Modifications Induced by Rootstocks on Yield, Vigor and Nutritional Status on Vitis vinifera Cv Syrah under Hyper-Arid Conditions in Northern Chile
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Plant Material
2.2. Experimental Design
2.3. Measurements
2.3.1. Yield and Yield Components
2.3.2. Vine Vigor and Balance
2.3.3. Petiole Nutrient Content
2.4. Statistical Analysis
3. Results
3.1. Weather Conditions
3.2. Yield and Its Components
3.3. Vine Vigor and Balance
3.4. Petiole Nutrient Concentration
3.5. Principal Component Analysis (PCA)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rubio, B.; Lalanne-Tisné, G.; Voisin, R.; Tandonnet, J.P.; Portier, U.; Van Ghelder, C.; Lafargue, M.; Petit, J.P.; Donnart, M.; Joubard, B.; et al. Characterization of genetic determinants of the resistance to phylloxera, Daktulosphaira vitifoliae, and the dagger nematode Xiphinema index from muscadine background. BMC Plant. Biol. 2020, 20, 213. [Google Scholar] [CrossRef]
- Carrasco-Quiroz, M.; Martínez-Gil, A.M.; Gutiérrez-Gamboa, G.; Moreno-Simunovic, Y. Effect of rootstocks on volatile composition of Merlot wines. J. Sci. Food Agric. 2020, 100, 3517–3524. [Google Scholar] [CrossRef] [PubMed]
- Vincent, C.; Isaacs, R.; Bostanian, N.J.; Lasnier, J. Principles of arthropod pest management in vineyards. In Arthropod Management in Vineyards: Pests, Approaches, and Future Directions; Bostanian, N.J., Charles, V., Isaacs, E., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 1–16. [Google Scholar]
- Gutiérrez-Gamboa, G.; Carrasco-Quiroz, M.; Martínez-Gil, A.M.; Pérez-Álvarez, E.P.; Garde-Cerdán, T.; Moreno-Simunovic, Y. Grape and wine amino acid composition from Carignan noir grapevines growing under rainfed conditions in the Maule Valley, Chile: Effects of location and rootstock. Food Res. Int. 2018, 105, 344–352. [Google Scholar] [CrossRef]
- Ibacache, A.; Verdugo-Vásquez, N.; Zurita-Silva, A. Rootstock: Scion combinations and nutrient uptake in grapevines. In Fruit Crops: Diagnosis and Management of Nutrient Constraints; Srivastava, A.K., Hu, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 297–316. [Google Scholar]
- Franck, N.; Zamorano, D.; Wallberg, B.; Hardy, C.; Ahumada, M.; Rivera, N.; Montoya, M.; Urra, C.; Meneses, C.; Balic, I.; et al. Contrasting grapevines grafted into naturalized rootstock suggest scion-driven transcriptomic changes in response to water deficit. Sci. Hortic. 2019, 262, 109031. [Google Scholar] [CrossRef]
- Aballay, E.; Prodan, S.; Correa, P.; Allende, J. Assessment of rhizobacterial consortia to manage plant parasitic nematodes of grapevine. Crop. Prot. 2020, 131, 105103. [Google Scholar] [CrossRef]
- Gautier, A.T.; Cookson, S.J.; Lagalle, L.; Ollat, N.; Marguerit, E. Influence of the three main genetic backgrounds of grapevine rootstocks on petiolar nutrient concentrations of the scion, with a focus on phosphorus. OENO One 2020, 54, 1–13. [Google Scholar] [CrossRef]
- Gambetta, G.A.; Manuck, C.M.; Drucker, S.T.; Shaghasi, T.; Fort, K.; Matthews, M.A.; Walker, M.A.; McElrone, A.J. The relationship between root hydraulics and scion vigour across Vitis rootstocks: What role do root aquaporins play? J. Exp. Bot. 2012, 63, 6445–6455. [Google Scholar] [CrossRef]
