Three-Year Investigation of Tillage Management on the Soil Physical Environment, Earthworm Populations and Crop Yields in Croatia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Description of the Experiments
2.2. Meteorological Data
2.3. Soil Sampling, Field Measurements and Laboratory Analyses
2.4. Statistical Analyses
3. Results
3.1. Influence of Tillage on Surface Cover
3.2. Soil Penetration Resistance
3.3. Soil Moisture Content
3.4. Soil Structure
3.5. Earthworm Abundance
3.6. Crop Yield
4. Discussion
4.1. Influence of Tillage on Surface Cover
4.2. Soil Penetration Resistance
4.3. Soil Moisture Content
4.4. Soil Structure
4.5. Earthworm Abundance
4.6. Crop Yield
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Bank. 2019. Available online: https://data.worldbank.org/indicator/SP.POP.TOTL?end=2019&start=2015 (accessed on 20 May 2020).
- Reeves, D.W. The role of soil organic matter in maintaining soil quality in continuous cropping systems. Soil Tillage Res. 1997, 43, 131–167. [Google Scholar] [CrossRef]
- Panagos, P.; Imeson, A.; Meusburger, K.; Borrelli, P.; Poesen, J.; Alewell, C. Soil conservation in Europe: Wish or reality? Land Degrad. Dev. 2016, 27, 1547–1551. [Google Scholar] [CrossRef] [Green Version]
- Van den Akker, J.J.H.; Canarache, A. Two European concerted actions on subsoil compaction. Z. Kult. Landentwickl. 2001, 42, 15–22. [Google Scholar]
- Pant, K.P. Effects of agriculture on climate change: A cross country study of factors affecting carbon emissions. J. Agric. Environ. 2009, 10, 84–102. [Google Scholar] [CrossRef] [Green Version]
- Dekemati, I.; Simon, B.; Bogunovic, I.; Kisic, I.; Kassai, K.; Kende, Z.; Birkás, M. Long term effects of ploughing and conservation tillage methods on earthworm abundance and crumb ratio. Agronomy 2020, 10, 1552. [Google Scholar] [CrossRef]
- Konapala, G.; Mishra, A.K.; Wada, Y.; Mann, M.E. Climate change will affect global water availability through compounding changes in seasonal precipitation and evaporation. Nat. Commun. 2020, 11, 1–10. [Google Scholar] [CrossRef]
- Challinor, A.J.; Watson, J.; Lobell, D.B.; Howden, S.M.; Smith, D.R.; Chhetri, N. A meta-analysis of crop yield under climate change and adaptation. Nat. Clim. Chang. 2014, 4, 287–291. [Google Scholar] [CrossRef]
- Birkás, M.; Jolánkai, M.; Kisić, I.; Stipešević, B. Soil tillage needs a radical change for sustainability. Agric. Conspec. Sci. 2008, 73, 131–136. [Google Scholar]
- Thierfelder, C.; Mwilla, M.; Rusinamhodzi, L. Conservation agriculture in eastern and southern provinces of Zambia: Long-term effects on soil quality and maize productivity. Soil Tillage Res. 2013, 126, 246–258. [Google Scholar] [CrossRef]
- Wang, S.; Guo, L.; Zhou, P.C.; Wang, X.; Shen, Y.; Han, H.; Ning, T.; Han, K. Effect of subsoiling depth on soil physical properties and summer maize (Zea mays L.) yield. Plant Soil Environ. 2019, 65, 131–137. [Google Scholar] [CrossRef] [Green Version]
- Jourgholami, M.; Fathi, K.; Labelle, E.R. Effects of litter and straw mulch amendments on compacted soil properties and Caucasian alder (Alnus subcordata) growth. New For. 2019, 51, 349–365. [Google Scholar] [CrossRef]
- Kalmár, T.; Bottlik, L.; Kisić, I.; Gyuricza, C.; Birkás, M. Soil protecting effect of the surface cover in extreme summer periods. Plant Soil Environ. 2013, 59, 404–409. [Google Scholar] [CrossRef] [Green Version]
