production [23]. We compared yield, fruit nutritional,
and quality parameters from the fruits of five new breeding lines and Lyterno F1 in four
different intensive cultivation systems and an organic low-input production system on the
field. We wanted to determine the extent to which the new breeding lines and Lyterno
F1 are influenced by different cultivation systems and to describe the differences of the
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cultivation systems that might have led to fruit composition changes. Experiments were
performed during the outdoor tomato season with high solar radiation to integrate the
organic low-input cultivation system, though it can be supposed that the effect of glazing
and supplemental LED interlighting could have been more significant during the off season.
This assumption is supported by Tewolde et al. [24], who found a higher influence of sup-
plemental LED interlighting during winter production compared to summer production.

4.1.1. Climatic Differences among the Cultivation Systems

The double glazing system is an approach in horticultural production, known as low-
energy greenhouses, which reduces the heating costs during production. As transmissivity
is reduced by 10–15% compared to commonly used single-pane glass, it is discussed how
the cultivation system could be adapted to maintain healthy plants and product quality [16].
In our study, the calculated light transmissivity in the double-glazed greenhouse showed a
reduced light intensity of 8% compared to the single-glazed greenhouse. A rough ‘rule of
thumb’ is that a reduction of 1% in PAR transmittance of a greenhouse cover results in an
1% reduction in yield [25]. Supplementary lighting is a possible way to compensate reduced
light levels in tomato production, especially during the off season (autumn–winter) in
northern climates, to provide locally grown and fresh tomatoes year round [10]. In addition,
it is an opportunity to fine-tune tomato production by increasing the fruit quality and its
nutritional value with supplementary lighting [22]. The vapor pressure deficit (VPD) is
a suitable indicator for the ratio of root pressure and transpiration suction in the xylem
vessels. Due to this, it is a good indicator to optimize fruit development [9]. In the organic
cultivation system (CS 5), 41.4% of the VPD values occurred in the low range, which
means that a low transpiration and a relatively higher root pressure could be assumed
for that time. Generally, optimum values for temperature, relative humidity, and VPD
were obtained more often in the greenhouse systems (CS 1–4) than in the organic system
(CS 5). In CS 5, both parameters were frequently in a range that could be estimated as too
cold and too wet, resulting in a low VPD, which can prevent transpiration and enhance
root pressure, as discussed by Gruda [8]. In our study, low VPD mainly occurred at night
(data not shown) in all cultivation systems, but, because of open sidewalls in the organic
system (CS 5), values got close to outdoor conditions and could hardly be controlled. As
discussed by Bradfield and Guttridge [26], high humidity and VPD at night can enhance the
calcium content in the fruits, which was also found in the present study. Fruits from CS 5
showed significantly higher calcium concentrations compared to CS 1–4. By controlling
VPD, the calcium content in the fruits can be influenced and therefore be used for quality
enhancement in tomato production. On the other hand, extreme environmental conditions
can lead either to calcium excess or deficiency in the fruits, which is recognized by ‘gold
specks’ or blossom-end rot [8]. In another study by Rosales et al. [27], environmental stress
conditions, such as high VPD, temperature, and solar radiation, have been shown to be
the main factors responsible for increasing antioxidant capacity, and other antioxidant
parameters such as flavonoids, anthocyanins, and total phenols.