- Frioni, T.; Biagioni, A.; Squeri, C.; Tombesi, S.; Gatti, M.; Poni, S. Grafting cv. Grechetto Gentile vines to new M4 rootstock improves leaf gas exchange and water status as compared to commercial 1103P rootstock. Agronomy 2020, 10, 708. [Google Scholar] [CrossRef]
- Fleishman, S.M.; Eissenstat, D.M.; Centinari, M. Rootstock vigor shifts aboveground response to groundcover competition in young grapevines. Plant. Soil 2019, 440, 151–165. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, W.K.; Gao, X.T.; He, L.; Yang, X.H.; He, F.; Duan, C.Q.; Wang, J. Rootstock-mediated effects on Cabernet Sauvignon performance: Vine growth, berry ripening, flavonoids, and aromatic profiles. Int. J. Mol. Sci. 2019, 20, 401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olarte Mantilla, S.M.; Collins, C.; Patrick, G.I.; Kidman, C.M.; Ristic, R.; Boss, P.K.; Jordans, C.; Bastian, S.E.P. Shiraz (Vitis vinifera L.) berry and wine sensory profiles and composition are modulated by rootstocks. Am. J. Enol. Vitic. 2018, 69, 32–44. [Google Scholar] [CrossRef]
- Gutiérrez-Gamboa, G.; Gómez-Plaza, E.; Bautista-Ortín, A.B.; Garde-Cerdán, T.; Moreno-Simunovic, Y.; Martínez-Gil, A.M. Rootstock effects on grape anthocyanins, skin and seed proanthocyanidins and wine color and phenolic compounds from Vitis vinifera L. Merlot grapevines. J. Sci. Food Agric. 2019, 99, 2846–2854. [Google Scholar] [CrossRef] [PubMed]
- Verdugo-Vásquez, N.; Gutiérrez-Gamboa, G.; Villalobos-Soublett, E.; Zurita-Silva, A. Effects of rootstocks on blade nutritional content of two minority grapevine varieties cultivated under hyper-arid conditions in Northern Chile. Agronomy 2021, 11, 327. [Google Scholar] [CrossRef]
- Vršič, S.; Pulko, B.; Kocsis, L. Factors influencing grafting success and compatibility of grape rootstocks. Sci. Hortic. 2015, 181, 168–173. [Google Scholar] [CrossRef]
- Santos, J.A.; Fraga, H.; Malheiro, A.C.; Moutinho-Pereira, J.; Dinis, L.-T.; Correia, C.; Moriondo, M.; Leolini, L.; Dibari, C.; Costafreda-Aumedes, S.; et al. A review of the potential climate change impacts and adaptation options for European viticulture. Appl. Sci. 2020, 10, 3092. [Google Scholar] [CrossRef]
- van Leeuwen, C.; Destrac-Irvine, A.; Dubernet, M.; Duchêne, E.; Gowdy, M.; Marguerit, E.; Pieri, P.; Parker, A.; de Rességuier, L.; Ollat, N. An update on the impact of climate change in viticulture and potential adaptations. Agronomy 2019, 9, 514. [Google Scholar] [CrossRef] [Green Version]
- Ollat, N.; Bordenave, L.; Tandonnet, J.P.; Boursiquot, J.M.; Marguerit, E. Grapevine rootstocks: Origins and perspectives. Acta Hortic. 2016, 1136, 11–22. [Google Scholar] [CrossRef]
- Ibacache, A.; Sierra, C. Influence of rootstocks on nitrogen, phosphorus and potassium content in petioles of four table grape varieties. Chil. J. Agric. Res. 2009, 69, 503–508. [Google Scholar] [CrossRef] [Green Version]
- Jones, G.V. Climate and terroir: Impacts of climate variability and change on wine. GeoSci. Can. 2006, 9, 1–14. [Google Scholar]
- Tonietto, J.; Carbonneau, A. A multicriteria climatic classification system for grape-growing regions worldwide. Agric. For. Meteorol. 2004, 124, 81–97. [Google Scholar] [CrossRef] [Green Version]
- Huglin, P. Nouveau mode d’évaluation des possibilités héliothermiques d’un milieu viticole. Comp. Rend. Acad. Agric. Fr. 1978, 64, 1117–1126. [Google Scholar] [CrossRef] [Green Version]