- Powlson, D.S.; Stirling, C.M.; Jat, M.L.; Gerard, B.G.; Palm, C.A.; Sanchez, P.A.; Cassman, K.G. Limited potential of no-till agriculture for climate change mitigation. Nat. Clim. Chang. 2014, 4, 678–683. [Google Scholar] [CrossRef]
- Mkoga, Z.J.; Tumbo, S.D.; Kihupi, N.; Semoka, J. Extrapolating effects of conservation tillage on yield, soil moisture and dry spell mitigation using simulation modelling. Phys. Chem. Earth Part A/B/C 2010, 35, 686–698. [Google Scholar] [CrossRef]
- Dekemati, I.; Simon, B.; Vinogradov, S.; Birkás, M. The effects of various tillage treatments on soil physical properties, earthworm abundance and crop yield in Hungary. Soil Tillage Res. 2019, 194, 104334. [Google Scholar] [CrossRef]
- Giannitsopoulos, M.L.; Burgess, P.J.; Rickson, R.J. Effects of conservation tillage drills on soil quality indicators in a wheat-oilseed rape rotation: Organic carbon, earthworms and water-stable aggregates. Soil Use Manag. 2019, 36, 139–152. [Google Scholar] [CrossRef]
- Dekemati, I.; Bogunovic, I.; Kisic, I.; Radics, Z.; Szemők, A.; Birkás, M. The effects of tillage-induced soil disturbance on soil quality condition. Pol. J. Environ. Stud. 2019, 28, 3665–3673. [Google Scholar] [CrossRef]
- Bogunovic, I.; Kovács, G.P.; Dekemati, I.; Kisic, I.; Balla, I.; Birkás, M. Long-term effect of soil conservation tillage on soil water content, penetration resistance, crumb ratio and crusted area. Plant Soil Environ. 2019, 65, 442–448. [Google Scholar] [CrossRef]
- Birkás, M.; Jolánkai, M.; Gyuricza, C.; Percze, A. Tillage effects on compaction, earthworms and other soil quality indicators in Hungary. Soil Tillage Res. 2004, 78, 185–196. [Google Scholar] [CrossRef]
- Birkás, M.; Dekemati, I.; Kisić, I.; Pósa, B. Results of the soil quality preservation in the extreme seasons. In Proceedings of the 10th International Scientific/Professional Conference, Agriculture in Nature and Environment Protection, Vukovar, Croatia, 5–7 June 2017; pp. 10–19. [Google Scholar]
- Morris, N.L.; Miller, P.C.H.; Orson, J.H.; Froud-Williams, R.J. The adoption of non-inversion tillage systems in the United Kingdom and the agronomic impact on soil, crops and the environment—A review. Soil Tillage Res. 2010, 108, 1–15. [Google Scholar] [CrossRef]
- Gao, Y.; Dang, X.; Yu, Y.; Li, Y.; Liu, Y.; Wang, J. Effects of tillage methods on soil carbon and wind erosion. Land Degrad. Dev. 2016, 27, 583–591. [Google Scholar] [CrossRef]
- Bogunovic, I.; Pereira, P.; Galic, M.; Bilandzija, D.; Kisic, I. Tillage system and farmyard manure impact on soil physical properties, CO2 emissions, and crop yield in an organic farm located in a Mediterranean environment (Croatia). Environ. Earth Sci. 2020, 79, 1–11. [Google Scholar] [CrossRef]
- Yasmin, S.; D’Souza, S. Effects of pesticides on the growth and reproduction of earthworm: A review. Appl. Environ. Soil Sci. 2010, 2010, 1–9. [Google Scholar] [CrossRef]
- Van Capelle, C.; Schrade, S.; Brunotte, J. Tillage-induced changes in the functional diversity of soil biota—A review with a focus on German data. Eur. J. Soil Biol. 2012, 50, 165–181. [Google Scholar] [CrossRef]
- Blouin, M.; Hodson, M.E.; Delgado, E.A.; Baker, G.; Brussaard, L.; Butt, K.R.; Dai, J.; Dendooven, L.; Pérés, G.; Tondoh, J.E.; et al. A review of earthworm impact on soil function and ecosystem services. Eur. J. Soil Sci. 2013, 64, 161–182. [Google Scholar] [CrossRef]
