A Sustainable Approach for Improving Soil Properties and Reducing N2O Emissions Is Possible through Initial and Repeated Biochar Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design
2.3. Nitrous Oxide Measurements
2.4. Soil Sampling and Analysis
2.5. Statistical Analysis
3. Results and Discussion
3.1. Soil Chemical Properties
3.2. Physical Properties of Soil
3.3. Nitrous Oxide Emissions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; OConnell, C.; Ray, D.K.; West, P.C.; et al. Solutions for a cultivated planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef] [Green Version]
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food security: The challenge of feeding 9 billion people. Science 2010, 327, 812–818. [Google Scholar] [CrossRef] [Green Version]
- Campbell, B.M.; Beare, D.J.; Bennett, E.M.; Hall-Spencer, J.M.; Ingram, J.S.I.; Jaramillo, F.; Ortiz, R.; Ramankutty, N.; Sayer, J.A.; Shindell, D. Agriculture production as a major driver of the Earth system exceeding planetary boundaries. Ecol. Soc. 2017, 22, 1–11. [Google Scholar] [CrossRef]
- Steffen, W.; Richardson, K.; Rockström, J.; Cornell, S.E.; Fetzer, I.; Bennett, E.M.; Briggs, R.; Carpenter, S.R.; Vries, W.; De Wit, C.A.; et al. Planetary boundaries: Guiding human development on a changing planet. Science 2015, 347, 1259855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tripathi, V.; Edrisi, S.A.; Chen, B.; Gupta, V.K.; Vilu, R.; Gathergood, N.; Abhilash, P.C. Biotechnological advances for restoring degraded land for sustainable development. Trend Biotechnol. 2017, 35, 847–859. [Google Scholar] [CrossRef] [PubMed]
- Sollins, P.; Homann, P.; Caldwell, B.A. Stabilization and destabilization of soil organic matter—Mechanisms and controls. Geoderma 1996, 74, 65–105. [Google Scholar] [CrossRef]
- European Commission. Healthy Soils—New EU Soil Strategy. Available online: https://ec.europa.eu/info/law/better-regulation/have-your-say/initiatives/12634-New-EU-Soil-Strategy-healthy-soil-for-a-healthy-life (accessed on 9 January 2021).
- Tsui, C.C.; Guo, H.Y.; Chen, Z.S. Estimation of soil carbon stock in Taiwan arable soils by using legacy database and digital soil mapping. In Soil Processes and Current Trends in Quality Assessment; Soriano, M.C.H., Ed.; IntechOpen: Rijeka, Croatia, 2013; pp. 311–335. [Google Scholar]
- Šimanský, V.; Bajčan, D.; Ducsay, L. The effect of organic matter on aggregation under different soil management practices in a vineyard in an extremely humid year. Catena 2013, 101, 108–113. [Google Scholar] [CrossRef]
- Wijitkosum, S.; Sriburi, T. Increasing the amount of biomass in field crops for carbon sequestration and plant biomass enhancement using biochar. In An Imperatice Amendment for Soil and the Environment; Abrol, V., Sharma, P., Eds.; IntechOpen: Rijeka, Croatia, 2019; pp. 35–54. [Google Scholar]
- Carlson, K.M.; Gerber, J.S.; Mueller, N.D.; Herrero, M.; MacDonald, G.K.; Brauman, K.A.; Havlik, P.; O’Connel, C.S.; Johnson, J.A.; Saatchi, S.; et al. Greenhouse gas emissions intensity of global croplands. Nat. Clim. Chang. 2017, 7, 63–68. [Google Scholar] [CrossRef]
- Myhre, G.D.; Shindell, F.M.; Bréon, W.; Collins, J.; Fuglestvedt, J.; Huang, D.; Koch, J.F.; Lamarque, D.; Lee, B.; Mendoza, T. Anthropogenic and natural radioactive forcing. In Climate Change 2013—The Physical Science Basis Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Quin, D., Plattner, G.K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambirdge, UK, 2013; pp. 659–740. [Google Scholar] [CrossRef]
- Food and Agricultural Organization. WRB Map of World Soil Resources. 2002. Available online: http://www.fao.org/ag/agl/agll/wrb/soilres.stm (accessed on 4 November 2020).