4.1.2. Differences in Yield, Fruit Quality Attributes, and Antioxidant Capacity within the
Five Cultivation Systems

The main sugars in tomato fruits are glucose and fructose and their ratio is about
1:1 [28]. However, because fructose is perceived as sweeter, a breeding goal is to increase
the fructose concentration in the fruits [28]. The fructose content in fruits of the breeding
lines is significantly higher in both cocktail and salad types than in fruits from Lyterno
F1 that has larger fruits. The fructose content was significantly lower in fruits from the
double-glazed greenhouse without supplementary interlighting (CS 4), compared to those
from the organic cultivation system (CS 5) and the single-glazed greenhouse without
supplementary LED interlighting (CS2). The sugar content is a widely used attribute to
evaluate the sweetness of tomato fruits. However, it has been shown that sugar content
alone does not reflect the perception of sweetness; aroma compounds can positively
influence sweetness perception [29]. For example, 2-phenylethanol was found to increase
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the perception of sweet taste, aftertaste, and aroma [5], or fruity flavors in combination
with sugar, or sugar plus acid [30]. Some apocarotenoid volatiles, especially ß-ionone
and ß-cyclocitral, were found to positively influence tomato flavor [31]. In the present
study, significant differences between fruits from the breeding lines/cultivar could be
shown for all aroma compounds that were analyzed, except geranial. The cultivation
systems had significant effects on most of the aroma compounds in the fruits except
for the relative concentration of 6-methyl-5-hepten-2-one, phenylacetaldehyde, methyl
salicylate, and ß-damascenone. Cebolla-Cornejo et al. [32], who compared tomato fruits
from two environments (open field and screenhouse), did not find significant differences
in the concentration of 6-methyl-5-hepten-2-one either. Contrariwise, 6-methyl-5-hepten-
2-one was found to be significantly different between fruits from net-house and open-
field conditions by Lee et al. [33]. Cebolla-Cornejo et al. [32] showed that the aroma
compounds, which they referred to as main aroma compounds (Table S3), were significantly
influenced by genotype, except 6-methyl-5-hepten-2-one and phenylacetaldehyde, while
the environmental differences were evident only for hexanal and methyl salicylate. This
shows how difficult it is to find consistent results when such volatile compounds as aroma
compounds are considered. Measurements of the antioxidant capacity and TPC in the fruits
showed significant differences between the single-glazed greenhouse (CS 1–2), compared to
the double-glazed greenhouse without supplementary LED interlighting (CS 4). The TPC
was highest in fruits from the organic system (CS 5), but only significantly higher compared
to fruits from the double-glazed greenhouse conditions (CS 3–4). The lowest contents for
both antioxidant capacity assays and TPC were determined in fruits from the double-glazed
greenhouse without LED interlighting (CS 4). A possible reason could be the reduced
solar radiation in that cultivation system, which was reduced by 8% in contrast to the
single-glazed cultivation systems (CS 1 and 2). Furthermore, Gautier et al. [34] showed that
fruit irradiance during ripening increases antioxidants in fruits. Martínez-Valverde et al. [2]
found that the antioxidant activity in fruits correlated with the contents of total phenolics,
which is in accordance with this study, and that it varies between the cultivars, which
can also be confirmed by the present results. Considering the mineral content, potassium
and phosphate make up the largest proportion of minerals in tomatoes [35], which is
also seen in the present study, whereas we calculated phosphorous not phosphate. Costa
et al. [36] compared the mineral concentrations of the different tomato types—including
cherry, elongated, and round—during the ripening process after harvest. They found that
cherry tomatoes revealed the highest mineral concentrations among the three types, which
is similar to our study, where the breeding lines with the smaller-sized fruits showed higher
mineral contents, especially compared to Lyterno F1. Hernández Suárez et al. [37] showed
that the influence of the cultivation method (intensive, organic, and hydroponic) on the
macro- and microelement concentrations in the fruits depends mainly on the cultivar. The
five cultivation systems in the present study were covered with either glass or plastic cover.
Thus, UV-B and UV-A radiation was not transmitted through either the glass or the field
cover, which could affect physicochemical parameters, although in a study conducted by
Dzakovich et al. [38], no actual alteration of secondary metabolic processes was found,
because of the addition of environmentally relevant doses of UV-B. The results in the
abovementioned study pointed out the possibilities of UV responses to alter the flavor of
greenhouse-grown tomatoes.