- Singh, J.; Cameron, E.; Reitz, T.; Schädler, M.; Eisenhauer, N. Grassland management effects on earthworm communities under ambient and future climatic conditions. Eur. J. Soil Sci. 2021, 72, 343–355. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.E. Earthworms: Their Ecology and Relationship with Soils and Land Use; Academic Press: Sydney, Australia, 1985; pp. 351–388. [Google Scholar]
- Pelosi, C.; Barot, S.; Capowiez, Y.; Hedde, M.; Vandenbulcke, F. Pesticides and earthworms: A review. Agron. Sustain. Dev. 2014, 34, 199–228. [Google Scholar] [CrossRef] [Green Version]
- Johnston, A.S.A.; Sibly, R.M.; Hodson, M.E.; Alvarez, T.; Thorbek, P. Effects of agricultural management practices on earthworm populations and crop yield: Validation and application of a mechanistic modelling approach. J. Appl. Ecol. 2015, 52, 1334–1342. [Google Scholar] [CrossRef] [Green Version]
- Johnston, A.S.A.; Sibly, R.M.; Thorbek, P. Forecasting tillage and soil warming effects on earthworm populations. J. Appl. Ecol. 2018, 55, 1498–1509. [Google Scholar] [CrossRef]
- Sankar, A.S.; Patnaik, A. Impact of soil physico-chemical properties on distribution of earthworm populations across different land use patterns in southern India. J. Basic Appl. Zool. 2018, 79, 50. [Google Scholar] [CrossRef]
- Singh, J.; Schädler, M.; Demetrio, W.; Brown, G.G.; Eisenhauer, N. Climate change effects on earthworms—A review. Soil Org. 2019, 91, 114–138. [Google Scholar] [CrossRef] [PubMed]
- Baker, J.B.; Southard, R.J.; Mitchell, J.P. Agricultural dust production in standard and conservation tillage systems in the San Joaquin Valley. J. Environ. Qual. 2005, 34, 1260–1269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munkholm, L.J.; Heck, R.J.; Deen, B. Long-term rotation and tillage effects on soil structure and crop yield. Soil Tillage Res. 2013, 127, 85–91. [Google Scholar] [CrossRef]
- Busari, M.A.; Kukal, S.S.; Kaur, A.; Bhatt, R.; Dulazi, A.A. Conservation tillage impacts on soil, crop and the environment. Int. Soil Water Conserv. Res. 2015, 3, 119–129. [Google Scholar] [CrossRef] [Green Version]
- Jug, D.; Birkás, M.; Šeremešić, S.; Stipešević, B.; Jug, I.; Žugec, I.; Đalović, I. Status and perspective of soil tillage in South-East Europe. In Proceedings of the CROSTRO—Croatian Soil Tillage Research Organization: 1st International Scientific Conference, Osijek, Croatia, 9–11 September 2010; p. 50. [Google Scholar]
- Känkänen, H.; Alakukku, L.; Salo, Y.; Pitkänen, T. Growth and yield of spring cereals during transition to zero tillage on clay soils. Eur. J. Agron. 2011, 34, 35–45. [Google Scholar] [CrossRef]
- Liu, Z.; Gao, T.; Tian, S.; Hu, H.; Li, G.; Ning, T. Soil organic carbon increment sources and crop yields under long-term conservation tillage practices in wheat-maize systems. Land Degrad. Dev. 2020, 31, 1138–1150. [Google Scholar] [CrossRef]
- Jug, D.; Krnjaić, S.; Stipešević, B. Prinos ozime pšenice (Triticum aestivum L.) na različitim varijantama obrade tla. Poljoprivreda 2006, 12, 47–52. [Google Scholar]
- Bogunovic, I.; Trevisani, S.; Seput, M.; Juzbasic, D.; Đurdevic, B. Short-range and regional spatial variability of soil chemical properties in an agro-ecosystem in eastern Croatia. Catena 2017, 154, 50–62. [Google Scholar] [CrossRef]
- International Union of Soil Sciences Working Group WRB. World Reference Base for Soil Resources 2.14 (Update 2015), International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015; Available online: http://www.fao.org/3/a-i3794e.pdf (accessed on 15 May 2018).