- Behnke, G.D.; Zuber, S.M.; Pittelkow, C.M.; Natziger, E.D.; Villamil, M.B. Long–term crop rotation and tillage effects on soil greenhouse gas emissions and crop production in Illinois, USA. Agric. Ecosyst. Environ. 2018, 261, 62–70. [Google Scholar] [CrossRef]
- Li, B.; Fan., C.H.; Zhang, H.; Chen, Z.Z.; Sun, L.Y.; Xiong, Z.Q. Combinated effects of nitrogen fertilization and biochar on the net global warming potential, greenhouse gas intensity and net ecosystem economic budget in intensive vegetable agriculture in southeastern China. Atmos. Environ. 2015, 100, 10–19. [Google Scholar] [CrossRef]
- Are, K.S.; Adelana, A.O.; Fademi, I.O.; Aina, O.A. Improving physical properties of degraded soil: Potential of poulry manure and biochar. Agric. Nat. Resour. 2017, 51, 454–462. [Google Scholar] [CrossRef]
- Githinji, L. Effect of biochar application rate on physical and hydraulic properties of a sandy loam. Arch. Agron. Soil Sci. 2014, 60, 457–470. [Google Scholar] [CrossRef]
- Duarte, S.J.; Glaser, B.; Cerri, C.E.P. Effect of biochar particle size on physical, hydrological and chemicalproperties of loamy and sandy tropical soils. Agronomy 2019, 9, 165. [Google Scholar] [CrossRef] [Green Version]
- Karhu, K.; Mattila, T.; Bergström, I.; Regina, K. Biochar addition to agricultural soil increased CH4 uptake and water holding capacity—Results from a short-term pilot field study. Agric. Ecosyst. Environ. 2011, 140, 309–313. [Google Scholar] [CrossRef]
- Dugan, E.; Verhoef, A.; Robinson, S.; Sohi, S.; Gilkes, R.; Prakpongkep, N. Bio-char from sawdust, maizestover and charcoal: Impact on water holding capacities (WHC) of three soils from Ghana. In Proceedings of the 19th World Congress of Soil Science, Brisbane, Australia, 1–6 August 2010; IUSS: Wien, Austria, 2010. [Google Scholar]
- Tian, D.; Qu, Z.-Y.; Gou, M.-M.; Li, B.; Lv, Y.-J. Experimental study of influence of biochar on different texture soil hydraulic characteristic parameters and moisture holding properties. Environ. Stud. 2015, 24, 1435–1442. [Google Scholar]
- Mukherjee, A.; Lal, R. Biochar impacts on soil physical properties and greenhouse gas emissions. Agronomy 2013, 3, 313–339. [Google Scholar] [CrossRef] [Green Version]
- Buchkina, N.P.; Balashov, E.V.; Šimanský, V.; Igaz, D.; Horák, J. Changes in biological and physical parameters of soils with different texture after biochar application. Selskokhozyaistvennaya Biol. (Agric. Biol.) 2017, 52, 471–477. [Google Scholar] [CrossRef] [Green Version]
- Castellini, M.; Giglio, L.; Niedda, M.; Palumbo, A.D.; Ventrella, D. Imoact of biochar addition on physical and hydraulic properties of clay soil. Soil Tillage Res. 2015, 154, 1–13. [Google Scholar] [CrossRef]
- Šimanský, V.; Jonczak, J.; Parzych, A.; Horák, J. Contents and bioaccumulation of nutrients from soil to corn organs after application of different biochar doses. Carpathian J. Earth Environ. Sci. 2018, 13, 315–324. [Google Scholar] [CrossRef]
- Chan, K.Y.; Zwieten, L.V.; Meszaros, I.; Downie, A.; Joseph, S. Agronomic values of greenwaste biochar as a soil amendment. Aust. J. Soil Res. 2007, 45, 629–634. [Google Scholar] [CrossRef]
- Šimanský, V.; Horák, J.; Igaz, D.; Balashov, E.; Jonczak, J. Biochar and biochar with N fertilizer as a potential tool for improving soil sorption of nutrients. J. Soils Sediments 2018, 18, 1432–1440. [Google Scholar] [CrossRef]
- Woolf, D.; Lehmann, J.; Lee, D.R. Optimal bioenergy power generation for climate change mitigation with or without carbon sequestration. Nat. Commun. 2016, 7, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laird, D.A.; Fleming, P.; Davis, D.D.; Horton, R.; Wang, B.; Karlen, D.L. Impact of biochar amendments on the quality of typical Midwestern agricultural soil. Geoderma 2010, 158, 443–449. [Google Scholar] [CrossRef] [Green Version]
- Zhang, A.; Bian, R.; Pan, G.; Cui, L.; Hussain, Q.; Li, L.; Zheng, J.; Zheng, J.; Zhang, X.; Han, X.; et al. Effects of biochar amendments on soil quality, crop yield and greenhouse gas emission in a Chinese rice paddy: A field study of 2 consecutive rice growing cycles. Field Crop. Res. 2012, 127, 153–160. [Google Scholar] [CrossRef]
- Kondrlová, E.; Horák, J.; Igaz, D.; Dobiášová, D. The possibility of using digital images in assessment of plant canopy development and weed spread. Acta Hortic. Reg. 2017, 20, 35–39. [Google Scholar] [CrossRef] [Green Version]
- Jeffery, S.; Abalos, D.; Prodana, M.; Bastos, A.C.; van Groenigen, J.W.; Hungate, B.A.; Verheijen, F. Biochar boosts tropical but not temperate crop yields. Environ. Res. Lett. 2017, 12, 053001. [Google Scholar] [CrossRef]
- Shenbagavalli, S.; Mahimairaja, S. Production and characterization of biochar from different biological wastes. Int. J. Plant Anim. Environ. Sci. 2012, 2, 197–201. [Google Scholar]
