Acid Rain Tolerance in Soybeans: Evaluation of Genetic Variability and Identification of Novel Germplasms Using Multiple Criteria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Culture Experiments
2.2. Preparation and Application of Simulated Rain
2.3. Phenotype Determination
2.4. Statistical Analysis
3. Results
3.1. Effects of AR Stress on Soybean Growth, Yield, and Yield Components
3.2. Correlation Analyses under the Two Simulated Rain Treatments
3.3. Soybean Sensitivity to AR Stress and Its Genetic Variability as Reflected by Indicators Associated with Growth, Yield, and Yield Components
3.4. Evaluation of the AR Tolerance of the Soybean Genotypes, and Identification of Novel Germplasms
3.4.1. Selecting Traits Used for the Comprehensive Evaluation of AR Tolerance in Soybeans
3.4.2. Evaluation of the AR Tolerance of Cultivated Soybean Genotypes
3.4.3. Screening Novel Soybean Germplasms with Extreme AR Tolerance Using the Comprehensive Evaluation Method
4. Discussion
4.1. Genetic Variability of Soybean Responses to AR Stress and Comprehensive Evaluation of AR Tolerance in Soybeans
4.2. Effects of AR Stress on Soybean Yield and Yield Components
4.3. The Complexity of AR-Tolerance Evaluation in Soybeans
4.4. Methods of AR-Tolerance Evaluation and Novel Germplasm Selection in Soybeans
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Menz, F.C.; Seip, H.M. Acid rain in Europe and the United States: An update. Environ. Sci. Policy 2004, 7, 253–265. [Google Scholar] [CrossRef]
- Abbasi, T.; Poornima, P.; Kannadasan, T.; Abbasi, S.A. Acid rain: Past, present, and future. Int. J. Environ. Eng. 2013, 5, 229–272. [Google Scholar] [CrossRef]
- Larssen, T.; Lydersen, E.; Tang, D.; He, Y.; Gao, J.; Liu, H.; Duan, L.; Seip, H.M.; Vogt, R.D.; Mulder, J.; et al. Acid rain in China: Rapid industrialization has put citizens and ecosystems at risk. Environ. Sci. Technol. 2006, 40, 418–425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valliyodan, B.; Nguyen, H. Genomics of abiotic stress in soybean. In Genetics and Genomics of Soybean; Stacey, G., Ed.; Springer: New York, NY, USA, 2008; pp. 343–372. [Google Scholar]
- Manavalan, L.P.; Guttikonda, S.K.; Tran, L.-S.P.; Nguyen, H.T. Physiological and molecular approaches to improve drought resistance in soybean. Plant Cell Physiol. 2009, 50, 1260–1276. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.T.; Wu, P.; Wang, L.H.; Zhou, Q. Response of soybean seed germination to cadmium and acid rain. Biol. Trace Elem. Res. 2011, 144, 1186–1196. [Google Scholar] [CrossRef]
- Kohno, Y.; Kobayashi, T. Effect of simulated acid rain on the growth of soybean. Water Air Soil Pollut. 1989, 43, 11–19. [Google Scholar] [CrossRef]