- Stefanovits, P. Talajtan; Mezőgazda Kiadó: Budapest, Hungary, 1992. [Google Scholar]
- International Organization for Standardization. Soil Quality—Determination of Particle Size Distribution in Mineral Soil Material—Method by Sieving and Sedimentation. In ISO 11277; International Organization for Standardization: Geneve, Switzerland, 1998. [Google Scholar]
- Jug, D.; Brozović, B.; Đurđević, B.; Jug, I.; Lipiec, J.; Birkás, M.; Vukadinović, V. Effect of conservation tillage on crop productivity and nitrogen use efficiency. Soil Tillage Res. 2019, 194, 104327. [Google Scholar] [CrossRef]
- Raper, R.L. The influence of implement type, tillage depth, and tillage timing on residue burial. Trans. ASAE 2002, 45, 1281–1286. [Google Scholar] [CrossRef]
- Walther, S. Variable Bodenbearbeitungsintensität: Ein Beitrag zum Nachhaltigen Bodenschutz; Kovač: Hamburg, Germany, 2009; p. 166. [Google Scholar]
- Bogunovic, I.; Pereira, P.; Kisic, I.; Sajko, K.; Sraka, M. Tillage management impacts on soil compaction, erosion and crop yield in Stagnosols (Croatia). Catena 2018, 160, 376–384. [Google Scholar] [CrossRef]
- Ren, L.; Nest, T.V.; Ruysschaert, G.; D’hose, T.; Cornelis, W.M. Short-term effects of cover crops and tillage methods on soil physical properties and maize growth in a sandy loam soil. Soil Tillage Res. 2019, 192, 76–86. [Google Scholar] [CrossRef]
- Birkás, M.; Jug, D.; Kende, Z.; Kisić, I.; Szemők, A. Soil tillage response to the climate threats—Revaluation of the classic theories. Agric. Conspec. Sci. 2018, 93, 1–9. [Google Scholar]
- Dahiya, R.; Ingwersen, J.; Streck, T. The effect of mulching and tillage on the water and temperature regimes of a loess soil: Experimental findings and modeling. Soil Tillage Res. 2007, 96, 52–63. [Google Scholar] [CrossRef]
- Kader, M.A.; Senge, M.; Mojid, M.A.; Nakamura, K. Mulching type-induced soil moisture and temperature regimes and water use efficiency of soybean under rain-fed condition in central Japan. Int. Soil Water Conserv. Res. 2017, 5, 302–308. [Google Scholar] [CrossRef]
- Tao, Z.; Li, C.; Li, J.; Ding, Z.; Xu, J.; Sun, X.; Zhou, P.; Zhao, M. Tillage and straw mulching impacts on grain yield and water use efficiency of spring maize in Northern Huang-Huau-Hai Valley. Crop J. 2015, 3, 445–450. [Google Scholar] [CrossRef] [Green Version]
- Nanko, K.; Giambelluca, T.W.; Sutherland, R.A.; Mudd, R.G.; Nullet, M.A.; Ziegler, A.D. Erosion potential under Miconia calvescens Stands on the Island of Hawai’i. Land Degard. Dev. 2012, 26. [Google Scholar] [CrossRef]
