Managing Vineyard Topography and Seasonal Variability to Improve Grape Quality and Vineyard Sustainability
Abstract
:1. Introduction
2. Material and Methods
2.1. Climatic Conditions of the Area and Seasonal Trend of Temperature and Rainfall
2.2. Vineyard Characteristics
2.3. Field Measurements and Grape Quality
2.4. Statistical Analysis
3. Results
3.1. Development of Mesoclimatic Units and Weather Conditions of the Study Years
3.2. Vineyards Characteristics
3.3. Berry/Must Parameters
3.4. Vine Vigor and Yield
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van Leeuwen, C.; Seguin, G. The concept of terroir in viticulture. J. Wine Res. 2006, 17, 1–10. [Google Scholar] [CrossRef]
- Gutiérrez-Gamboa, G.; Zheng, W.; De Toda, F.M. Strategies in vineyard establishment to face global warming in viticulture: A mini review. J. Sci. Food Agric. 2021, 101, 1261–1269. [Google Scholar] [CrossRef] [PubMed]
- Seguin, G. ‘Terroirs’ and pedology of wine growing. Cell. Mol. Life Sci. 1986, Experientia 42, 861–873. [Google Scholar] [CrossRef]
- Definition of Vitivinicultural “Terroir”; Resolution OIV/Viti 333/2010; O.I.V.: Tbilisi, Georgia, 2010.
- Echeverría, G.; Ferrer, M.; Mirás-Avalos, J.M. Quantifying the relative impact of physical and human factors on the viticultural expression of terroir. Int. J. Environ. Agric. Res. 2017, 3, 12–25. [Google Scholar]
- Karlik, L.; Marián, G.; Falťan, V.; Havlíček, M. Vineyard zonation based on natural terroir factors using multivariate statistics—Case study Burgenland (Austria). OENO One 2018, 52, 105–117. [Google Scholar] [CrossRef]
- Ferretti, C. Topoclimate and wine quality: Results of research on the Gewürztraminer grape variety in South Tyrol, northern Italy. OENO One 2021, 55, 313–335. [Google Scholar] [CrossRef]
- Lino, T.; Scafidi, P.; Barbagallo, M.G. Effetti dell’altitudine e dell’orientamento dei filari sulla qualità dell’uva ed in particolare sulla componente fenolica della cv. Pinot Nero. Quad. Sci. Vitic. Enol. Univ. Torino 2007, 29, 113–124. [Google Scholar]
- Fraga, H.; Malheiro, A.C.; Moutinho-Pereira, J.; Cardoso, R.M.; Soares, P.M.M.; Cancela, J.J.; Pinto, J.G.; dos Santos, J.C.A. Integrated Analysis of Climate, Soil, Topography and Vegetative Growth in Iberian Viticultural Regions. PLoS ONE 2014, 9, e108078. [Google Scholar] [CrossRef] [PubMed]
- Brillante, L.; Mathieu, O.; Lévêque, J.; van Leeuwen, C.; Bois, B. Water status and must composition in grapevine cv. Chardonnay with different soils and topography and a mini meta-analysis of the δ 13 C/water potentials correlation. J. Sci. Food Agric. 2017, 98, 691–697. [Google Scholar] [CrossRef] [PubMed]
- Chorti, E.; Guidoni, S.; Ferrandino, A.; Novello, V. Effects of different cluster sunlight exposure levels on ripening and anthocyanin accumulation in Nebbiolo grapes. Am. J. Enol. Vitic. 2010, 61, 23–30. [Google Scholar]
- Guidoni, S.; Cavalletto, S.; Bartolomei, S.; Mania, E.; Gangemi, L. Microclimatic aspects in vineyards with different vigor and exposure. Progrès Agric. Vitic. 2011, 17, 547–550. [Google Scholar]
- Matese, A.; Crisci, A.; Di Gennaro, S.F.; Primicerio, J.; Tomasi, D.; Marcuzzo, P.; Guidoni, S. Spatial variability of meteorological conditions at different scales in viticulture. Agric. For. Meteorol. 2014, 189–190, 159–167. [Google Scholar] [CrossRef]
- Andreoli, V.; Bertoni, D.; Cassardo, C.; Ferrarese, S.; Francone, C.; Spanna, F. Analysis of micrometeorological conditions in Piedmontese vineyards. Ital. J. Agrometeorol. 2018, 2, 27–40. [Google Scholar] [CrossRef]