4.2. Effects of Single Glazing and Double Glazing and Additional LED Interlighting

Several studies about different additional lighting or light spectra and their influence
on yield or fruit parameters have been published [10,39], but no publication about the
effect of single glazing or double glazing on fruit quality could be found. We took a closer
look at the factors glazing and supplemental LED interlighting and investigated a variety
of parameters that influence taste and aroma, as well as yield parameters, the nutritional
value of the fruits, and how they are affected by these two factors.
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4.2.1. Yield Parameters, Fruit Quality Attributes, Total Phenolic Content, and
Antioxidant Capacity

The plant height was significantly affected by glazing and supplemental LED in-
terlighting, showing that plants in the single-glazed greenhouse or with additional LED
interlighting were smaller than plants in the double-glazed greenhouse or without ad-
ditional LED interlighting. This was in accordance with the number of trusses and the
yield, which were significantly higher in fruits from the single-glazed greenhouse or with
additional LED interlighting. Comparing the influence of the single glazing and double
glazing and the additional LED interlighting on some fruit quality parameters it was shown
that the glazing had a greater impact on mineral and total phenolic content and antioxidant
capacity during the growing season than the additional LED interlighting. We found
significantly higher dry matter, TSS, and fructose and glucose contents in fruits from the
single-glazed greenhouse. The same was determined for the total phenolic content and
the antioxidant capacity (DPPH and TEAC). An effect of the additional LED interlighting
was only obvious for the total phenolic, potassium, phosphor, and sodium contents. The
cultivation systems—either glazing or additional LED interlighting—did not significantly
affect the TA content or the a-value or the hue angle from the fruits but were shown to be
cultivar-dependent. Dzakovich et al. [39], found that supplementary lighting from red,
blue, and far red LEDs did not significantly affect the physiochemical or sensory properties
of greenhouse tomatoes. They suggest that fruits that were harvested in a time were solar
DLI (daily light integral) contributing substantially to the total amount of the light received
by plants, may reduce the effect of supplemental lighting. This explanation could also
be a reason why the light effect in our study was less pronounced than in other studies
that conducted the experiments during winter, where additional light can have a much
higher influence on fruit quality. For example, Kowalczyk et al. [40] reported that plants
grown under supplementary lighting were rated sweeter than fruits from plants with no
supplementary lighting. However, the study was conducted during the autumn–winter
cultivation. In the double-glazed cultivation systems, a lower concentration of most quality
parameters was found in the fruits. The lower light transmittance in the double-glazed
greenhouse system could explain the lower fruit quality. A decrease in PAR transmission
can reduce fruit yield and quality [14,25]. Nevertheless, it could be seen that the additional
LED interlighting could lower the negative effect of the double glazing. Gautier et al. [34]
showed that fruit temperature and irradiance affected antioxidant compounds. Again,
whereas fruit irradiance stimulated the synthesis of some compounds known for their
antioxidant activity, increased fruit temperature had contrasting effects, except for the
rutin content. The application of LED interlighting may be useful to reduce the negative
temperature effect because of their low heat transmission, allowing supplemental lighting
on the fruit level, with limited altering of the microclimate [24]. The genotype, glazing and
supplementary LED interlighting affect the relative concentration of different volatiles in
tomato fruits. There was no consistent trend in the relative concentrations of the aroma
compounds, either with glazing or with supplemental LED interlighting, and some interac-
tions occurred. The relative geranial concentration was found to be significantly higher in
fruits from single-glazed greenhouse and with additional LED interlighting.

4.2.2. Effect of Supplemental LED Interlighting on Sensory Analysis and the Metabolite
Profile in Single Glazing and Double Glazing