- Afzal, I.; Basra, S.M.A.; Shahid, M.; Farooq, M.; Saleem, M. Priming enhances germination of spring maize (Zea Mays L.) under cool conditions. Seed Sci. Technol. 2008, 36, 497–503. [Google Scholar] [CrossRef]
- Rodríguez Sousa, A.A.; Barandica, J.M.; Rescia, A. Ecological and economic sustainability in olive groves with different irrigation management and levels of erosion: A case study. Sustainability 2019, 11, 4681. [Google Scholar] [CrossRef] [Green Version]
- Bottinelli, N.; Angers, A.D.; Hallaire, V.; Michot, D.; Le Guillou, D.; Cluzeau, D.; Heddadj, D.; Menasseri-Aubry, S. Tilllage and fertilization practices affect soil aggregate stability in a Humic Cambisol of Northwest France. Soil Tillage Res. 2017, 170, 14–17. [Google Scholar] [CrossRef]
- Bencsik, K. Talajművelési módok és a talaj agronómiai szerkezetének összefüggései. Agrokémia Talajt. 2007, 56, 21–28. [Google Scholar]
- Bogužas, V.; Kairyté, A.; Jodaugiené, D. Soil physical properties and earthworms as affected by soil tillage systems, straw and green manure management. Zemdirb.-Agric. 2010, 97, 3–14. [Google Scholar]
- Eriksen-Hamel, N.S.; Speratti, A.B.; Whalen, J.K.; Légére, A.; Madramootoo, C.A. Earthworm populations and growth rates related to long-term crop residue and tillage management. Soil Tillage Res. 2009, 104, 311–316. [Google Scholar] [CrossRef]
- Bescansa, P.; Imaz, M.J.; Virto, I.; Enrique, A.; Hoogmoed, W.B. Soil water retention as affected by tillage and residue management in semiarid Spain. Soil Tillage Res. 2006, 87, 19–27. [Google Scholar] [CrossRef]
Treatments | Tillage Equipment | Tillage Depth (cm) | Tillage Width (cm) |
---|---|---|---|
Shallow tine cultivation | Väderstad Cultus 300 | 18–20 | 300 |
Deep tine cultivation | Väderstad Cultus 300 | 22–25 | 300 |
Ploughing | Vogel&Noot 1050 | 30–32 | 160 |
Year, Crop | |||
---|---|---|---|
Vegetation | 2015/2016 Maize | 2016/2017 winter oat | 2017/2018 soybean |
Tillage | 5 October 2015 | 10 October 2016 | 27 September 2017 |
Seedbed preparation | 10 April 2016 | 22 October 2016 | 20 April 2018 |
Seeding | 11 April 2016 | 25 October 2016 | 24 April 2018 |
Variety | LG 33.30 (FAO 340) | RWA Wiland | RWA Xonia (00) |
Seeding rate | 64,000 seeds ha−1 | 150 kg ha−1 | 600,000 seeds ha−1 |
Fertilizers | 300 kg ha−1 NPK (7:20:30) (3 October 2015); 400 kg ha−1 NPK (15:15:15) (11 April 2016) + N:27 (19 May 2016) | 200 kg ha−1 NPK (15:15:15) (21 October 2016); 1st top dressing 150 kg ha−1 N:27 (16 March 2017); 2 top dressing 100 kg ha−1 N:27 (10 May 2017) | 300 kg ha−1 NPK (15:15:15) 24 April 2018 |