- Brillante, L.; Martínez-Luscher, J.; Yu, R.; Plank, C.M.; Sanchez, L.; Bates, T.L.; Brenneman, C.; Oberholster, A.; Kurtural, S.K. Assessing Spatial Variability of Grape Skin Flavonoids at the Vineyard Scale Based on Plant Water Status Mapping. J. Agric. Food Chem. 2017, 65, 5255–5265. [Google Scholar] [CrossRef] [PubMed]
- Bois, B.; Joly, D.; Quénol, H.; Pieri, P.; Gaudillère, J.-P.; Guyon, D.; Saur, E.; Van Leeuwen, C. Temperature-based zoning of the Bordeaux wine region. OENO One 2018, 52, 1–16. [Google Scholar] [CrossRef]
- Blank, M.; Hofmann, M.; Stoll, M. Seasonal differences in Vitis vinifera L. cv. Pinot noir fruit and wine quality in relation to climate. OENO One 2019, 53, 189–203. [Google Scholar] [CrossRef]
- Dumas, V.; Lebon, E.; Morlat, R. Différenciations mésoclimatiques au sein du vignoble alsacien. J. Int. Sci. Vigne Vin 1997, 31, 1–9. [Google Scholar]
- Kumar, L.; Skidmore, A.K.; Knowles, E. Modelling topographic variation in solar radiation in a GIS environment. Int. J. Geogr. Inf. Sci. 1997, 11, 475–497. [Google Scholar] [CrossRef]
- Intrieri, C.; Poni, S.; Rebucci, B.; Magnanini, E. Row orientation effects on whole-canopy gas exchange of potted and field-grown grapevines. Vitis 1998, 37, 147–154. [Google Scholar]
- Van Leeuwen, C.; Friant, P.; Choné, X.; Tregoat, O.; Koundouras, S.; Dubourdieu, D. Influence of climate, soil and cultivar on terroir. Am. J. Enol. Vitic. 2004, 55, 207–217. [Google Scholar]
- Hunter, J.; Volschenk, C.; Zorer, R. Vineyard row orientation of Vitis vinifera L. cv. Shiraz/101-14 Mgt: Climatic profiles and vine physiological status. Agric. For. Meteorol. 2016, 228–229, 104–119. [Google Scholar] [CrossRef]
- Naylor, A.P.; Creasy, G.L.; Trought, M.C.T.; van Hanen, L. The effects of row orientation and fruit exposure on the juice composition of Sauvignon blanc (Vitis vinifera L.). In Proceedings of the Fifth International Symposium on Cool Climate Viticulture and Enology, Melbourne, Australia, 16–20 January 2000. [Google Scholar]
- Guidoni, S.; Ferrandino, A.; Novello, V. Effects of seasonal and agronomical practices on skin anthocyanin profile of Nebbiolo grapes. Am. J. Enol. Vitic. 2008, 59, 22–29. [Google Scholar]
- Falcão, L.D.; Brighenti, E.; Rosier, J.-P.; Bordignon-Luiz, M.T.; Burin, V.M.; Chaves, E.S.; Vieira, H.J. Vineyard altitude and mesoclimate influences on the phenology and maturation of Cabernet-Sauvignon grapes from Santa Catarina State. OENO One 2010, 44, 135. [Google Scholar] [CrossRef]
- Cugnetto, A.; Santagostini, L.; Rolle, L.; Guidoni, S.; Gerbi, V.; Novello, V. Tracing the “terroirs” via the elemental composition of leaves, grapes and derived wines in cv Nebbiolo (Vitis vinifera L.). Sci. Hortic. 2014, 172, 101–108. [Google Scholar] [CrossRef]
- Echeverría, G.; Ferrer, M.; Mirás-Avalos, J. Effects of soil type on vineyard performance and berry composition in the Río de la Plata Coast (Uruguay). OENO One 2017, 51, 251–261. [Google Scholar] [CrossRef] [Green Version]
- Asproudi, A.; Petrozziello, M.; Cavalletto, S.; Guidoni, S. Grape aroma precursors in cv. Nebbiolo as affected by vine microclimate. Food Chem. 2016, 211, 947–956. [Google Scholar] [CrossRef]
- Asproudi, A.; Petrozziello, M.; Cavalletto, S.; Ferrandino, A.; Mania, E.; Guidoni, S. Bunch Microclimate Affects Carotenoids Evolution in cv. Nebbiolo (V. vinifera L.). Appl. Sci. 2020, 10, 3846. [Google Scholar] [CrossRef]