- Freibauer, A.; Rounsevell, M.D.A.; Smith, P.; Verhagen, J. Carbon sequestration in agricultural soils of Europe. Geoderma 2004, 122, 1–23. [Google Scholar] [CrossRef]
- Fungo, B.; Lehmann, J.; Kalbitz, K.; Thionģo, M.; Tenywa, M.; Okeyo, I.; Neufeldt, H. Ammonia and nitrous oxide emissions from a field Ultisol amended with tithonia green manure, urea, and biochar. Biol. Fertil. Soils. 2019, 55, 135–148. [Google Scholar] [CrossRef]
- Cayuela, M.L.; Van Zwieten, L.; Singh, B.P.; Jeffery, S.; Roig, A.; Sanchez-Monedero, M.A. Biochar’s role in mitigating soil nitrous oxide emissions: A review and meta-analysis. Agric. Ecosyst. Environ. 2014, 191, 5–16. [Google Scholar] [CrossRef]
- Brassard, P.; Godbout, S.; Raghavan, V. Soil biochar amendment as a climate change mitigation tool: Key parameters and mechanisms involved. J. Environ. Manag. 2016, 181, 484–497. [Google Scholar] [CrossRef]
- He, Y.H.; Zhou, X.H.; Jiang, L.L.; Li, M.; Du, Z.G.; Zhou, G.Y.; Shao, J.J.; Wang, X.H.; Xu, Z.H.; Bai, S.H.; et al. Effects of biochar application on soil greenhouse gas fluxes: A meta-analysis. Gcb Bioenergy 2017, 9, 743–755. [Google Scholar] [CrossRef]
- Horák, J.; Kondrlová, E.; Igaz, D.; Šimanský, V.; Felber, R.; Lukac, M.; Balashov, E.V.; Buchkina, N.P.; Rizhiya, E.Y.; Jankowski, M. Biochar and biochar with N-fertilizer affect soil N2O emission in Haplic Luvisol. Biologia 2017, 72, 995–1001. [Google Scholar] [CrossRef]
- Van Zwieten, L.; Singh, B.P.; Kimber, S.W.L.; Murphy, D.V.; Macdonald, L.M.; Rust, J.; Morris, S. An incubation study investigating the mechanisms that impact N2O flux from soil following biochar application. Agric. Ecosyst. Environ. 2014, 191, 53–62. [Google Scholar] [CrossRef]
- Lehmann, J.; Gaunt, J.; Rondon, M. Bio–char sequestration in terrestrial ecosystems—A review. Mitig. Adapt. Strateg. Glob. Chang. 2006, 11, 403–427. [Google Scholar] [CrossRef]
- Clough, T.J.; Condron, L.M. Biochar and the nitrogen cycle: Introduction. J. Environ. Qual. 2010, 39, 1218–1223. [Google Scholar] [CrossRef] [PubMed]
- Cornelissen, G.; Rutherford, D.W.; Arp, H.P.H.; Dörsch, P.; Kelly, C.N.; Rostad, C.E. Sorption of pure N2O to biochars and other organic and inorganic materials under anhydrous conditions. Environ. Sci. Technol. 2013, 47, 7704–7712. [Google Scholar] [CrossRef]
- Spokas, K.A.; Baker, J.M.; Reicosky, D.C. Ethylene: Potential key for biochar amendment impacts. Plant Soil 2010, 333, 443–452. [Google Scholar] [CrossRef]
- Thomazini, A.; Spokas, K.; Hall, K.; Ippolito, J.; Lentz, R.; Novak, J. GHG impacts of biochar: Predictability for the same biochar. Agric. Ecosyst. Environ. 2015, 207, 183–191. [Google Scholar] [CrossRef]
- Yanai, Y.; Toyota, K.; Okazaki, M. Effects of charcoal addition on N2O emissions from soil resulting from rewetting air-dried soil in short-term laboratory experiments. Soil Sci. Plant Nutr. 2007, 53, 181–188. [Google Scholar] [CrossRef]
- Spokas, K.A.; Koskinen, W.C.; Baker, J.M.; Reicosky, D.C. Impacts of woodchip biochar additions on greenhouse gas production and sorption/degradation of two herbicides in a Minnesota soil. Chemosphere 2009, 77, 574–581. [Google Scholar] [CrossRef]
- Rogovska, N.; Laird, D.; Cruse, R.; Fleming, P.; Parkin, T.; Meek, D. Impact of biochar on manure carbon stabilization and greenhouse gas emissions. Soil Sci. Soc. Am. J. 2010, 75, 871–879. [Google Scholar] [CrossRef] [Green Version]
- Case, S.D.C.; McNamara, N.P.; Reay, D.S.; Whitaker, J. The effect of biochar addition on N2O and CO2 emissions from a sandy loam soil-the role of soil aeration. Soil Biol. Biochem. 2012, 51, 125–134. [Google Scholar] [CrossRef]
- Suddick, E.C.; Six, J. An estimation of annual nitrous oxide emissions and soil quality following the amendment of high temperature walnut shell biochar and compost to a small scale vegetable crop rotation. Sci. Total Environ. 2013, 65, 298–307. [Google Scholar] [CrossRef]
- IUSS. World Reference Base for Soil Resources 2014. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; FAO: Rome, Italy, 2015. [Google Scholar]
- Yuen, S.H.; Pollard, A.G. Determination of nitrogen in agricultural materials by the nessler reagent. II. Micro-determinations in plant tissue and in soil extracts. J. Sci. Food Agric. 1954, 5, 364–369. [Google Scholar] [CrossRef]
- Dziadowiec, H.; Gonet, S. Przewodnik Metodyczny do Badań Materii Organicznej Gleb [Methodological Guidebook For The Organic Matter Researches]; Prace Komisji Naukowych Polskiego Towarzystwa Naukowego 120; PTG: Warszawa, Poland, 1999; pp. 31–34. (In Polish) [Google Scholar]
- Soil Survey Division Staff. Laboratory Methods Manual; Soil Survey Investigations Report No. 42; USDA-NRCS: Washington, DC, USA, 1996; 716p.