- Amerine, M.A.; Winkler, A.J. Composition and quality of musts and wines of California grapes. Hilgardia 1944, 15, 493–675. [Google Scholar] [CrossRef] [Green Version]
- Gladstones, J. Viticulture and Environment; Winetitles: Adelaide, Australia, 1992. [Google Scholar]
- Jarvis, C.; Barlow, E.; Darbyshire, R.; Eckard, R.; Goodwin, I. Relationship between viticultural climatic indices and grape maturity in Australia. Int. J. Biometeorol. 2017, 61, 1849–1862. [Google Scholar] [CrossRef]
- Sahin, S. An aridity index defined by precipitation and specific humidity. J. Hydrol. 2012, 444–445, 199–208. [Google Scholar] [CrossRef]
- Nikolaou, N.; Koukourikou, M.A.; Karagiannidis, N. Effects of various rootstocks on xylem exudates cytokinin content, nutrient uptake and growth patterns of grapevine Vitis vinifera L. cv. Thompson seedless. Agronomie 2000, 20, 363–373. [Google Scholar] [CrossRef]
- Garcia, M.; Gallego, P.; Daverède, C.; Ibrahim, H. Effect of three roots tocks on grapevine (Vitis vinifera L.) cv. Négrette, grown hydroponically. I. Potassium, calcium and magnesium nutrition. S. Afr. J. Enol. Vitic. 2001, 22, 101–103. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Guo, Z.; Jia, N.; Yuan, J.; Han, B.; Yin, Y.; Sun, Y.; Liu, C.; Zhao, S. Evaluation of eight rootstocks on the growth and berry quality of ‘Marselan’ grapevines. Sci. Hortic. 2019, 248, 58–61. [Google Scholar] [CrossRef]
- Loureiro, M.D.; Moreno-Sanz, P.; García, A.; Fernández, O.; Fernández, N.; Suárez, B. Influence of rootstock on the performance of the Albarín Negro minority grapevine cultivar. Sci. Hortic. 2016, 201, 145–152. [Google Scholar] [CrossRef]
- Bascuñán-Godoy, L.; Franck, N.; Zamorano, D.; Sanhueza, C.; Carvajal, D.E.; Ibacache, A. Rootstock effect on irrigated grapevine yield under arid climate conditions are explained by changes in traits related to light absorption of the scion. Sci. Hortic. 2017, 218, 284–292. [Google Scholar] [CrossRef]
- Keller, M.; Mills, L.J.; Harbertson, J.F. Rootstock effects on deficit-irrigated winegrapes in a dry climate: Vigor, yield formation, and fruit ripening. Am. J. Enol. Vitic. 2012, 63, 29–39. [Google Scholar] [CrossRef]
- da Silva, M.J.R.; Paiva, A.P.M.; Pimentel, A.; Sánchez, C.A.P.C.; Callili, D.; Moura, M.F.; Leonel, S.; Tecchio, M.A. Yield performance of new juice grape varieties grafted onto different rootstocks under tropical conditions. Sci. Hortic. 2018, 241, 194–200. [Google Scholar] [CrossRef] [Green Version]
- Clingeleffer, P.; Morales, N.; Davis, H.; Smith, H. The significance of scion × rootstock interactions. OENO One 2019, 53, 335–346. [Google Scholar] [CrossRef]
- Tecchio, M.A.; da Silva, M.J.R.; Callili, D.; Hernandes, J.L.; Moura, M.F. Yield of white and red grapes, in terms of quality, from hybrids and Vitis labrusca grafted on different rootstocks. Sci. Hortic. 2020, 259, 108846. [Google Scholar] [CrossRef]
- Reynolds, A.G.; Wardle, D.A. Rootstocks impact vine performance and fruit composition of grapes in British Columbia. Horttechnology 2001, 11, 419–427. [Google Scholar] [CrossRef] [Green Version]
- Urhausen, S.; Brienen, S.; Kapala, A.; Simmer, C. Climatic conditions and their impact on viticulture in the Upper Moselle region. Clim. Chang. 2011, 109, 349–373. [Google Scholar] [CrossRef]