- Hunter, J.J.; Volschenk, C.G.; Booyse, M. Vineyard row orientation and grape ripeness level effects on vegetative and reproductive growth characteristics of Vitis vinifera L. cv. Shiraz/101-14 Mgt. Eur. J. Agron. 2017, 84, 47–57. [Google Scholar] [CrossRef]
- Hunter, J.J.; Volschenk, C.G. Chemical composition and sensory properties of non-wooded and wooded Shiraz (Vitis vinifera L.) wine as affected by vineyard row orientation and grape ripeness level. J. Sci. Food Agric. 2018, 98, 2689–2704. [Google Scholar] [CrossRef] [PubMed]
- Guidoni, S.; Cavalletto, S.; Gangemi, L.; Mania, E.; Ferrandino, A.; Giacosa, S. Variabilità del microclima del vigneto e maturazione dell’uva Nebbiolo. Quad. Sci. Vitic. Enol. 2013, 32, 325–330. [Google Scholar]
- Marais, J.; Calitz, F.; Haasbroek, P. Relationship Between Microclimatic Data, Aroma Component Concentrations and Wine Quality Parameters in the Prediction of Sauvignon blanc Wine Quality. S. Afr. J. Enol. Vitic. 2017, 22, 22–26. [Google Scholar] [CrossRef] [Green Version]
- Yamane, T.; Jeong, S.T.; Goto-Yamamoto, N.; Koshita, Y.; Kobayashi, S. Effects of temperature on anthocyanin biosynthesis in grape berry skins. Am. J. Enol. Vitic. 2006, 57, 54–59. [Google Scholar]
- Mori, K.; Goto-Yamamoto, N.; Kitayama, M.; Hashizume, K. Effect of high temperature on anthocyanin composition and transcription of flavonoid hydroxylase genes in ‘Pinot noir’ grapes (Vitis vinifera). J. Hortic. Sci. Biotechnol. 2007, 82, 199–206. [Google Scholar] [CrossRef]
- Tarara, J.M.; Lee, J.; Spayd, S.E.; Scagel, C.F. Berry temperature and solar radiation alter acylation, proportion, and concentration of anthocyanin in Merlot grapes. Am. J. Enol. Vitic. 2008, 59, 235–247. [Google Scholar]
- Azuma, A.; Yakushiji, H.; Koshita, Y.; Kobayashi, S. Flavonoid biosynthesis-related genes in grape skin are differentially regulated by temperature and light conditions. Planta 2012, 236, 1067–1080. [Google Scholar] [CrossRef] [PubMed]
- Sadras, V.; Morán, M. Elevated temperature decouples anthocyanins and sugars in berries of Shiraz and Cabernet Franc. Aust. J. Grape Wine Res. 2012, 18, 115–122. [Google Scholar] [CrossRef]
- Scafidi, P.; Pisciotta, A.; Patti, D.; Tamborra, P.; Di Lorenzo, R.; Barbagallo, M.G. Effect of artificial shading on the tannin accumulation and aromatic composition of the Grillo cultivar (Vitis vinifera L.). BMC Plant Biol. 2013, 13, 175. [Google Scholar] [CrossRef] [Green Version]
- Orte, M.P.H.; Concejero, B.; Astrain, J.; Lacau, B.; Cacho, J.; Ferreira, V. Influence of viticulture practices on grape aroma precursors and their relation with wine aroma. J. Sci. Food Agric. 2014, 95, 688–701. [Google Scholar] [CrossRef] [PubMed]
- Alessandrini, M.; Gaiotti, F.; Belfiore, N.; Matarese, F.; D’Onofrio, C.; Tomasi, D. Influence of vineyard altitude on Glera grape ripening (Vitis vinifera L.): Effects on aroma evolution and wine sensory profile. J. Sci. Food Agric. 2017, 97, 2695–2705. [Google Scholar] [CrossRef] [PubMed]
- Ferrer, M.; Echeverría, G.; Miras-Avalos, J.M. Meteorological Conditions: Influence on Yield, Sanitary Status and Grape Composition. Int. J. Environ. Agric. Res. 2017, 3, 16–27. [Google Scholar] [CrossRef]
- Oliveira, A.A.; Correia, M.J. Influence of elevation and slope exposure upon productivity and must quality of Touriga Nacional (sub-region of Douro superior). J. Int. Sci. Vigne Vin 2008, 42, 73–78. [Google Scholar] [CrossRef] [Green Version]
- Rienth, M.; Lamy, F.; Noll, D.; Lorenzini, F.; Viret, O.; Zufferey, V. An example of a vine-physiology based fine-scale terroir study in the AOC Lavaux-region in Switzerland. E3S Web Conf. 2018, 50, 02011. [Google Scholar] [CrossRef] [Green Version]