- Igaz, D.; Šimanský, V.; Horák, J.; Kondrlová, E.; Domanová, J.; Rodný, M.; Buchkina, N.P. Can a single dose of biochar affect selected soil physical and chemical characteristics? J. Hydrol. Hydromech. 2018, 66, 421–428. [Google Scholar] [CrossRef] [Green Version]
- Mohsenipour, M.; Shahid, S. Estimation of Saturated Hydraulic Conductivity: A Review. Available online: https://www.academia.edu/32994134/ESTIMATION_OF_SATURATED_HYDRAULIC_CONDUCTIVITY_A_REVIEW (accessed on 1 November 2020).
- Igaz, D.; Kondrlová, E.; Horák, J.; Čimo, J.; Tárník, A.; Bárek, V. Stanovenie koeficientu hydraulickej vodivosti laboratórnymi metódami [Determination of hydraulic conductivity coefficient by laboratory methods]. In Základné Merania v Hydropedológii [Basic Measurements in Hydropedology]; Slovenská Pol’nohospodárska Univerzita: Nitra, Slovakia, 2017; pp. 46–56. (In Slovak) [Google Scholar]
- Iwai, C.B.; Oo, A.N.; Kruapukdee, A.; Chuasavatee, T. Vermicompost as soil amendment for sustainable land and environment in Thailand. In Soil Amendments for Sustainability; Rakshit, A., Sarkar, B., Abhilash, P.C., Eds.; CRC Press: New York, NY, USA, 2019; pp. 321–349. [Google Scholar]
- Kováčik, P.; Ryant, P. Agrochémia, Princípy a Prax [Agrochemistry, Principles and Practice]; SPU: Nitra, Slovakia, 2019. (In Slovak) [Google Scholar]
- Atkinson, C.J.; Fitzgerald, J.D.; Hipps, N.A. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: A review. Plant Soil 2010, 337, 1–18. [Google Scholar] [CrossRef]
- Jones, D.L.; Rousk, J.; Edwards-Jones, G.; DeLuca, T.H.; Murphy, D.V. Biochar–mediated changes in soil quality and plant growth in a three years field trial. Soil Biol. Biochem. 2012, 45, 113–124. [Google Scholar] [CrossRef]
- Juriga, M.; Šimanský, V. Effects of biochar and its reapplication on Soil pH and sorption properties of Silt Loam Haplic Luvisol. Acta Hortic. Regiotect. 2019, 22, 65–70. [Google Scholar] [CrossRef] [Green Version]
- Horák, J. Testing biochar as a possible way to ameliorate slightly acidic soil at the research field located in the Danubian lowland. Acta Hortic. Reg. 2015, 18, 20–24. [Google Scholar] [CrossRef] [Green Version]
- Le Leuch, L.M.; Bandosz, T.J. The Role of Water and Surface Acidity on the Reactive Adsorption of Ammonia on Modified Activated Carbon. Carbon 2007, 45, 568–578. [Google Scholar] [CrossRef]
- Taghizadeh-Toosi, A.; Clough, T.J.; Condron, L.M.; Sherlock, R.R.; Anderson, C.R.; Craigie, R.A. Biochar incorporation into pasture soil suppresses in situ nitrous oxide emissions from ruminant urine patches. J. Environ. Qual. 2011, 40, 468–476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lehmann, J.; Silva, J.S.; Steiner, C.; Nehls, T.; Zech, W.; Glaser, B. Nutrient availability and leaching in an archaelogical anthrosol and ferralsol of the Central Amazon basin: Fertilizer, manure and charcoal amendments. Plant Soil 2003, 249, 343–357. [Google Scholar] [CrossRef]
- Ippolito, J.A.; Novak, J.M.; Busscher, W.J.; Ahmedna, M.; Rehrah, D.; Watts, D.W. Switchgrass biochar affects two Aridisols. J. Environ. Qual. 2012, 41, 1123–1130. [Google Scholar] [CrossRef] [PubMed]
- Van Zwieten, L.; Kimber, S.; Morris, S.; Chan, K.Y.; Downie, A.; Rust, J.; Joseph, S.; Cowie, A. Effect of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil 2010, 327, 235–246. [Google Scholar] [CrossRef]