- Malheiro, A.C.; Campos, R.; Fraga, H.; Eiras-Dias, J.; Silvestre, J.; Santos, J.A. Winegrape phenology and temperature relationships in the Lisbon wine region, Portugal. OENO One 2013, 47, 287. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Lesefko, S.; de Bei, R.; Fuentes, S.; Collins, C. Effects of canopy management practices on grapevine bud fruitfulness. OENO One 2020, 54, 313–325. [Google Scholar] [CrossRef]
- Serra, I.; Strever, A.; Myburgh, P.A.; Deloire, A. Review: The interaction between rootstocks and cultivars (Vitis vinifera L.) to enhance drought tolerance in grapevine. Aust. J. Grape Wine Res. 2014, 20, 1–14. [Google Scholar] [CrossRef]
- Ibacache, A.; Albornoz, F.; Zurita-Silva, A. Yield responses in Flame seedless, Thompson seedless and Red Globe table grape cultivars are differentially modified by rootstocks under semi arid conditions. Sci. Hortic. 2016, 204, 25–32. [Google Scholar] [CrossRef]
- Bieleski, R.L. Phosphate pools, phosphate transport, and phosphate availability. Annu. Rev. Plant. Physiol. 1973, 24, 225–252. [Google Scholar] [CrossRef]
- Chiera, J.; Thomas, J.; Rufty, T. Leaf initiation and development in soybean under phosphorus stress. J. Exp. Bot. 2002, 53, 473–481. [Google Scholar] [CrossRef] [Green Version]
- Keller, M. The Science of Grapevines. Anatomy and Physiology, 3rd ed.; Academic Press: Cambridge, MA, USA, 2020; ISBN 9780128167021. [Google Scholar]
- Clarkson, D.T. Root hydraulic conductance: Diurnal aquaporin expression and the effects of nutrient stress. J. Exp. Bot. 2000, 51, 61–70. [Google Scholar] [CrossRef]
- Rogiers, S.Y.; Coetzee, Z.A.; Walker, R.R.; Deloire, A.; Tyerman, S.D. Potassium in the grape (Vitis vinifera L.) berry: Transport and function. Front. Plant. Sci. 2017, 8, 1629. [Google Scholar] [CrossRef] [PubMed]
- Trought, M.C.T.; Dixon, R.; Mills, T.; Greven, M.; Agnew, R.; Mauk, J.L.; Praat, J.P. The impact of differences in soil texture within a vineyard on vine vigour, vine earliness and juice composition. J. Int. Sci. Vigne Vin 2008, 42, 62–72. [Google Scholar] [CrossRef]
- Satisha, J.; Somkuwar, R.G.; Sharma, J.; Upadhyay, A.K.; Adsule, P.G. Influence of rootstocks on growth yield and fruit composition of Thompson seedless grapes grown in the Pune region of India. S. Afr. J. Enol. Vitic. 2010, 31, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Bavaresco, L.; Lovisolo, C. Effect of grafting on grapevine chlorosis and hydraulic conductivity. Vitis 2000, 39, 89–92. [Google Scholar] [CrossRef]
- Sierra, C.; Lancelloti, A.; Vidal, I. Elemental sulphur as pH and soil fertility amendment for some Chileans soils of Regions III and IV. Agric. Técnica 2007, 67, 173–181. [Google Scholar] [CrossRef] [Green Version]
- Pistocchi, C.; Ragaglini, G.; Colla, V.; Branca, T.A.; Tozzini, C.; Romaniello, L. Exchangeable sodium percentage decrease in saline sodic soil after basic oxygen furnace slag application in a lysimeter trial. J. Environ. Manag. 2017, 203, 896–906. [Google Scholar] [CrossRef] [PubMed]
- Rengasamy, P. Soil chemistry factors confounding crop salinity tolerance—A review. Agronomy 2016, 6, 53. [Google Scholar] [CrossRef] [Green Version]
- Machado, R.; Serralheiro, R. Soil salinity: Effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. Horticulturae 2017, 3, 30. [Google Scholar] [CrossRef]