- Roullier-Gall, C.; Boutegrabet, L.; Gougeon, R.D.; Schmitt-Kopplin, P. A grape and wine chemodiversity comparison of different appellations in Burgundy: Vintage vs terroir effects. Food Chem. 2014, 152, 100–107. [Google Scholar] [CrossRef] [PubMed]
- Pinu, F.R.; Tumanov, S.; Grose, C.; Raw, V.; Albright, A.; Stuart, L.; Villas-Boas, S.G.; Martin, D.; Harker, R.; Greven, M. Juice Index: An integrated Sauvignon blanc grape and wine metabolomics database shows mainly seasonal differences. Metabolomics 2019, 15, 3. [Google Scholar] [CrossRef] [PubMed]
- Rienth, M.; Lamy, F.; Schoenenberger, P.; Noll, D.; Lorenzini, F.; Viret, O.; Zufferey, V. A vine-physiology based terroir study in the AOC Lavaux-region in Switzerland. OENO One 2020, 54, 863–880. [Google Scholar] [CrossRef]
- Santos, J.A.; Fraga, H.; Malheiro, A.C.; Moutinho-Pereira, J.; Dinis, L.-T.; Correia, C.; Moriondo, M.; Leolini, L.; DiBari, C.; Costafreda-Aumedes, S.; et al. A Review of the Potential Climate Change Impacts and Adaptation Options for European Viticulture. Appl. Sci. 2020, 10, 3092. [Google Scholar] [CrossRef]
- Guidoni, S.; Petrella, F.; Giovannozzi, M. The lands of Barolo and Barbaresco. The complexity of Piedmont soils. Tong 2013, 16, 23–28. [Google Scholar]
- Masnaghetti, A. Barolo MGA. Enciclopedia delle Grandi Vigne del Barolo; Masnaghetti, A., Ed.; ENOGEA: Monza, Italy, 2015; p. 407. [Google Scholar]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Gerbi, V.; Zeppa, G.; Rolle, L.; Ubigli, M.; Alessandria, F. Barolo. Studio per la Caratterizzazione del Territorio, delle Uve e dei Vini Dell’area di Produzione. Regione Piemonte; Supplemento al n. 24 di “Quaderni della Regione Piemonte—Agricoltura”; IRIS: Torino, Italy, 2000; p. 191. [Google Scholar]
- IPLA. Manuale di Campagna per il Rilevamento e la Descrizione dei Suoli; Rev. 03/marzo 2006/DS01P11; IPLA: Torino, Italy, 2003. [Google Scholar]
- Soil Survey Staff. Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys, 2nd ed.; U.S. Department of Agriculture Handbook 436; Natural Resources Conservation Service: Washington, DC, USA, 1999. Available online: www.nrcs.usda.gov/wps/portal/nrcs/main/soils/survey/class/taxonomy/ (accessed on 15 May 2021).
- MiPAF. Metodi di Analisi Chimica del Suolo; Angeli, F., Ed.; MiPAF: Rome, Italy, 2000; p. 536. [Google Scholar]
- Walkley, A.J.; Black, I.A. Estimation of soil organic carbon by the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Gazzetta Ufficiale della Repubblica Italiana. Serie Generale n. 204 del 2 Settembre 1997; Supplemento Ordinario n. 173. Approvazione dei “Metodi Ufficiali di Analisi Fisica del Suolo”; Repubblica Italiana: Rome, Italy, 1997. [Google Scholar]
- USDA. Soil Survey Laboratory Methods Manual; Report n. 42, Version 3; USDA: Washington, DC, USA, 1996; p. 716. Available online: https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ref/?cid=nrcs142p2_054247 (accessed on 15 May 2021).
- Schneider, A.; Gerbi, V.; Redoglia, M. A rapid HPLC method for separation and determination of major organic acids in grape musts and wines. Am. J. Enol. Vitic. 1987, 38, 151–155. [Google Scholar]
- Di Stefano, R.; Cravero, M.C. Metodi per lo studio dei polifenoli dell’uva. Riv. Vitic. Enol. 1991, 2, 37–45. [Google Scholar]
- Glories, Y.; Augustin, M. Maturité phénolique du raisin, conséquences technologiques: Application aux millésimes 1991 et 1992. J. Tech. CIVB 1993, F, 56–61. [Google Scholar]