- Zhang, Y.M.; Wu, L.Y.; Wang, X.X.; Zhang, J.; Gao, X.P.; Xie, M.Y.; Hui, H.; Wang, P.; Xu, H.B.; Zhao, S.X. Effects of acid rain on leaf injury and physiological characteristics of crops. J. Agro. Environ. Sci. 1996, 15, 197–208, 227, 240, (In Chinese with English abstract). [Google Scholar]
- Sun, Z.; Wang, L.; Chen, M.; Wang, L.; Liang, C.; Zhou, Q.; Huang, X. Interactive effects of cadmium and acid rain on photosynthetic light reaction in soybean seedlings. Ecotoxicol. Environ. Saf. 2012, 79, 62–68. [Google Scholar] [CrossRef]
- Hu, H.; Wang, L.; Liao, C.; Fan, C.; Zhou, Q.; Huang, X. Combined effects of lead and acid rain on photosynthesis in soybean seedlings. Biol. Trace Elem. Res. 2014, 161, 136–142. [Google Scholar] [CrossRef]
- Zhang, X.; Du, Y.; Wang, L.; Zhou, Q.; Huang, X.; Sun, Z. Combined effects of lanthanum (III) and acid rain on antioxidant enzyme system in soybean roots. PLoS ONE 2015, 10, e0134546. [Google Scholar] [CrossRef]
- Kobayashi, T.; Kohno, Y.; Nakayama, K. The effects of simulated acid rain on the uptake of mineral elements in soybean plants. J. Agr. Met. 1992, 48, 11–18, (In Japanese with English summary). [Google Scholar] [CrossRef]
- Evans, L.S.; Lewin, K.F.; Owen, E.M.; Santucci, K.A. Comparison of yields of several cultivars of field-grown soybeans exposed to simulated acidic rainfalls. New Phytol. 1986, 102, 409–417. [Google Scholar] [CrossRef]
- Kohno, Y.; Kobayashi, T. Effect of simulated acid rain on the yield of soybean. Water Air Soil Pollut. 1989, 45, 173–181. [Google Scholar]
- Evans, L.S.; Dimitriadis, L.; Hinkley, D.A. Seed protein quantities of field-grown soybeans exposed to simulated acidic rain. New Phytol. 1984, 97, 71–76. [Google Scholar] [CrossRef]
- Evans, L.S.; Lewin, K.F.; Patti, M.J. Effects of simulated acidic rain on yields of field-grown soybeans. New Phytol. 1984, 96, 207–213. [Google Scholar] [CrossRef]
- Evans, L.S.; Lewin, K.F.; Santucci, K.A.; Patti, M.J. Effects of frequency and duration of simulated acidic rainfalls on soybean yields. New Phytol. 1985, 100, 199–208. [Google Scholar] [CrossRef]
- Porter, P.M.; Banwart, W.L.; Ziegler, E.L.; Vasilas, B.L.; Hassett, J.J. Effects of simulated acid rain on growth parameters and yield components of two soybean cultivars. New Phytol. 1989, 113, 77–83. [Google Scholar] [CrossRef]
- Banwart, W.L.; Finke, R.L.; Porter, P.M.; Hassett, J.J. Sensitivity of twenty soybean cultivars to simulated acid rain. J. Environ. Qual. 1990, 19, 339–346. [Google Scholar] [CrossRef]
- Liu, L.X.; Tian, Y.D.; Wu, Y.Y.; Xing, X.H.; Jiang, H.Q.; Zhou, Q.; Xing, H.; Jiang, H.D. Effect of simulated acid rain on antioxidative characteristics in different soybean genotypes. Soyb. Sci. 2014, 33, 41–45, 57, (In Chinese with English abstract). [Google Scholar]
- Sun, J.Y.; Zhao, Y.T.; Liu, F.; Liang, B.W. Identification of cultivated soybean germplasm resources from China for acid rain tolerance. Soyb. Sci. 2001, 20, 245–248, (In Chinese with English abstract). [Google Scholar]