- Robinson, J.B. Critical plant tissue values and application of nutritional standards for practical use in vineyards. In Proceedings of the Soil Environment and Vine Mineral Nutrition Symposium; Smart, D.R., Christensen, L.P., Eds.; The American Society for Enology and Viticulture: Davis, CA, USA, 2005; pp. 61–68. [Google Scholar]
- Goldammer, T. Grape Grower’s Handbook: A Guide to Viticulture for Wine Production, 3rd ed.; APEX Publishers: Colchester, UK, 2018. [Google Scholar]
- Ough, C.S.; Lider, L.A.; Cook, J.A. Rootstock-scion interactions concerning wine making. I. Juice composition changes and effects on fermentation rate with St. George and 99-R rootstocks at two nitrogen fertilizer levels. Am. J. Enol. Vitic. 1968, 19, 213–227. [Google Scholar]
- Williams, L.E.; Smith, R.J. The effect of rootstock on the partitioning of dry weight, nitrogen and potassium, and root distribution of Cabernet Sauvignon grapevines. Am. J. Enol. Vitic. 1991, 42, 118–122. [Google Scholar]
- Guilpart, N.; Metay, A.; Gary, C. Grapevine bud fertility and number of berries per bunch are determined by water and nitrogen stress around flowering in the previous year. Eur. J. Agron. 2014, 54, 9–20. [Google Scholar] [CrossRef]
- Stanley Grant, R.; Matthews, M.A. The influence of phosphorus availability, scion, and rootstock on grapevine shoot growth, leaf area, and petiole phosphorus concentration. Am. J. Enol. Vitic. 1996, 47, 217–224. [Google Scholar]
- Gautier, A.T.; Cochetel, N.; Merlin, I.; Hevin, C.; Lauvergeat, V.; Vivin, P.; Mollier, A.; Ollat, N.; Cookson, S.J. Scion genotypes exert long distance control over rootstock transcriptome responses to low phosphate in grafted grapevine. BMC Plant. Biol. 2020, 20, 367. [Google Scholar] [CrossRef]
- Skinner, P.W.; Cook, J.A.; Matihews, M.A. Responses of grapevine cvs Chenin blanc and Chardonnay to phosphorus fertilizer applications under phosphorus-limited soil conditions. Vitis 1988, 27, 95. [Google Scholar] [CrossRef]
- Wolpert, J.A.; Smart, D.R.; Anderson, M. Lower petiole potassium concentration at bloom in rootstocks with Vitis berlandieri genetic backgrounds. Am. J. Enol. Vitic. 2005, 56, 163–169. [Google Scholar]
- Doring, H.; Ügglonni, F. Transpiration and accumulation of mineral nutrients in grape berries. Vitis 1986, 25, 59–66. [Google Scholar]
- Cabanne, C.; Donèche, B. Calcium accumulation and redistribution during the development of grape berry. Vitis 2003, 42, 19–21. [Google Scholar]
- Marastoni, L.; Sandri, M.; Pii, Y.; Valentinuzzi, F.; Cesco, S.; Mimmo, T. Morphological root responses and molecular regulation of cation transporters are differently affected by copper toxicity and cropping system depending on the grapevine rootstock genotype. Front. Plant. Sci. 2019, 10, 946. [Google Scholar] [CrossRef] [Green Version]
- Marastoni, L.; Sandri, M.; Pii, Y.; Valentinuzzi, F.; Brunetto, G.; Cesco, S.; Mimmo, T. Synergism and antagonisms between nutrients induced by copper toxicity in grapevine rootstocks: Monocropping vs. intercropping. Chemosphere 2019, 214, 563–578. [Google Scholar] [CrossRef] [PubMed]
- Rogiers, S.Y.; Greer, D.H.; Hatfield, J.M.; Orchard, B.A.; Keller, M. Mineral sinks within ripening grape berries (Vitis vinifera L.). Vitis 2006, 45, 115. [Google Scholar] [CrossRef]