- Singh, B.P.; Hatton, B.J.; Singh, B.; Cowie, A.L.; Kathuria, A. Influence of biochars on nitrous oxide emission and nitrogen leaching from two contrasting soils. J. Environ. Qual. 2010, 39, 1224–1235. [Google Scholar] [CrossRef]
- Fischer, D.; Glaser, B. Synergisms between compost and biochar for sustainable soil amelioration. In Management of Organic Waste; Kumar, S., Bharti, A., Eds.; IntechOpen: Rijeka, Croatia, 2012; pp. 167–198. [Google Scholar] [CrossRef] [Green Version]
- Ouyang, L.; Wang, F.; Tang, J.; Yu, L.; Zhang, R. Effects of biochar amendment on soil aggregates and hydraulic properties. J. Soil Sci. Plant Nutr. 2013, 13, 991–1002. [Google Scholar] [CrossRef] [Green Version]
- Bronick, C.J.; Lal, R. The soil structure and land management: A review. Geoderma 2005, 124, 3–22. [Google Scholar] [CrossRef]
- Šimanský, V.; Šrank, D.; Jonczak, J.; Juriga, M. Fertilization and application of different biochar types and their mutual interactions influencing changes of soil characteristics in soils of different textures. J. Ecol. Eng. 2019, 20, 149–164. [Google Scholar] [CrossRef]
- Šimanský, V. Effects of biochar and biochar with nitrogen on soil organic matter and soil structure in Haplic Luvisol. Acta Fytotech. Zootech. 2016, 19, 129–138. [Google Scholar] [CrossRef] [Green Version]
- Barrow, C.J. Biochar: Potential for countering land degradation and for improving agriculture. Appl. Geogr. 2012, 34, 21–28. [Google Scholar] [CrossRef]
- Agegnehu, G.; Bass, A.M.; Nelson, P.N.; Muirhead, B.; Wright, G.; Bird, M.I. Biochar and biochar-compost as soil amendments: Effects on peanut yield, soil properties and greenhouse gas emissions in tropical North Queensland, Australia. Agric. Ecosyst. Environ. 2015, 213, 72–85. [Google Scholar] [CrossRef]
- Leelamanie, D.A.L. 2014. Initial water repellency affected organic matter depletion rates of manure amended soils in Sri Lanka. J. Hydrol. Hydromech. 2014, 62, 309–315. [Google Scholar] [CrossRef] [Green Version]
- Liyanage, T.D.P.; Leelamanie, D.A.L. Influence of organic manure amendments on water repellency, water entry value, and water retention of soil samples from a tropical ultisol. J. Hydrol. Hydromech. 2016, 64, 160–166. [Google Scholar] [CrossRef] [Green Version]
- Šrank, D.; Šimanský, V. Physical properties of texturally different soils after application of biochar substrates. Agriculture [Poľnohospodárstvo] 2020, 66, 45–55. [Google Scholar] [CrossRef]
- Kinney, T.; Masiello, C.A.; Dugan, B.; Hockaday, W.C.; Dean, M.R.; Zygourakis, K.; Barnes, R.T. Hydrologic properties of biochars produced at different temperatures. Biomass Bioenergy 2012, 41, 34–43. [Google Scholar] [CrossRef]
- Toková, L.; Igaz, D.; Horák, J.; Aydin, E. Effect of biochar application and re-application on soil bulk density, porosity, saturated hydraulic conductivity, water content and soil water availability in a silty loam Haplic Luvisol. Agronomy 2020, 10, 1005. [Google Scholar] [CrossRef]
- Chintala, R.; Owen, R.K.; Kumar, S.; Schumacher, T.E.; Malo, D. Biochar impacts on denitrification under different soil water contents. World Cong. Soil Sci. 2014, 6, 157. [Google Scholar]
- Liang, B.; Lehmann, J.; Solomon, D.; Kinyangi, J.; Grossman, J.; O’Neill, B.; Skjemstad, J.O.; Thies, J.; Luiz˘ao, F.J.; Petersen, J.; et al. Black carbon increases cation exchange capacity in soils. Soil Sci. Soc. Am. J. 2006, 70, 1719–1730. [Google Scholar] [CrossRef] [Green Version]