- Jin, H.B.; Si, W. The present acid rain pollution condition and trend analysis of Jiangsu Province. Jiangsu Environ. Sci. Technol. 2000, 13, 22–23, (In Chinese with English abstract). [Google Scholar]
- Niu, Y.W.; Gu, J.Q.; Yu, X.M.; Jiang, H.R.; Dai, X. The chemical feature of precipitation in the Yangtze River Delta background region. Environ. Chem. 2010, 29, 358–362, (In Chinese with English abstract). [Google Scholar]
- Zhang, G.; Liu, D.; He, X.; Yu, D.; Pu, M. Acid rain in Jiangsu province, eastern China: Tempo-spatial variations features and analysis. Atmos. Pollut. Res. 2017, 8, 1031–1043. [Google Scholar] [CrossRef]
- Qiu, L.J.; Chang, R.Z.; Liu, Z.X.; Guan, R.X. Descriptors and Data Standard for Soybean (Glycine spp.); China Agriculture Press: Beijing, China, 2006; pp. 56–86. [Google Scholar]
- SAS Institute, Inc. Base SAS®® 9.2 Procedures Guide; SAS Institute, Inc.: Cary, NC, USA, 2008. [Google Scholar]
- SAS Institute, Inc. SAS/STAT®® 9.2 User’s Guide; SAS Institute, Inc.: Cary, NC, USA, 2008. [Google Scholar]
- Lu, Y.; Hao, Z.; Xie, C.; Crossa, J.; Araus, J.L.; Gao, S.; Vivek, B.S.; Magorokosho, C.; Mugo, S.; Makumbi, D.; et al. Large-scale screening for maize drought resistance using multiple selection criteria evaluated under water-stressed and well-watered environments. Field Crop Res. 2011, 124, 37–45. [Google Scholar] [CrossRef]
- Gouesnard, B.; Zanetto, A.; Welcker, C. Identification of adaptation traits to drought in collections of maize landraces from southern Europe and temperate regions. Euphytica 2016, 209, 565–584. [Google Scholar] [CrossRef]
- Bouslama, M.; Schapaugh, W.T. Stress tolerance in soybeans: I. Evaluation of three screening techniques for heat and drought tolerance. Crop Sci. 1984, 24, 933–937. [Google Scholar] [CrossRef]
- Yan, C.; Song, S.; Wang, W.; Wang, C.; Li, H.; Wang, F.; Li, S.; Sun, X. Screening diverse soybean genotypes for drought tolerance by membership function value based on multiple traits and drought-tolerant coefficient of yield. BMC Plant Biol. 2020, 20, 321. [Google Scholar] [CrossRef] [PubMed]
- Lan, J.S.; Hu, F.S.; Zhang, J.R. The concept and statistical method of drought resistance index in crops. Acta. Agric. Boreali. Sin. 1990, 5, 20–25, (In Chinese with English abstract). [Google Scholar]
- Hao, Z.F.; Li, X.H.; Su, Z.J.; Xie, C.X.; Li, M.S.; Liang, X.L.; Weng, J.F.; Zhang, D.G.; Li, L.; Zhang, S.H. A proposed selection criterion for drought resistance across multiple environments in maize. Breed. Sci. 2011, 61, 101–108. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.F.; Wu, J.; Jing, R.L.; Cheng, X.Z.; Wang, S.M. Identification of mungbean germplasm resources resistant to drought at adult stage. Acta. Agron. Sin. 2015, 41, 1287–1294, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef] [Green Version]