Season | GST (°C) | CI (°C) | HI (Heat Units) | GDD (Heat Units) | BEDD (Heat Units) | SON Mean (Heat Units) | SON Max (Heat Units) | PP May–April (mm) |
---|---|---|---|---|---|---|---|---|
2003–2004 | 18.6 | 9.6 | 2385.0 | 1822.9 | 1557.3 | 1561.5 | 2371.7 | 93.3 |
2004–2005 | 18.7 | 10.1 | 2455.9 | 1854.4 | 1555.8 | 1537.1 | 2396.5 | 83.9 |
2005–2006 | 18.5 | 8.7 | 2416.3 | 1801.2 | 1533.8 | 1439.7 | 2273.2 | 66.4 |
2006–2007 | 18.3 | 9.0 | 2388.7 | 1756.2 | 1542.6 | 1552.2 | 2431.6 | 51.4 |
2007–2008 | 17.9 | 8.8 | 2311.5 | 1681.5 | 1473.0 | 1377.6 | 2209.3 | 17.8 |
30-years (mean) a | 18.5 | 10.0 | 2409.7 | 1808.2 | 1528.7 | 1493.2 | 2310.7 | 93.1 |
Rootstock | Abbreviations | Pedigree | Origin | Rootstock Features Assessed in Chile |
---|---|---|---|---|
1103 Paulsen | 1103 P | V. berlandieri × V. rupestris | Italy | Intermediate drought tolerance, poor resistance to nematodes, intermediate scion vigor |
140 Ruggeri | 140 Ru | V. berlandieri × V. rupestris | Italy | Intermediate drought tolerance, poor resistance to nematodes, intermediate scion vigor |
99 Richter | 99 Ri | V. berlandieri × V. rupestris | France | Intermediate drought tolerance, poor resistance to nematodes, high scion vigor |
Freedom | Freedom | Couderc 1613 × V. champinii | USA | Poor drought tolerance, resistance to nematodes and scion vigor |
Harmony | Harmony | Couderc 1613 × V. champinii | USA | Poor drought tolerance, resistance to nematodes and scion vigor |
Salt Creek | Salt Creek | V. champinii | USA | Poor drought tolerance and resistance to nematodes, and high scion vigor |
SO4 | SO4 | V. berlandieri × V. riparia | France | Poor drought tolerance, low resistance to nematodes and intermediate scion vigor |
Saint George | St. George | V. rupestris | USA | Poor drought tolerance and resistance to nematodes, and high scion vigor |
Factor | Yield (kg Vine) | N° Bunches Per Vine | Bunch Weight (g) | Budburst (%) | Fruitfulness (%) |
---|---|---|---|---|---|
Rootstock (R) | |||||
Own Roots | 7.7 ab | 47.7 | 160.0 | 94.2 | 173.1 |
1103 Paulsen | 7.9 a | 47.1 | 166.1 | 95.0 | 168.0 |
140 Ruggeri | 7.1 ab | 42.8 | 168.5 | 94.1 | 170.0 |
99 Richter | 7.4 ab | 45.4 | 164.4 | 95.3 | 171.3 |
Freedom | 7.4 ab | 44.1 | 166.8 | 93.8 | 168.9 |
Harmony | 6.6 ab | 41.8 | 159.1 | 93.0 | 156.2 |
Salt Creek | 7.6 ab | 45.7 | 163.2 | 93.4 | 171.1 |
SO4 | 7.4 ab | 46.0 | 158.7 | 92.1 | 167.3 |
St. George | 5.9 b | 38.7 | 149.1 | 91.6 | 164.3 |
Season (S) | |||||
2003–2004 | 10.086 a | 45.2 bc | 222.0 a | 94.6 b | 167.6 ab |
2004–2005 | 8.049 b | 54.4 a | 150.0 b | 97.3 a | 174.8 a |
2005–2006 | 7.583 b | 48.3 ab | 157.4 b | 87.5 d | 156.9 b |
2006–2007 | 4.099 d | 34.1 d | 120.1 c | 97.3 a | 171.7 a |
2007–2008 | 6.184 c | 39.7 cd | 159.2 b | 91.4 c | 167.9 ab |
Signif a | |||||
R | 0.025 b | 0.12 | 0.67 | 0.053 | 0.13 |
S | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.001 |
R × S | 0.86 | 0.98 | 0.88 | 0.64 | 0.93 |
Factor | Pruning Weight (kg Per Vine) | Ravaz Index | Scion Trunk Circumference (cm) |
---|---|---|---|
Rootstock (R) | |||
Own Roots | 1.57 c | 5.14 a | 13.98 a |
1103 Paulsen | 2.02 abc | 4.34 ab | 13.54 ab |
140 Ruggeri | 2.05 abc | 3.79 abc | 13.71 ab |
99 Richter | 1.85 bc | 4.22 ab | 12.96 ab |
Freedom | 1.96 abc | 3.89 abc | 12.74 b |
Harmony | 1.88 bc | 3.86 abc | 13.90 ab |
Salt Creek | 2.45 a | 3.22 bc | 13.24 ab |
SO4 | 2.18 ab | 3.85 abc | 13.24 ab |