- Are, K.S. Biochar and soils physical health. In An Imperative Amendment for Soil and the Environment; Abrol, V., Sharma, P., Eds.; IntechOpen: Rijeka, Croatia, 2019; pp. 21–33. [Google Scholar] [CrossRef] [Green Version]
- Barnes, R.T.; Gallagher, M.E.; Masiello, C.A.; Liu, Z.; Dugan, B. Biochar-induced changes in soil hydraulic conductivity and dissolved nutrient fluxes constrained by laboratory experiments. PLoS ONE 2014, 9, 108340. [Google Scholar] [CrossRef] [Green Version]
- Lim, T.J.; Spokas, K.A.; Feyereisen, G.; Novak, J.M. Predicting the impact of biochar additions on soil hydraulic properties. Chemosphere 2016, 142, 136–144. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, J.; Stephen, J. Biochar effect on soil hydrology. In Biochar for Environmental Management: Science, Technology and Impementation; Routledge: London, UK; Taylor & Francis Group: Boca Raton, FL, USA, 2015; pp. 543–563. [Google Scholar]
- Jones, B.E.H.; Haynes, R.J.; Phillips, I.R. Effect of amendment of bauxite processing sand with organic materials on its chemical, physical and microbial properties. J. Environ. Manag. 2010, 91, 2281–2288. [Google Scholar] [CrossRef] [PubMed]
- Juriga, M.; Šimanský, V. Effect of biochar on soil structure—Review. Acta Fytotech. Zootech. 2018, 21, 11–19. [Google Scholar] [CrossRef]
- Juriga, M.; Šimanský, V.; Horák, J.; Kondrlová, E.; Igaz, D.; Polláková, N.; Buchkina, N.; Balashov, E. The effect of different rates of biochar and biochar in combination with N fertilizer on the parameters of soil organic matter and soil structure. J. Ecol. Eng. 2018, 19, 153–161. [Google Scholar] [CrossRef]
- Fangueiro, D.; Senbayran, M.; Trindade, H.; Chadwick, D. Cattle slurry treatment by screw press separation and chemically enhanced settling: Effect ongreenhouse gas emissions afterland spreading and grass yield. Bioresour. Technol. 2008, 99, 7132–7142. [Google Scholar] [CrossRef]
- Castaldi, S.; Riondino, M.; Baronti, S.; Esposito, F.R.; Marzaioli, R.; Rutigliano, F.A.; Vaccari, F.P.; Miglietta, F. Impact of biochar application to a Mediterranean wheat crop on soil microbial activity and greenhouse gas fluxes. Chemosphere 2011, 85, 1464–1471. [Google Scholar] [CrossRef] [PubMed]
- Tan, G.; Wang, H.; Xu, N.; Liu, H.; Zhai, L. Biochar amendment with fertilizers increases peanut N uptake, alleviates soil N2O emissions without affecting NH3 volatilization in field experiments. Environ. Sci. Pollut. Res. 2018, 25, 1–10. [Google Scholar] [CrossRef]
- Wang, Y.S.; Liu, Y.S.; Liu, R.L.; Zhang, A.P.; Yang, S.Q.; Liu, H.Y.; Zhou, Y.; Yang, Z. Biochar amendment reduces paddy soil nitrogen leaching but increases net global warming potential in Ningxia irrigation, China. Sci. Rep. 2017, 7, 1592. [Google Scholar] [CrossRef] [Green Version]
- Steiner, C.; Teixeira, W.G.; Lehmann, J.; Zech, W. Long term effects of manure, charcoaland mineral fertilization on crop production and fertility on a highly weathered central amazonian upland soil. Plant Soil 2007, 291, 275–290. [Google Scholar] [CrossRef] [Green Version]
- Simek, M.; Cooper, J.E. The influence of soil pH on denitrification: Progress towards the understatnding of this interaction over the last 50 years. Eur. J. Soil Sci. 2002, 53, 345–354. [Google Scholar] [CrossRef]
- Aydin, E.; Šimanský, V.; Horák, J.; Igaz, D. Potential of biochar to alternate soil properties and crop yield 3 and 4 years after the application. Agronomy 2020, 10, 889. [Google Scholar] [CrossRef]