- Tao, X.X. A preliminary application of fuzzy mathematics in agricultural science. J. Shenyang Agric. Coll. 1982, 2, 96–107, (In Chinese with English abstract). [Google Scholar]
- Reddy, M.R. Acid precipitation effects on growth and yield responses of twenty soybean and twelve snap bean cultivars. J. Environ. Qual. 1989, 18, 145–148. [Google Scholar] [CrossRef]
- Sánchez-Martín, J.; Mur, L.A.J.; Rubiales, D.; Prats, E. Targeting sources of drought tolerance within an Avena spp. collection through multivariate approaches. Planta 2012, 236, 1529–1545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trapp, J.J.; Urrea, C.A.; Zhou, J.; Khot, L.R.; Sankaran, S.; Miklas, P.N. Selective phenotyping traits related to multiple stress and drought response in dry bean. Crop Sci. 2016, 56, 1460–1472. [Google Scholar] [CrossRef] [Green Version]
- Takemoto, B.K.; Shriner, D.S.; Johnston, J.W. Physiological responses of soybean (Glycine max L. Merr) to simulated acid rain and ambient ozone in the field. Water Air Soil Pollut. 1987, 33, 373–384. [Google Scholar] [CrossRef]
- Kohno, Y. Effects of simulated acid rain on Asian crops and garden plants. In Air pollution impacts on plants in East Asia; Izuta, T., Ed.; Springer: Tokyo, Japan, 2017; pp. 223–235. [Google Scholar]
- Evans, L.S.; Lewin, K.F. Growth, development and yield responses of pinto beans and soybeans to hydrogen ion concentrations of simulated acidic rain. Environ. Exp. Bot. 1981, 21, 103–113. [Google Scholar] [CrossRef]
- Troiano, J.; Colavito, L.; Heller, L.; Mccune, D.C.; Jacobson, J.S. Effects of acidity of simulated rain and its joint action with ambient ozone on measures of biomass and yield in soybean. Environ. Exp. Bot. 1983, 23, 113–119. [Google Scholar] [CrossRef]
- Niu, F.X.; Hua, X.X.; Guo, X.D.; Wu, J.Y.; Li, H.M.; Ding, C.W. Studies on several physiological indexes of the drought resistance of sweet potato and its comprehensive evaluation. Acta. Agron. Sin. 1996, 22, 392–398, (In Chinese with English abstract). [Google Scholar]
- Qi, X.S.; Liu, Z.X.; Guan, R.X.; Wang, X.R.; Gou, Z.W.; Chang, R.Z.; Qiu, L.J. Comparison of evaluation methods for drought-resistance at soybean adult stage. Acta. Agron. Sin. 2012, 38, 665–674, (In Chinese with English abstract). [Google Scholar] [CrossRef]
Trait | Treatment | Mean | Std. Dev. | Range | CV (%) |
---|---|---|---|---|---|
SYPP (g/plant) | SAR | 2.63 | 1.03 | 0.55–6.05 | 39.06 |
SNR | 3.50 | 1.41 | 0.62–7.96 | 40.35 | |
SNPP (seeds/plant) | SAR | 18.35 | 7.15 | 4.53–53.39 | 38.97 |
SNR | 24.24 | 9.60 | 4.67–76.42 | 39.59 | |
HSW (g/100 seed) | SAR | 15.19 | 5.39 | 3.78–33.30 | 35.51 |
SNR | 15.23 | 5.42 | 3.54–35.54 | 35.59 | |
TPNPP (pods/plant) | SAR | 15.49 | 6.02 | 4.70–47.94 | 38.87 |
SNR | 20.39 | 7.12 | 5.73–69.09 | 34.91 | |