St. George | 2.33 ab | 2.73 c | 12.98 ab |
Season (S) | |||
2003–2004 | 1.94 ab | 5.47 a | 7.48 d |
2004–2005 | 2.20 a | 3.88 b | 13.23 c |
2005–2006 | 1.74 b | 4.99 a | 13.43 c |
2006–2007 | 2.20 a | 1.96 c | 15.73 b |
2007–2008 | 2.07 ab | 3.16 b | 16.95 a |
Signif a | |||
R | <0.0001 b | 0.000 | 0.011 |
S | 0.001 | <0.0001 | <0.0001 |
R × S | 0.97 | 0.98 | 0.93 |
Factor | N (%) | P (%) | K (%) | Ca (%) | Mg (%) | Zn (ppm) | Mn (ppm) | Cu (ppm) |
---|---|---|---|---|---|---|---|---|
Rootstock (R) | ||||||||
Own Roots | 0.84 c | 0.14 d | 2.62 bc | 1.44 d | 0.55 a | 48.9 bc | 45.9 bc | 8.00 ab |
1103 Paulsen | 0.95 bc | 0.28 bc | 2.45 c | 1.64 c | 0.47 b | 43.6 cd | 60.0 abc | 7.75 ab |
140 Ruggeri | 0.95 bc | 0.33 b | 2.28 c | 1.68 bc | 0.47 b | 44.5 cd | 82.0 a | 8.05 ab |
99 Richter | 0.93 bc | 0.27 bc | 2.31 c | 1.46 d | 0.46 b | 49.0 bc | 53.4 bc | 6.60 b |
Freedom | 0.93 bc | 0.23 c | 2.34 c | 1.54 cd | 0.35 c | 49.1 bc | 40.2 bc | 7.30 b |
Harmony | 1.09 ab | 0.21 cd | 3.54 a | 1.92 a | 0.49 b | 35.3 d | 38.0 c | 6.30 b |
Salt Creek | 1.01 abc | 0.32 b | 2.45 c | 1.57 cd | 0.37 c | 60.8 a | 47.5 bc | 9.60 a |
SO4 | 0.91 bc | 0.25 bc | 2.24 c | 1.63 c | 0.32 c | 56.5 ab | 44.6 bc | 6.50 b |
St. George | 1.18 a | 0.43 a | 3.01 b | 1.82 ab | 0.46 b | 51.9 abc | 61.8 ab | 7.45 b |
Season (S) | ||||||||
2003–2004 | 1.01 ab | 0.21 b | 2.43 b | 1.63 b | 0.45 ab | 46.1 | 66.5 a | 7.19 bc |
2004–2005 | 0.87 c | 0.22 b | 2.51 ab | 1.58 b | 0.43 bc | 47.4 | 48.2 b | 6.39 c |
2005–2006 | 1.04 a | 0.34 a | 2.49 b | 1.63 b | 0.43 bc | 51.7 | 53.6 ab | 7.92 b |
2006–2007 | 1.08 a | 0.28 a | 2.79 a | 1.73 a | 0.47 a | 49.8 | 52.7 ab | 9.81 a |
2007–2008 | 0.89 bc | 0.32 a | 2.68 ab | 1.60 b | 0.41 c | 49.1 | 41.8 b | 6.22 c |
Signif a | ||||||||
R | <0.0001 b | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
S | <0.0001 | <0.0001 | 0.005 | 0.000 | <0.0001 | 0.26 | 0.000 | <0.0001 |
R x S | 0.35 | 0.25 | 0.97 | 0.17 | <0.0001 | 0.76 | 0.95 | 0.15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Verdugo-Vásquez, N.; Gutiérrez-Gamboa, G.; Díaz-Gálvez, I.; Ibacache, A.; Zurita-Silva, A. Modifications Induced by Rootstocks on Yield, Vigor and Nutritional Status on Vitis vinifera Cv Syrah under Hyper-Arid Conditions in Northern Chile. Agronomy 2021, 11, 979. https://doi.org/10.3390/agronomy11050979
Verdugo-Vásquez N, Gutiérrez-Gamboa G, Díaz-Gálvez I, Ibacache A, Zurita-Silva A. Modifications Induced by Rootstocks on Yield, Vigor and Nutritional Status on Vitis vinifera Cv Syrah under Hyper-Arid Conditions in Northern Chile. Agronomy. 2021; 11(5):979. https://doi.org/10.3390/agronomy11050979
Chicago/Turabian StyleVerdugo-Vásquez, Nicolás, Gastón Gutiérrez-Gamboa, Irina Díaz-Gálvez, Antonio Ibacache, and Andrés Zurita-Silva. 2021. "Modifications Induced by Rootstocks on Yield, Vigor and Nutritional Status on Vitis vinifera Cv Syrah under Hyper-Arid Conditions in Northern Chile" Agronomy 11, no. 5: 979. https://doi.org/10.3390/agronomy11050979
APA StyleVerdugo-Vásquez, N., Gutiérrez-Gamboa, G., Díaz-Gálvez, I., Ibacache, A., & Zurita-Silva, A. (2021). Modifications Induced by Rootstocks on Yield, Vigor and Nutritional Status on Vitis vinifera Cv Syrah under Hyper-Arid Conditions in Northern Chile. Agronomy, 11(5), 979. https://doi.org/10.3390/agronomy11050979