Crop protection * | 1 L ha−1 Elumis + 20 g ha−1 Peak 75WG (2 May 2016) | Mustang 0.5 L ha−1 (27 March 2017) Karate Zeon 0.15 L ha−1 (10 May 2017) | Laguna 75WG 100 g ha−1 + Harmony 75WG 8 g ha−1 + Trend 90 22 May 2018 |
Harvesting | 3 October 2016 | 5 July 2017 | 10 September 2018 |
Growing period (day) | 177 | 253 | 139 |
Year of Vegetation | |||
---|---|---|---|
Date of Measurements | 2015/2016 | 2016/2017 | 2017/2018 |
12 April | 15 November | 16 October | |
22 June | 20 March | 24 April | |
22 July | 20 April | 28 June | |
16 August | 22 May | 21 July | |
22 September | 21 June | 17 October |
(a) | |||||||||||
Year | 2016 | 2017 | 2018 | ||||||||
Time (T) | *** | *** | *** | ||||||||
Tillage (Till) | *** | *** | *** | ||||||||
Depth (D) | *** | *** | *** | ||||||||
T * Till | *** | *** | *** | ||||||||
T * D | ** | *** | *** | ||||||||
Till * D | * | *** | *** | ||||||||
T * Till * D | * | * | *** | ||||||||
(b) | |||||||||||
Depth | P | DC | Ave. | P | DC | SC | Ave. | P | DC | SC | Ave. |
0–10 cm | 2.33 Ea | 1.95 Da | 2.14 E | 1.09 Da | 1.05 Ea | 1.12 Ea | 1.09 E | 1.46 Ea | 0.93 Eb | 1.39 Ea | 1.26 E |
10–20 cm | 2.91 Da | 2.66 Ca | 2.79 D | 2.07 Ca | 1.67 Db | 1.94 Dab | 1.89 D | 2.01 Da | 1.49 Db | 1.80 Dab | 1.77 D |
20–30 cm | 3.46 Ca | 3.22 Ba | 3.34 C | 2.31 Cb | 2.29 Cb | 2.91 Ca | 2.50 C | 3.25 Ca | 2.48 Cb | 2.30 Cb | 2.68 C |
30–40 cm | 4.01 Ba | 3.50 Bb | 3.76 B | 2.89 Bb | 2.94 Bb | 3.72 Ba | 3.19 B | 3.87 Ba | 3.62 Ba | 2.72 Bb | 3.40 B |
40–50 cm | 4.61 Aa | 3.92 Ab | 4.27 A | 3.44 Ab | 3.42 Ab | 4.28 Aa | 3.72 A | 4.28 Aa | 4.09 Aa | 3.25 Ab | 3.87 A |
Time | |||||||||||
1st measure | 2.21 Da | 2.02 Ca | 2.11 C | 1.53 Db | 1.36 Cb | 1.94 Ca | 1.61 D | 2.24 a | 2.16 a | 2.15 a | 2.18 C |
2nd measure | 3.46 Ba | 3.23 Ba | 3.35 B | 2.18 Cb | 2.37 Bb | 2.72 Ba | 2.42 C | 1.75 a | 1.85 a | 1.76 a | 1.79 D |
3rd measure | 2.95 Ca | 3.31 ABa | 3.13 B | 2.13 Cb | 2.29 Bb | 2.58 Ba | 2.34 C | 3.55 a | 2.29 b | 2.06 b | 2.63 B |
4th measure | 4.19 Aa | 3.67 Ab | 3.93 A | 2.67 Ba | 2.43 Ba | 2.68 Ba | 2.59 B | 4.04 a | 2.51 b | 1.89 c | 2.81 B |
5th measure | 4.52 Aa | 3.02 Bb | 3.77 A | 3.29 Ab | 2.92 Ac | 4.04 Aa | 3.42 A | 3.27 b | 3.80 a | 3.61 a | 3.56 A |
Average | 3.47 a | 3.05 b | 2.36 b | 2.28 b | 2.79 a | 2.97 a | 2.52 b | 2.29 c |
(a) | |||||||||||
Year | 2016 | 2017 | 2018 | ||||||||
Time (T) | *** | *** | *** | ||||||||
Tillage (Till) | *** | ** | *** | ||||||||
Depth (D) | *** | *** | *** | ||||||||
T * Till | *** | *** | *** | ||||||||
T * D | *** | *** | *** | ||||||||
Till * D | *** | ** | * | ||||||||
T * Till * D | *** | ** | *** | ||||||||
(b) | |||||||||||
Depth | P | DC | Ave. | P | DC | SC | Ave. | P | DC | SC | Ave. |