FPNPP (pods/plant) | SAR | 10.26 | 3.97 | 2.51–31.53 | 38.71 |
SNR | 13.52 | 5.02 | 2.87–39.92 | 37.11 | |
EPNPP (pods/plant) | SAR | 5.23 | 3.20 | 0.74–18.60 | 61.15 |
SNR | 6.87 | 3.64 | 1.06–29.18 | 52.96 | |
PFP (%) | SAR | 67.13 | 11.93 | 40.32–94.32 | 17.77 |
SNR | 66.63 | 11.60 | 39.92–94.06 | 17.41 | |
SNPFP (seeds/pod) | SAR | 1.81 | 0.25 | 1.17–2.77 | 13.93 |
SNR | 1.79 | 0.24 | 1.17–2.62 | 13.38 | |
DMVOPP (g/plant) | SAR | 6.70 | 2.51 | 1.37–14.98 | 37.42 |
SNR | 8.72 | 2.98 | 1.52–18.72 | 34.23 | |
PH (cm) | SAR | 69.96 | 12.87 | 39.97–124.93 | 18.39 |
SNR | 74.50 | 13.42 | 40.30–126.25 | 18.01 | |
HLP (cm) | SAR | 24.01 | 6.33 | 8.30–49.45 | 26.38 |
SNR | 21.40 | 6.26 | 10.38–61.53 | 29.25 | |
EBNPP (branches/plant) | SAR | 0.99 | 0.57 | 0.33–3.33 | 57.44 |
SNR | 1.10 | 0.65 | 0.30–3.73 | 58.91 | |
LIPNMS (cm) | SAR | 45.95 | 10.74 | 22.16–88.68 | 23.37 |
SNR | 53.10 | 12.06 | 25.24–96.58 | 22.71 | |
ENNMS (nodes) | SAR | 12.18 | 1.84 | 7.84–18.33 | 15.09 |
SNR | 12.06 | 1.83 | 7.87–18.57 | 15.21 |
Source of Variation | d.f. | p-Value | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SYPP | SNPP | HSW | TPNPP | FPNPP | EPNPP | PFP | SNPFP | DMVOPP | PH | HLP | EBNPP | LIPNMS | ENNMS | ||
Block (Y T) | 8 | 0.0478 | 0.0250 | 0.0716 | 0.0194 | 0.4358 | 0.0082 | 0.1704 | 0.1359 | 0.4450 | <0.0001 | <0.0001 | 0.0012 | <0.0001 | 0.0732 |
Genotype | 440 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Treatment | 1 | <0.0001 | <0.0001 | 0.4565 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Year | 1 | 0.0024 | 0.2200 | <0.0001 | 0.1131 | 0.2082 | 0.1305 | 0.7688 | 0.8168 | 0.7183 | 0.0121 | <0.0001 | <0.0001 | 0.1505 | 0.0110 |
G × T | 440 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
G × Y | 440 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
T × Y | 1 | 0.0006 | 0.4779 | 0.4813 | 0.2502 | 0.4439 | 0.2149 | 0.9277 | 0.9974 | 0.6382 | 0.9805 | 0.9828 | 0.9168 | 0.9981 | 0.7738 |
G × T × Y | 440 | <0.0001 | <0.0001 | 1.0000 | <0.0001 | <0.0001 | <0.0001 | 1.0000 | 1.0000 | <0.0001 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
Trait | SYPP | SNPP | HSW | TPNPP | FPNPP | EPNPP | PFP | SNPFP | DMVOPP | PH | HLP | EBNPP | LIPNMS | ENNMS |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SYPP | 0.57 *** | 0.47 *** | 0.37 *** | 0.52 *** | 0.04 n.s. | 0.29 *** | 0.11 * | 0.67 *** | 0.05 n.s. | 0.07 n.s. | 0.01 n.s. | 0.02 n.s. | 0.19 *** | |
SNPP | 0.59 *** | −0.36 *** | 0.80 *** | 0.94 *** | 0.34 *** | 0.29 *** | 0.13 ** | 0.38 *** | 0.18 *** | −0.09 n.s. | 0.40 *** | 0.27 *** | 0.29 *** | |
HSW | 0.48 *** | −0.35 *** | −0.32 *** | −0.33 *** | −0.20 *** | −0.05 n.s. | −0.10 * | 0.41 *** | −0.07 n.s. | 0.22 *** | −0.37 *** | −0.21 *** | −0.03 n.s. | |
TPNPP | 0.39 *** | 0.82 *** | −0.40 *** | 0.87 *** | 0.80 *** | −0.20 *** | −0.22 *** | 0.39 *** | 0.28 *** | 0.03 n.s. | 0.37 *** | 0.31 *** | 0.25 *** | |