The sensory panel revealed no significant difference between the studied sensory
attributes within the fruits of the single-glazed cultivation systems, with and without
supplemental LED interlighting (CS 1 and 2). However, significant differences in the
overall flavor, fruity flavor, sweetness, sourness, juiciness, firmness, and aftertaste were
found between the breeding lines/cultivar. The additional LED interlighting during the
in season in tomato production does not seem to increase the perceivable fruit quality in
this case. Metabolite analyses in fruits from two breeding lines and Lyterno F1 showed
that glutamate was the most abundant amino acid. In general, glutamate, glutamine,
aspartic acid, and GABA (γ-aminobutiric acid) are the quantitatively most important
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free amino acids in tomato fruits [35,41]. The comparison between the fruits from the two
cultivation systems showed significant differences in some metabolites, mainly amino acids.
The fruits grown in the double-glazed greenhouse showed a significant decrease in the
concentrations of arabinose, myo-inositol, leucine, valine, isoleucine, asparagine, aspartate,
lysine, glutamate, glutamine, GABA, and pyroglutamate. It might be that the reduced light
transmissivity in the double-glazed greenhouse led to the reduction in some metabolites.
Glutamate, which is of special interest, as it is known as the fifth basic taste ‘umami’, and is
described as savory [42], significantly decreased in the double-glazed cultivation system
(CS 4) compared to the single-glazed cultivation system (CS 2). These findings were in
accordance with Biais et al. [43], who assessed the influence of the environment on tomato
fruit metabolism under contrasting conditions (water limitation, shading, and optimal for
commercial production (control)) and locations. They used a mesh, which removed 60% of
the photosynthetically active radiation and observed that under shading, the amino acid
contents decreased strongly compared to the control and the water shortage conditions
during cell expansion and ripening. Whereas glutamate content was higher during fruit
ripening under water shortage compared to the control, it was lower under shading [43].

5. Conclusions

Different glazing, additional LED interlighting, and genotype influence the compo-
sition of tomato fruits, their aroma volatile profile, and nutritional value. The genotype
has a huge influence on sugar, acid, and mineral content, antioxidant capacity, and relative
concentration of aroma compounds, as well as on yield parameters. Selecting breeding
lines with high expression of preferred attributes and nutritional value is the first step
to achieve good-tasting fruits. In our study, the results of the sensory attributes did not
show any significant difference between the single-glazed greenhouse, with and without
additional LED interlighting during summer. Nevertheless, different glazing and sup-
plementary intracanopy LED lighting significantly affected yield, quality, and nutritional
characteristics. Plant height, yield, DM, TSS, fructose, glucose, antioxidant capacity (DPPH,
TEAC), TPC, and calcium, phosphorus, and manganese content were significantly lower
in the double-glazed greenhouse than in the single-glazed greenhouse. The results for
the aroma compounds, in contrast, were not consistent. The lower light transmission can
explain the lower fruit quality in the double-glazed greenhouse system. Though it can be
seen that the additional LED interlighting could reduce the negative effect of the double
glazing, the effect of light will probably be even more decisive in the off season. We found
no strong effect of additional LED interlighting on the parameters studied when there was
already sufficient light available for the plants. The use of a double-glazed greenhouse
during the in season can reduce some quality parameters and may only be preferable
during the off season with supplementary LED lighting. Further research needs to be
conducted to evaluate the positive and negative impacts of double-glazed greenhouse
systems (low-energy greenhouses), especially for year-round production.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/agronomy11061203/s1, Figure S1: Mean daily values in the five cultivation systems of (A)
temperature [◦C], (B) relative humidity [%], and (C) vapor pressure deficit (VPD) [kPa] over the entire
period of fruit growth; Table S1: Mean values of yield parameters ± standard deviation in different
cultivation systems of five breeding lines and Lyterno F1; Table S2: Soil analyses in the low-input
cultivation system (CS 5) before and after the experimental setup; Table S3: Mean values ± standard
deviation of 18 aroma compounds in different cultivation systems of five breeding lines and Lyterno
F1; Table S4: Mean values in percent ± standard deviation of sensory panel results in the cultivation
systems CS1 and CS2 of five breeding lines and Lyterno F1; Table S5: Mean values ± standard
deviation of 38 metabolites detected in two breeding lines (2, 3) and Lyterno F1 (6), and the fold change
(FC) from cultivation system 4 (double-glazed greenhouse without LED) compared to cultivation
system 2 (single-glazed greenhouse without LED) are shown. Further, mean values ± standard
deviation are shown for comparison of the 38 metabolites in the two breeding lines and Lyterno F1.
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