- Cagnasso, E.; Caudana, A.; Rolle, L.; Gerbi, V. Contributo allo studio allo studio della maturità fenolica in uve piemontesi. Quad. Vitic. Enol. Univ. Torino 2003, 26, 61–80. [Google Scholar]
- Mania, E. Valutazioni Interdisciplinari per la Valorizzazione del Sistema Vigneto in Contesto Collinare. Ph.D. Thesis, Università di Torino, Torino, Italy, 2017; p. 184. [Google Scholar]
- Mania, E.; Gangemi, L.; Piazzi, M.; Guidoni, S. Geographical features such as slope and exposure are terroir elements influencing grape quality. In Proceedings of the XIIth International Terroir Congress 2018, Zaragoza, Spain, 18–22 June 2018; pp. 484–487. [Google Scholar]
- Jones, G.V.; White, M.A.; Cooper, O.R.; Storchmann, K. Climate Change and Global Wine Quality. Clim. Chang. 2005, 73, 319–343. [Google Scholar] [CrossRef]
- Keller, M. Managing grapevines to optimise fruit development in a challenging environment: A climate change primer for viticulturists. Aust. J. Grape Wine Res. 2010, 16, 56–69. [Google Scholar] [CrossRef]
- Makowski, K. The Daily Temperature Amplitude and Surface Solar Radiation. Ph.D. Thesis, University of Zurich, Zurich, Switzerland, 2009; p. 95. [Google Scholar]
- Nicholas, K.A.; Matthews, M.A.; Lobell, D.B.; Willits, N.H.; Field, C.B. Effect of vineyard-scale climate variability on Pinot noir phenolic composition. Agric. For. Meteorol. 2011, 151, 1556–1567. [Google Scholar] [CrossRef]
- De Oliveira, A.F.; Mercenaro, L.; Del Caro, A.; Pretti, L.; Nieddu, G. Distinctive Anthocyanin Accumulation Responses to Temperature and Natural UV Radiation of Two Field-Grown Vitis vinifera L. Cultivars. Molecules 2015, 20, 2061–2080. [Google Scholar] [CrossRef] [PubMed]
- Rienth, M.; Vigneron, N.; Darriet, P.; Sweetman, C.; Burbidge, C.; Bonghi, C.; Walker, R.P.; Famiani, F.; Castellarin, S.D. Grape Berry Secondary Metabolites and Their Modulation by Abiotic Factors in a Climate Change Scenario–A Review. Front. Plant Sci. 2021, 12, 643258. [Google Scholar] [CrossRef] [PubMed]
- Roby, G.; Harbertson, J.F.; Adams, D.A.; Matthews, M.A. Berry size and vine water deficits as factors in winegrape composition: Anthocyanins and tannins. Aust. J. Grape Wine Res. 2004, 10, 100–107. [Google Scholar] [CrossRef]
- Walker, R.R.; Blackmore, D.H.; Clingeleffer, P.R.; Kerridge, G.H.; Rühl, E.H.; Nicholas, P.R. Shiraz berry size in relation to seed number and implications for juice and wine composition. Aust. J. Grape Wine Res. 2005, 11, 2–8. [Google Scholar] [CrossRef]
- Barbagallo, M.; Guidoni, S.; Hunter, J. Berry Size and Qualitative Characteristics of Vitis vinifera L. cv. Syrah. S. Afr. J. Enol. Vitic. 2016, 32, 129–136. [Google Scholar] [CrossRef] [Green Version]
- Smart, R.; Dick, J.K.; Gravett, I.M.; Fisher, B. Canopy Management to Improve Grape Yield and Wine Quality. S. Afr. J. Enol. Vitic. 2017, 11, 3–17. [Google Scholar] [CrossRef] [Green Version]
- Lakso, A.N.; Kliewer, W.M. The Influence of Temperature on Malic Acid Metabolism in Grape Berries: I. Enzyme responses. Plant Physiol. 1975, 56, 370–372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spayd, S.E.; Tarara, J.M.; Mee, D.L.; Ferguson, J.C. Separation of sunlight and temperature effects on the composition of Vitis vinifera cv. Merlot Berries. Am. J. Enol. Vitic. 2002, 53, 171–182. [Google Scholar]