FPNPP | 0.52 *** | 0.94 *** | −0.37 *** | 0.88 *** | 0.40 *** | 0.28 *** | −0.20 *** | 0.41 *** | 0.18 *** | −0.11 * | 0.38 *** | 0.28 *** | 0.26 *** | |
EPNPP | 0.04 n.s. | 0.31 *** | −0.26 *** | 0.75 *** | 0.34 *** | −0.71 *** | −0.16 *** | 0.22 *** | 0.29 *** | 0.19 *** | 0.21 *** | 0.24 *** | 0.15 ** | |
PFP | 0.33 *** | 0.37 *** | −0.02 n.s. | −0.08 n.s. | 0.38 *** | −0.70 *** | 0.00 n.s. | 0.03 n.s. | −0.19 *** | −0.30 *** | 0.02 n.s. | −0.06 n.s. | −0.03 n.s. | |
SNPFP | 0.30 *** | 0.32 *** | 0.00 n.s. | −0.01 n.s. | 0.00 n.s. | −0.02 n.s. | 0.03 n.s. | −0.13 ** | 0.01 n.s. | 0.08 n.s. | 0.05 n.s. | −0.04 n.s. | 0.07 n.s. | |
DMVOPP | 0.69 *** | 0.34 *** | 0.43 *** | 0.27 *** | 0.32 *** | 0.08 n.s. | 0.13 ** | 0.10 * | 0.34 *** | 0.30 *** | 0.09 n.s. | 0.23 *** | 0.41 *** | |
PH | 0.17 *** | 0.25 *** | −0.03 n.s. | 0.14 ** | 0.21 *** | −0.02 n.s. | 0.16 ** | 0.18 *** | 0.33 *** | 0.55 *** | 0.37 *** | 0.87 *** | 0.56 *** | |
HLP | 0.20 *** | −0.05 n.s. | 0.32 *** | −0.11 * | −0.08 n.s. | −0.11 * | 0.04 n.s. | 0.09 n.s. | 0.39 *** | 0.44 *** | 0.04 n.s. | 0.07 n.s. | 0.50 *** | |
EBNPP | 0.05 n.s. | 0.42 *** | −0.36 *** | 0.35 *** | 0.40 *** | 0.14 ** | 0.10 * | 0.14 ** | 0.08 n.s. | 0.40 *** | −0.02 n.s. | 0.42 *** | 0.29 *** | |
LIPNMS | 0.08 n.s. | 0.30 *** | −0.20 *** | 0.21 *** | 0.27 *** | 0.03 n.s. | 0.15 ** | 0.16 ** | 0.17 *** | 0.88 *** | −0.03 n.s. | 0.45 *** | 0.37 *** | |
ENNMS | 0.22 *** | 0.31 *** | 0.00 n.s. | 0.32 *** | 0.31 *** | 0.19 *** | 0.01 n.s. | 0.04 n.s. | 0.47 *** | 0.57 *** | 0.44 *** | 0.27 *** | 0.41 *** |
Trait | Mean | Std. Dev. | Range | CV (%) | Type |
---|---|---|---|---|---|
SYPP | 0.78 | 0.17 | 0.46–1.17 | 21.84 | I |
SNPP | 0.78 | 0.17 | 0.46–1.17 | 21.83 | I |
HSW | 1.00 | 0.07 | 0.82–1.18 | 7.48 | III |
TPNPP | 0.77 | 0.17 | 0.43–1.16 | 21.62 | I |
FPNPP | 0.78 | 0.18 | 0.42–1.17 | 22.83 | I |
EPNPP | 0.75 | 0.15 | 0.48–1.15 | 20.01 | I |
PFP | 1.01 | 0.03 | 0.93–1.06 | 2.56 | IV |
SNPFP | 1.01 | 0.02 | 0.97–1.12 | 2.28 | IV |
DMVOPP | 0.78 | 0.17 | 0.47–1.17 | 21.44 | I |
PH | 0.94 | 0.10 | 0.79–1.35 | 10.97 | II |
HLP | 1.14 | 0.20 | 0.73–2.16 | 17.31 | II |
EBNPP | 0.92 | 0.15 | 0.52–1.31 | 15.82 | II |
LIPNMS | 0.87 | 0.11 | 0.54–1.39 | 12.50 | II |
ENNMS | 1.01 | 0.02 | 0.97–1.10 | 2.34 | IV |
AR Tolerance Type | Interval of Percentile (%) | ARTC of Seed Yield | ARTI of Seed Yield | AMG of ARTCs of the Seven Selected Traits | |||
---|---|---|---|---|---|---|---|
Interval | Number of Germplasms | Interval | Number of Germplasms | Interval | Number of Germplasms | ||
High tolerance | 95–100 | 0.99–1.17 | 22 | 1.46–1.81 | 22 | 0.73–1.00 | 22 |
Tolerance | 85–95 | 0.95–0.99 | 42 | 1.23–1.46 | 44 | 0.67–0.73 | 44 |
Moderate tolerance | 15–85 | 0.55–0.95 | 307 | 0.41–1.23 | 308 | 0.18–0.67 | 308 |