0–10 cm | 13.4 Cb | 17.2 Ca | 15.3 C | 17.5 Da | 17.6 Da | 17.6 Da | 17.6 D | 13.2D b | 15.5 Da | 15.2 Da | 14.6 E |
10–20 cm | 20.2 Ab | 21.8 Aa | 21.0 A | 25.8 Ca | 26.3 Ca | 26.2 Ca | 26.1 C | 20.8 Cc | 24.0 Ca | 22.9 Cb | 22.6 D |
20–30 cm | 20.3 Ab | 22.0 Aa | 21.1 A | 27.8 Ba | 28.1 Ba | 27.8 Ba | 27.9 B | 22.4 Bc | 25.5 Ba | 24.5 Bb | 24.2 C |
30–40 cm | 15.8 Bb | 19.7 Ba | 17.7 B | 29.0 Aa | 29.2 Aa | 28.4 Ab | 28.9 A | 23.9 Ac | 26.3 Aa | 25.6 Ab | 25.3 B |
40–50 cm | 12.4 Db | 17.1 Ca | 14.8 C | 29.5 Aa | 29.3 Aa | 28.5 Ab | 29.1 A | 24.5 Ab | 26.5 Aa | 26.1 Aa | 25.7 A |
Time | |||||||||||
1st measure | 18.1 Bb | 22.2 Aa | 20.2 B | 24.5 Cb | 24.7 Cab | 25.2 Ca | 24.8 C | 24.3 Bb | 24.7 Cab | 25.0B a | 24.7 AB |
2nd measure | 20.2 Ab | 21.7 Aa | 21.0 A | 26.9 Ba | 28.6 Aa | 28.0 Aa | 27.8 A | 19.3 Dc | 27.5 Aa | 26.3 Ab | 24.4 B |
3rd measure | 16.0 Cb | 17.2 Ca | 16.6 C | 27.9 Aa | 26.6 Bb | 26.3 Bb | 26.9 B | 24.9 Aab | 25.4 Ba | 24.6 Bb | 24.9 A |
4th measure | 14.8 Db | 17.0 Ca | 15.9 D | 27.6 Ab | 28.1 Aa | 27.7 Aab | 27.8 A | 21.2 Cb | 23.4 Da | 21.7 Cb | 22.1 C |
5th measure | 13.0 Eb | 19.6B a | 16.3 CD | 22.7 Da | 22.5 Da | 21.3 Db | 22.2 D | 15.0E b | 16.8 Ea | 16.7 Da | 16.2 D |
Average | 16.4 b | 19.5 a | 25.9 a | 26.1 a | 25.7 b | 21.0 c | 23.6 a | 22.9 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dekemati, I.; Simon, B.; Bogunovic, I.; Vinogradov, S.; Modiba, M.M.; Gyuricza, C.; Birkás, M. Three-Year Investigation of Tillage Management on the Soil Physical Environment, Earthworm Populations and Crop Yields in Croatia. Agronomy 2021, 11, 825. https://doi.org/10.3390/agronomy11050825
Dekemati I, Simon B, Bogunovic I, Vinogradov S, Modiba MM, Gyuricza C, Birkás M. Three-Year Investigation of Tillage Management on the Soil Physical Environment, Earthworm Populations and Crop Yields in Croatia. Agronomy. 2021; 11(5):825. https://doi.org/10.3390/agronomy11050825
Chicago/Turabian StyleDekemati, Igor, Barbara Simon, Igor Bogunovic, Szergej Vinogradov, Maimela Maxwell Modiba, Csaba Gyuricza, and Márta Birkás. 2021. "Three-Year Investigation of Tillage Management on the Soil Physical Environment, Earthworm Populations and Crop Yields in Croatia" Agronomy 11, no. 5: 825. https://doi.org/10.3390/agronomy11050825
APA StyleDekemati, I., Simon, B., Bogunovic, I., Vinogradov, S., Modiba, M. M., Gyuricza, C., & Birkás, M. (2021). Three-Year Investigation of Tillage Management on the Soil Physical Environment, Earthworm Populations and Crop Yields in Croatia. Agronomy, 11(5), 825. https://doi.org/10.3390/agronomy11050825