- He, F.; Mu, L.; Yan, G.-L.; Liang, N.-N.; Pan, Q.-H.; Wang, J.; Reeves, M.J.; Duan, C.-Q. Biosynthesis of Anthocyanins and Their Regulation in Colored Grapes. Molecules 2010, 15, 9057–9091. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Code | Urban District | MU | Group | Aspect (°) | Elevation (m above See Level) | Slope Gradient (°) | Intercepted Surface Solar Radiation (kW h m−2) |
---|---|---|---|---|---|---|---|
287 | Castiglione F. | LM | E | 70 | 313 | 7 | 981 |
295 | Verduno | LM | E | 96 | 365 | 15 | 1137 |
296 | Verduno | LM | SE | 82 | 264 | 11 | 1107 |
297 | Verduno | LM | SE | 115 | 283 | 20 | 1158 |
294 | La Morra | LM | SE | 135 | 217 | 17 | 1195 |
293 | La Morra | LM | SE | 165 | 249 | 2 | 1204 |
292 | Diano d’Alba | LM | SE | 146 | 274 | 18 | 1223 |
283 | Barolo | LM | SE | 148 | 307 | 15 | 1217 |
273 | Novello | SB | SW | 190 | 398 | 18 | 1263 |
289 | Serralunga | SB | SW | 209 | 384 | 13 | 1238 |
291 | Sinio | SB | SW | 190 | 361 | 25 | 1251 |
274 | Novello | SB | SW | 235 | 338 | 7 | 1159 |
284 | Barolo | B | W | 279 | 282 | 14 | 1056 |
285 | Castiglione F. | B | W | 270 | 252 | 13 | 1095 |
286 | Castiglione F. | B | W | 320 | 333 | 14 | 973 |
288 | Serralunga | B | W | 305 | 323 | 9 | 1051 |
290 | Sinio | B | W | 280 | 432 | 15 | 1054 |
Mean values of the groups | E | 83 d 1 | 339 ab | 11.0 a | 1059 b | ||
SE | 132 c | 266 b | 13.8 a | 1184 a | |||
SW | 206 b | 370 a | 15.8 a | 1228 a | |||
W | 291 a | 324 ab | 13.0 a | 1046 b |
Texture | CEC | AWC (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Code | Group | Lithological Substratum | Soil Classification 1 | Sand | Silt | Clay | C/N | Topsoil | Subsoil | |
(%) | (%) | (%) | meq/100 g | 0–20 cm | 30–70 cm | |||||
287 | E | Marls, claystones, siltstones | Typic Ustorthent fine-silty mixed calcareous mesic | 27.0 | 50.4 | 22.6 | 8.8 | 13.8 | 13.2 | 18.7 |
295 | E | Marls | Haplic Ustarent fine-silty mixed calcareous mesic | 22.6 | 48.5 | 28.9 | 11.3 | 13.5 | 21.7 | 17.4 |
283 | SE | Marls | Calcic Haplustept fine-silty mixed calcareous mesic | 19.0 | 55.3 | 25.7 | 7.6 | 16.9 | 14.2 | 18.7 |
296 | SE | Marls | Calcic Haplustalf fine-silty mixed calcareous mesic | 24.1 | 44.1 | 31.8 | 7.1 | 16.4 | 17.4 | 15.0 |
297 | SE | Marls | Haplic Ustarent fine-silty mixed calcareous mesic | 16.1 | 56.0 | 27.9 | 5.4 | 11.9 | 19.5 | 18.0 |
294 | SE | Marls | Typic Ustorthent fine-silty mixed calcareous mesic | 29.5 | 48.2 | 22.3 | 4.3 | 5.3 | 15.9 | 16.5 |
293 | SE | Marls | Typic Haplustept fine-silty mixed calcareous mesic | 19.3 | 52.5 | 28.2 | 4.3 | 7.5 | 17.1 | 17.6 |
292 | SE | Claystones, siltstones | Typic Haplustept fine-silty mixed calcareous mesic | 28.8 | 44.8 | 26.4 | 7.4 | 12.9 | 17.7 | 16.8 |
273 | SW | Marls | Typic Haplustept fine-silty calcareous mesic | 29.3 | 45.3 | 25.4 | 6.4 | 9.8 | 15.8 | 16.2 |
289 | SW | Marls | Typic Ustorthent fine-silty mixed calcareous mesic | 18.7 | 56.5 | 24.8 | 3.5 | 8.8 | 12.5 | 17.9 |
291 | SW | Marls, claystones, siltstones | Typic Haplustept fine-silty mixed calcareous mesic | 36.5 | 40.5 | 23.0 | 4.9 | 8.7 | 15.1 | 16.4 |
274 | SW | Marls | Typic Ustorthent fine-silty calcareous mesic | 20.9 | 54.6 | 24.5 | 7.9 | 9.8 | 17.8 | 17.8 |
284 | W | Marls | Typic Haplustept fine-silty mixed calcareous mesic | 28.6 | 50.9 | 20.5 | 3.5 | 8.1 | 17.1 | 14.8 |
285 | W | Marls | Typic Ustorthent fine-silty mixed calcareous mesic | 25.2 | 51.5 | 23.3 | 6.8 | 18.0 | 19.7 | 19.0 |
286 | W | Marls, claystones, siltstones | Typic Ustorthent fine-silty mixed calcareous mesic | 19.9 | 54.6 | 25.5 | 6.2 | 13.8 | 18.8 | 17.6 |
288 | W | Marls | Typic Haplustept fine-silty mixed calcareous mesic | 19.5 | 51.9 | 28.6 | 5.1 | 13.8 | 17.1 | 16.6 |