Susceptibility | 5–15 | 0.49–0.55 | 45 | 0.29–0.41 | 44 | 0.09–0.18 | 44 |
High susceptibility | 0–5 | 0.46–0.49 | 25 | 0.11–0.29 | 23 | 0.00–0.09 | 23 |
AR Tolerance Evaluation Criteria | ARTC of Seed Yield | ARTI of Seed Yield | AMG of ARTCs of the Seven Selected Traits |
---|---|---|---|
ARTC of seed yield | 1.000 | 0.494 (<0.0001) | 0.998 (<0.0001) |
ARTI of seed yield | 0.494 (<0.0001) | 1.000 | 0.497 (<0.0001) |
AMG of ARTCs of the seven selected traits | 0.998 (<0.0001) | 0.497 (<0.0001) | 1.000 |
Germplasm Name | Germplasm Code | AMG | ARTC | ||||||
---|---|---|---|---|---|---|---|---|---|
SYPP | TPNPP | PFP | FPNPP | SNPFP | SNPP | HSW | |||
Nayongmaoerhui | G139 | 1.0000 | 1.17 | 1.16 | 1.01 | 1.17 | 1.00 | 1.17 | 1.18 |
Gong’anhuangchadou | G206 | 0.9802 | 1.16 | 1.15 | 1.01 | 1.16 | 1.00 | 1.16 | 1.17 |
Yixianheidou | G427 | 0.9617 | 1.14 | 1.14 | 1.01 | 1.15 | 0.99 | 1.14 | 1.17 |
Changzhouliwailv | G055 | 0.9395 | 1.13 | 1.13 | 1.00 | 1.14 | 0.99 | 1.13 | 1.16 |
Shanzibai | G165 | 0.9208 | 1.12 | 1.13 | 1.01 | 1.14 | 0.98 | 1.12 | 1.15 |
Boluojitouxuanxiaoheidou | G136 | 0.8930 | 1.09 | 1.11 | 1.00 | 1.12 | 0.97 | 1.09 | 1.14 |
Landadou | G235 | 0.8710 | 1.08 | 1.10 | 1.00 | 1.10 | 0.98 | 1.08 | 1.13 |
Heihuangdou | G135 | 0.8486 | 1.06 | 1.08 | 1.00 | 1.08 | 0.98 | 1.06 | 1.13 |
Anqiuyizhibian | G105 | 0.8245 | 1.04 | 1.06 | 1.00 | 1.05 | 0.99 | 1.04 | 1.12 |
Tongshanqiyuehuang | G097 | 0.8077 | 1.03 | 1.03 | 0.99 | 1.02 | 1.01 | 1.03 | 1.11 |
Jishuidalichadou | G418 | 0.8022 | 1.03 | 1.02 | 1.00 | 1.02 | 1.01 | 1.03 | 1.11 |
Xiaochunheidou | G007 | 0.7627 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.10 |
Qujianghuangkengdongdou | G173 | 0.7620 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.10 |
HB-2 | G077 | 0.7581 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.10 |
Weiqingdou | G189 | 0.7523 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.10 |
Chamoshidou | G133 | 0.7512 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.10 |
Gaozhouheidou | G389 | 0.7476 | 0.99 | 0.99 | 1.00 | 0.99 | 1.00 | 0.99 | 1.10 |
Zhongzuo92NK40 | G213 | 0.7445 | 0.99 | 0.99 | 1.00 | 0.99 | 1.00 | 0.99 | 1.10 |
Anxianghuangdou | G163 | 0.7411 | 0.99 | 0.99 | 1.00 | 0.99 | 1.00 | 0.99 | 1.10 |
Xingkangxian 1 | G091 | 0.7379 | 0.99 | 0.99 | 1.00 | 0.99 | 1.00 | 0.99 | 1.10 |
Guang’anxiaodongdou | G382 | 0.7370 | 0.99 | 0.99 | 1.00 | 0.99 | 1.00 | 0.99 | 1.10 |
Neiguandalihuang | G208 | 0.7335 | 0.99 | 0.99 | 1.00 | 0.99 | 1.00 | 0.99 | 1.10 |
Germplasm Name | Germplasm Code | AMG | ARTC | ||||||
---|---|---|---|---|---|---|---|---|---|
SYPP | TPNPP | PFP | FPNPP | SNPFP | SNPP | HSW | |||
Guangfengmaliaodou | G392 | 0.0003 | 0.46 | 0.43 | 0.97 | 0.42 | 1.10 | 0.46 | 0.82 |
Zhaotongqiyuehuang | G078 | 0.0147 | 0.46 | 0.44 | 0.96 | 0.42 | 1.10 | 0.46 | 0.82 |