Month | Precipitation | Air Temperature | ||||
---|---|---|---|---|---|---|
Total (mm) | % of Normal | Description | Mean (°C) | Deviation of Normal (°C) | Description | |
January | 22.10 | 71.29 | dry | 2.38 | 4.08 | very warm |
February | 26.80 | 83.75 | normal | −0.66 | −1.36 | normal |
March | 48.60 | 162.00 | very wet | 3.39 | −1.61 | cold |
April | 12.40 | 31.79 | very dry | 15.38 | 4.98 | extremely warm |
May | 26.00 | 44.83 | very dry | 18.77 | 3.67 | extremely warm |
June | 109.00 | 165.15 | very wet | 20.68 | 2.68 | very warm |
July | 43.10 | 82.88 | normal | 21.74 | 1.94 | warm |
August | 73.70 | 120.82 | normal | 22.45 | 3.15 | extremely warm |
September | 68.90 | 172.25 | very wet | 16.43 | 0.83 | normal |
October | 14.10 | 39.17 | very dry | 12.26 | 1.86 | warm |
November | 33.00 | 60.00 | dry | 5.66 | 1.16 | normal |
December | 59.70 | 149.25 | wet | −1.50 | −1.60 | cold |
Treatments | Biochar Application in 2014 (t ha−1) | Biochar Reapplication in 2018 (t ha−1) | N-Fertilizer Application in 2018 (kg N ha−1) |
---|---|---|---|
N0 Level—unfertilized treatments | |||
B0+N0 | 0 | 0 | 0 |
B10+N0 | 10 | 0 | 0 |
B20+N0 | 20 | 0 | 0 |
B10reap+N0 | 10 | 10 | 0 |
B20reap+N0 | 20 | 20 | 0 |
N1 Level—fertilized treatments | |||
B0+N1 | 0 | 0 | 40 |
B10+N1 | 10 | 0 | 40 |
B20+N1 | 20 | 0 | 40 |
B10reap+N1 | 10 | 10 | 40 |
B20reap+N1 | 20 | 20 | 40 |
N2 Level—fertilized treatments | |||
B0+N2 | 0 | 0 | 80 |
B10+N2 | 10 | 0 | 80 |
B20+N2 | 20 | 0 | 80 |
B10reap+N2 | 10 | 10 | 80 |
B20reap+N2 | 20 | 20 | 80 |
pH(KCl) | Organic C (%) | Total N (%) | C:N | Bulk Density (g cm−3) | Specific Surface Area (m2 g−1) | Ash (%) |
---|---|---|---|---|---|---|
8.8 | 53.1 | 1.4 | 37.9 | 0.21 | 21.7 | 38.3 |
Treatments | pH(KCl) | NH4+ | NO3− | SOC |
---|---|---|---|---|
(mg kg−1) | (mg kg−1) | (g kg−1) | ||
N0 Level—unfertilized treatments (0 kg N ha−1) | ||||
B0+N0 | 5.67 ± 0.1 a | 6.44 ± 1.1 ab | 12.1 ± 1.7 a | 10.97 ± 1.7 a |
B10+N0 | 5.61 ± 0.1 a | 6.70 ± 0.9 ab | 11.49 ± 2.1 a | 13.38 ± 1.6 a |
B20+N0 | 5.93 ± 0.1 b | 7.24 ± 1.2 ab | 12.79 ± 1.8 a | 15.37 ± 3.1 a |
B10reap+N0 | 6.07 ± 0.1 bc | 6.04 ± 1.0 a | 10.42 ± 3.0 a | 17.87 ± 4.4 b |
B20reap+N0 | 6.14 ± 0.1 c | 7.99 ± 1.9 b | 10.58 ± 1.3 a | 20.48 ± 4.0 c |
N1 Level—fertilized treatments (40 kg N ha−1) | ||||
B0+N1 | 5.10 ± 0.1 a | 15.26 ± 5.3 b | 20.28 ± 3.2 a | 8.51 ± 2.5 a |
B10+N1 | 5.85 ± 0.4 bc | 6.84 ± 1.2 a | 18.74 ± 4.7 a | 8.86 ± 1.6 ab |
B20+N1 | 5.62 ± 0.2 b | 11.66 ± 4.2 ab | 22.86 ± 4.2 a | 9.37 ± 2.6 b |
B10reap+N1 | 6.05 ± 0.4 c | 6.73 ± 1.4 a | 16.64 ± 4.0 a | 16.37 ± 1.9 bc |
B20reap+N1 | 5.93 ± 0.1 c | 11.30 ± 4.0 ab | 18.09 ± 4.1 a | 23.53 ± 2.4 c |
N2 Level—fertilized treatments (80 kg N ha−1) | ||||
B0+N2 | 4.75 ± 0.1 a | 36.93 ± 11.9 b | 32.03 ± 4.9 a | 9.21 ± 1.0 a |
B10+N2 | 5.32 ± 0.3 b | 25.70 ± 10.1 ab | 28.70 ± 4.6 a | 13.78 ± 1.1 bc |
B20+N2 | 5.37 ± 0.2 b | 18.69 ± 3.9 a | 32.71 ± 5.0 a | 12.08 ± 1.1 ab |
B10reap+N2 | 5.82 ± 0.2 c | 23.07 ± 9.5 ab | 27.16 ± 6.5 a | 17.07 ± 2.1 cd |
B20reap+N2 | 5.86 ± 0.1 c | 17.33 ± 3.1 a | 30.17 ± 7.2 a | 19.80 ± 2.0 d |
Treatments | BD (g cm−3) | SWC (% mass) | K (cm h−1) | P (0 kPa) (% vol.) | FC (−20 kPa) (% vol.) | PWP (−1500 kPa) (% vol.) | AWC (% vol.) |
---|---|---|---|---|---|---|---|
n = 8 | n = 3 | n = 8 | n = 8 | n = 8 | n = 8 | n = 8 | |
N0 Level—unfertilized treatments (0 kg N ha−1) | |||||||