290 | W | Marls | Typic Ustorthent fine-silty mixed calcareous mesic | 19.8 | 51.8 | 28.4 | 3.0 | 7.6 | 17.1 | 17.2 |
Mean values of the groups | E | 24.8 a2 | 49.5 a | 25.8 a | 10.1 a | 13.7 a | 17.5 a | 18.1 a | ||
SE | 22.8 a | 50.2 a | 27.1 a | 6.0 b | 11.8 a | 17.0 a | 17.1 a | |||
SW | 26.4 a | 49.2 a | 24.4 a | 5.7 b | 9.3 a | 15.3 a | 17.1 a | |||
W | 22.6 a | 52.1 a | 25.3 a | 4.9 b | 12.3 a | 18.2 a | 17.0 a |
2012 | 2013 | Mean of the Years at Harvest | Significance between Years | GxY | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sampling Date | Group | 30 Dav | 45 Dav | 65 Dav | 30 Dav | 45 Dav | 65 Dav | ||||||||||||||||
Berry weight (g) | E | 1.99 | a 1 | a 2 | 2.00 | a | a | 2.09 | a | a | 1.92 | a | b | 2.03 | a | b | 2.18 | a | a | 2.14 | a 3 | ns 4 | ns 5 |
SE | 1.93 | a | b | 1.97 | ab | ab | 2.04 | ab | a | 1.98 | a | b | 2.00 | a | b | 2.12 | a | a | 2.08 | ab | ns | ||
SW | 1.66 | c | b | 1.74 | c | ab | 1.77 | c | a | 1.77 | b | b | 1.87 | b | b | 2.00 | b | a | 1.89 | c | * | ||
W | 1.82 | b | b | 1.88 | b | ab | 1.94 | b | a | 1.95 | a | b | 1.99 | a | b | 2.11 | a | a | 2.03 | b | * | ||
Mean of the groups | 1.85 | b | 1.90 | ab | 1.96 | a | 1.91 | b | 1.97 | b | 2.10 | a | 2.03 | * | |||||||||
Total soluble solids (Brix) | E | 19.9 | a | c | 23.2 | ab | b | 24.3 | b | a | 21.0 | b | b | 23.5 | bc | a | 24.4 | b | a | 24.4 | b | ns | * |
SE | 21.2 | a | c | 23.7 | a | b | 24.4 | b | a | 20.6 | b | c | 22.9 | c | b | 23.8 | c | a | 24.1 | b | * | ||
SW | 21.0 | a | c | 23.2 | ab | b | 24.9 | a | a | 22.9 | a | b | 24.7 | a | a | 25.1 | a | a | 25.0 | a | * | ||
W | 20.5 | a | c | 22.5 | b | b | 24.4 | b | a | 22.6 | a | b | 24.2 | ab | a | 24.5 | ab | a | 24.5 | ab | * | ||
Mean of the groups | 20.7 | c | 23.2 | b | 24.5 | a | 21.8 | b | 23.8 | a | 24.5 | a | 24.5 | * | |||||||||
pH | E | 2.94 | b | c | 3.10 | b | b | 3.23 | b | a | 2.95 | b | b | 3.06 | b | a | 3.04 | b | a | 3.14 | b | ns | * |
SE | 3.03 | a | b | 3.21 | a | a | 3.24 | b | a | 2.93 | b | b | 3.04 | b | a | 3.08 | b | a | 3.16 | b | * | ||
SW | 3.06 | a | c | 3.17 | a | b | 3.32 | a | a | 3.06 | a | b | 3.11 | a | b | 3.22 | a | a | 3.27 | a | * | ||
W | 3.00 | ab | c | 3.08 | b | b | 3.25 | b | a | 3.01 | a | b | 3.06 | b | ab | 3.12 | b | a | 3.19 | b | ns | ||
Mean of the groups | 3.01 | c | 3.14 | b | 3.26 | a | 2.99 | c | 3.07 | b | 3.12 | a | 3.19 | * | |||||||||
Titratable acidity(g L−1 tartaric acid) | E | 10.77 | a | a | 8.37 | a | b | 7.27 | a | c | 10.76 | ab | a | 9.43 | a | b | 8.56 | a | c | 7.92 | a | * | ns |
SE | 9.19 | b | a | 7.58 | ab | b | 6.73 | b | c | 10.98 | a | a | 9.42 | a | b | 8.15 | a | c | 7.44 | ab | * | ||
SW | 9.17 | b | a | 7.43 | b | b | 6.07 | c | c | 9.71 | b | a | 8.16 | b | b | 7.18 | b | b | 6.63 | b | ns | ||
W | 8.86 | b | a | 7.24 | b | b | 6.70 | b | b | 9.66 | b | a | 8.50 | b | b | 7.68 | ab | b | 7.19 | ab | * | ||
Mean of the groups | 9.50 | a | 7.66 | b | 6.69 | c | 10.28 | a | 8.88 | b | 7.89 | c | 7.29 | * | |||||||||
Malic acid (g L−1) | E | 3.92 | a | a | 2.39 | a | b | 1.75 | a | c | 3.99 | ab | a | 3.19 | a | b | 2.68 | a | c | 2.22 | a | * | ns |
SE | 2.80 | b | a | 1.79 | ab | b | 1.35 | b | c | 4.16 | a | a | 3.09 | a | b | 2.40 | ab | c | 1.88 | a | * | ||
SW | 3.09 | ab | a | 2.19 | ab | ab | 1.46 | ab | b | 3.31 | bc | a | 2.33 | b | b | 2.12 | ab | b | 1.79 | a | ns | ||
W | 2.42 | b | a | 1.58 | b | b | 1.18 | b | b | 3.07 | c | a | 2.37 | b | b | 2.04 | b | b | 1.62 | a | * | ||