Jinhuadadou | G296 | 0.0147 | 0.46 | 0.45 | 0.95 | 0.42 | 1.10 | 0.46 | 0.82 |
Hubeiliuyuebao | G410 | 0.0264 | 0.47 | 0.46 | 0.95 | 0.43 | 1.09 | 0.47 | 0.83 |
Anshun78-35-1-1 | G214 | 0.0267 | 0.47 | 0.45 | 0.96 | 0.43 | 1.09 | 0.47 | 0.83 |
Shouguangmoshi | G369 | 0.0292 | 0.47 | 0.45 | 0.97 | 0.43 | 1.09 | 0.47 | 0.83 |
Boluosiyuebaihua | G403 | 0.0325 | 0.47 | 0.45 | 0.96 | 0.43 | 1.09 | 0.47 | 0.83 |
Chongzuohuangdou | G288 | 0.0414 | 0.47 | 0.44 | 0.98 | 0.43 | 1.12 | 0.48 | 0.84 |
Nannong 1138-2 | G422 | 0.0461 | 0.48 | 0.46 | 0.96 | 0.43 | 1.12 | 0.48 | 0.84 |
Miluodoubansheng | G290 | 0.0501 | 0.47 | 0.46 | 0.94 | 0.43 | 1.12 | 0.48 | 0.84 |
Daheidou | G086 | 0.0545 | 0.48 | 0.45 | 0.97 | 0.44 | 1.09 | 0.48 | 0.84 |
Fangzilouganhuang | G383 | 0.0571 | 0.48 | 0.47 | 0.93 | 0.44 | 1.09 | 0.48 | 0.84 |
Chongmingbaimaobayuebaijia | G117 | 0.0609 | 0.48 | 0.46 | 0.97 | 0.44 | 1.09 | 0.48 | 0.85 |
Chishuizaoshuhuangdou | G307 | 0.0630 | 0.48 | 0.46 | 0.97 | 0.45 | 1.07 | 0.48 | 0.85 |
Hongmidou | G125 | 0.0655 | 0.48 | 0.46 | 0.97 | 0.44 | 1.09 | 0.48 | 0.85 |
Mengzidaqingdou | G040 | 0.0659 | 0.48 | 0.46 | 0.97 | 0.44 | 1.09 | 0.48 | 0.85 |
Dahedou | G130 | 0.0770 | 0.48 | 0.48 | 0.94 | 0.45 | 1.07 | 0.48 | 0.86 |
Dulouhuangdou | G433 | 0.0782 | 0.49 | 0.48 | 0.96 | 0.46 | 1.07 | 0.49 | 0.87 |
Jinda 332 | G399 | 0.0797 | 0.49 | 0.49 | 0.93 | 0.45 | 1.09 | 0.49 | 0.86 |
Hu’nanniumaohuang | G279 | 0.0843 | 0.48 | 0.47 | 0.96 | 0.45 | 1.07 | 0.48 | 0.85 |
Nannong 99-6 | G028 | 0.0858 | 0.48 | 0.48 | 0.93 | 0.45 | 1.07 | 0.48 | 0.86 |
Zhaotongzaobaidou | G395 | 0.0892 | 0.49 | 0.49 | 0.96 | 0.46 | 1.07 | 0.49 | 0.87 |
Tongshanbopihuangdoujia | G121 | 0.0906 | 0.49 | 0.48 | 0.94 | 0.45 | 1.09 | 0.49 | 0.86 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, G.; Pu, M.; Tian, R.; He, X.; Yu, D. Acid Rain Tolerance in Soybeans: Evaluation of Genetic Variability and Identification of Novel Germplasms Using Multiple Criteria. Agronomy 2021, 11, 868. https://doi.org/10.3390/agronomy11050868
Zhang G, Pu M, Tian R, He X, Yu D. Acid Rain Tolerance in Soybeans: Evaluation of Genetic Variability and Identification of Novel Germplasms Using Multiple Criteria. Agronomy. 2021; 11(5):868. https://doi.org/10.3390/agronomy11050868
Chicago/Turabian StyleZhang, Guozheng, Meijuan Pu, Ruiping Tian, Xiaohong He, and Deyue Yu. 2021. "Acid Rain Tolerance in Soybeans: Evaluation of Genetic Variability and Identification of Novel Germplasms Using Multiple Criteria" Agronomy 11, no. 5: 868. https://doi.org/10.3390/agronomy11050868
APA StyleZhang, G., Pu, M., Tian, R., He, X., & Yu, D. (2021). Acid Rain Tolerance in Soybeans: Evaluation of Genetic Variability and Identification of Novel Germplasms Using Multiple Criteria. Agronomy, 11(5), 868. https://doi.org/10.3390/agronomy11050868