B0+N0 | 1.42 ± 0.09 a | 12.04 ± 1.0 a | 0.40 ± 0.24 a | 44.37 ± 2.85 a | 29.08 ± 0.80 a | 21.20 ± 1.02 a | 8.41 ± 0.67 ab |
B10+N0 | 1.49 ± 0.07 a | 11.91 ± 1.1 a | 0.17 ± 0.14 a | 42.83 ± 2.00 a | 29.85 ± 0.58 a | 21.44 ± 0.67 a | 8.29 ± 0.53 a |
B20+N0 | 1.37 ± 0.11 a | 12.43 ± 1.2 a | 0.42 ± 0.43 a | 45.19 ± 3.59 a | 30.02 ± 0.99 a | 21.61 ± 0.69 a | 8.40 ± 0.65 ab |
B10reap+N0 | 1.43 ± 0.09 a | 12.00 ± 0.9 a | 0.77 ± 0.44 a | 44.73 ± 2.55 a | 30.44 ± 0.89 ab | 20.74 ± 1.37 a | 9.70 ± 0.81 bc |
B20reap+N0 | 1.36 ± 0.09 a | 13.32 ± 1.0 a | 2.64 ± 1.30 b | 44.56 ± 2.86 a | 31.56 ± 0.56 b | 22.10 ± 1.42 a | 9.77 ± 1.06 c |
N1 Level—fertilized treatments (40 kg N ha−1) | |||||||
B0+N0 | 1.41 ± 0.09 a | – | 0.40 ± 0.24 a | 44.37 ± 2.85 a | 29.08 ± 0.80 a | 21.20 ± 1.02 ab | 8.41 ± 0.67 a |
B0+N1 | 1.42 ± 0.09 a | 10.80 ± 0.8 a | 0.90 ± 0.79 a | 45.93 ± 2.19 a | 29.53 ± 1.11 ab | – | – |
B10+N1 | 1.46 ± 0.04 a | 11.73 ± 0.9 a | 0.96 ± 0.56 a | 45.13 ± 1.29 a | 31.30 ± 0.62 c | 21.95 ± 0.86 ab | 9.02 ± 1.06 a |
B20+N1 | 1.45 ± 0.08 a | 11.22 ± 1.0 a | 0.62 ± 0.42 a | 44.46 ± 2.56 a | 30.04 ± 0.97 abc | 20.57 ± 0.71 a | 8.36 ± 0.69 a |
B10reap+N1 | 1.41 ± 0.09 a | 12.09 ± 0.9 ab | 0.98 ± 0.75 a | 45.13 ± 2.74 a | 30.83 ± 0.71 bc | 22.61 ± 0.71 b | 8.49 ± 0.64 a |
B20reap+N1 | 1.41 ± 0.04 a | 13.75 ± 1.1 b | 0.76 ± 0.55 a | 44.81 ± 1.63 a | 30.36 ± 0.48 abc | 21.47 ± 1.14 ab | 9.22 ± 0.75 a |
N2 Level—fertilized treatments (80 kg N ha−1) | |||||||
B0+N0 | 1.41 ± 0.09 ab | – | 0.40 ± 0.24 a | 44.37 ± 2.85 a | 29.08 ± 0.80 a | 21.20 ± 1.02 a | 8.41 ± 0.67 ab |
B0+N2 | 1.47 ± 0.05 b | 11.72 ± 0.8 a | 0.35 ± 0.33 a | 44.81 ± 2.65 a | 29.95 ± 0.75 abc | – | – |
B10+N2 | 1.46 ± 0.07 b | 11.25 ± 0.9 a | 1.73 ± 0.71 b | 44.50 ± 1.17 a | 29.71 ± 0.96 ab | 22.01 ± 0.69 a | 8.86 ± 1.00 ab |
B20+N2 | 1.34 ± 0.07 a | 11.92 ± 0.9 ab | 0.64 ± 0.34 a | 47.58 ± 2.62 ab | 30.46 ± 0.69 bc | 21.86 ± 1.01 a | 8.15 ± 0.79 a |
B10reap+N2 | 1.32 ± 0.06 a | 12.49 ± 1.1 ab | 0.77 ± 0.47 a | 48.22 ± 1.68 ab | 29.96 ± 0.49 abc | 21.78 ± 0.93 a | 9.31 ± 0.76 ab |
B20reap+N2 | 1.31 ± 0.06 a | 13.62 ± 1.5 b | 0.49 ± 0.41 a | 48.93 ± 2.34 b | 31.19 ± 0.78 c | 20.92 ± 0.70 a | 9.88 ± 0.98 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Horák, J.; Kotuš, T.; Toková, L.; Aydın, E.; Igaz, D.; Šimanský, V. A Sustainable Approach for Improving Soil Properties and Reducing N2O Emissions Is Possible through Initial and Repeated Biochar Application. Agronomy 2021, 11, 582. https://doi.org/10.3390/agronomy11030582
Horák J, Kotuš T, Toková L, Aydın E, Igaz D, Šimanský V. A Sustainable Approach for Improving Soil Properties and Reducing N2O Emissions Is Possible through Initial and Repeated Biochar Application. Agronomy. 2021; 11(3):582. https://doi.org/10.3390/agronomy11030582
Chicago/Turabian StyleHorák, Ján, Tatijana Kotuš, Lucia Toková, Elena Aydın, Dušan Igaz, and Vladimír Šimanský. 2021. "A Sustainable Approach for Improving Soil Properties and Reducing N2O Emissions Is Possible through Initial and Repeated Biochar Application" Agronomy 11, no. 3: 582. https://doi.org/10.3390/agronomy11030582
APA StyleHorák, J., Kotuš, T., Toková, L., Aydın, E., Igaz, D., & Šimanský, V. (2021). A Sustainable Approach for Improving Soil Properties and Reducing N2O Emissions Is Possible through Initial and Repeated Biochar Application. Agronomy, 11(3), 582. https://doi.org/10.3390/agronomy11030582