Mean of the groups | 3.06 | a | 1.99 | b | 1.44 | c | 3.63 | a | 2.75 | b | 2.31 | b | 1.87 | ns | |||||||||
Tartaric acid (g L−1) | E | 8.82 | ab | a | 8.32 | ab | b | 7.39 | a | c | 8.62 | a | a | 7.82 | a | b | 7.03 | ab | c | 7.21 | ab | * | ns |
SE | 9.02 | a | a | 8.61 | a | b | 7.73 | a | c | 8.67 | a | a | 7.98 | a | b | 7.50 | a | c | 7.62 | a | * | ||
SW | 8.15 | b | a | 7.68 | c | b | 6.57 | b | c | 8.30 | a | a | 7.55 | a | b | 6.75 | b | c | 6.66 | b | ns | ||
W | 8.14 | b | a | 8.15 | b | a | 7.42 | a | a | 8.28 | a | a | 7.63 | a | b | 6.92 | b | c | 7.17 | ab | * | ||
Mean of the groups | 8.63 | a | 8.19 | b | 7.28 | c | 8.47 | a | 7.75 | b | 7.05 | c | 7.16 | * | |||||||||
Total anthocyanins (mg L−1 as malvidin-3-glucoside) | E | 463 | a | b | 517 | b | b | 641 | a | a | 667 | ab | b | 826 | a | a | 870 | a | a | 756 | a | * | * |
SE | 413 | ab | b | 498 | b | a | 544 | b | a | 506 | c | b | 651 | b | a | 646 | b | a | 595 | b | * | ||
SW | 382 | b | c | 494 | b | b | 588 | ab | a | 588 | bc | b | 686 | b | a | 687 | b | a | 638 | b | * | ||
W | 477 | a | b | 597 | a | a | 644 | a | a | 741 | a | b | 826 | a | a | 907 | a | a | 776 | a | * | ||
Mean of the groups | 434 | c | 527 | b | 604 | a | 626 | b | 747 | a | 778 | a | 691 | * |
MU | G | 2012 | 2013 | G | Y | GxY | |||
---|---|---|---|---|---|---|---|---|---|
Yield/vine (kg) | LM | E | 2.33 | a 1 | 2.70 | b 1 | b2 | *3 | *3 |
SE | 2.72 | a | 4.31 | a | a | ||||
SB | SW | 1.74 | b | 1.50 | c | c | |||
B | W | 2.44 | a | 2.09 | bc | b | |||
Bunch weight (g) | LM | E | 304 | a | 297 | b | a | * | * |
SE | 282 | a | 399 | a | a | ||||
SB | SW | 236 | b | 246 | b | b | |||
B | W | 299 | a | 322 | ab | a | |||
Bunches per vine (number) | LM | E | 7.66 | b | 8.82 | b | b | ns | * |
SE | 9.77 | a | 10.83 | a | a | ||||
SB | SW | 7.51 | b | 6.28 | c | b | |||
B | W | 8.21 | b | 6.34 | c | b | |||
Pruning wood per vine (g) | LM | E | 1041 | ab | 896 | a | ab | ns | ns |
SE | 1012 | ab | 997 | a | a | ||||
SB | SW | 831 | b | 694 | b | b | |||
B | W | 1142 | a | 912 | a | a | |||
Shoot weight (g) | LM | E | 123 | ab | 108 | a | a | * | ns |
SE | 105 | ab | 95 | a | a | ||||
SB | SW | 102 | b | 87 | a | a | |||
B | W | 136 | a | 105 | a | a | |||
Ravaz index | LM | E | 2.46 | a | 3.13 | b | b | * | * |
SE | 2.79 | a | 4.55 | a | a | ||||
SB | SW | 2.38 | a | 2.22 | b | b | |||
B | W | 2.34 | a | 2.48 | b | b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mania, E.; Petrella, F.; Giovannozzi, M.; Piazzi, M.; Wilson, A.; Guidoni, S. Managing Vineyard Topography and Seasonal Variability to Improve Grape Quality and Vineyard Sustainability. Agronomy 2021, 11, 1142. https://doi.org/10.3390/agronomy11061142
Mania E, Petrella F, Giovannozzi M, Piazzi M, Wilson A, Guidoni S. Managing Vineyard Topography and Seasonal Variability to Improve Grape Quality and Vineyard Sustainability. Agronomy. 2021; 11(6):1142. https://doi.org/10.3390/agronomy11061142
Chicago/Turabian StyleMania, Elena, Fabio Petrella, Matteo Giovannozzi, Mauro Piazzi, Alena Wilson, and Silvia Guidoni. 2021. "Managing Vineyard Topography and Seasonal Variability to Improve Grape Quality and Vineyard Sustainability" Agronomy 11, no. 6: 1142. https://doi.org/10.3390/agronomy11061142
APA StyleMania, E., Petrella, F., Giovannozzi, M., Piazzi, M., Wilson, A., & Guidoni, S. (2021). Managing Vineyard Topography and Seasonal Variability to Improve Grape Quality and Vineyard Sustainability. Agronomy, 11(6), 1142. https://doi.org/10.3390/agronomy11061142