Potential of Sunflower-Legume Intercropping: A Way Forward in Sustainable Production of Sunflower in Temperate Climatic Conditions
Abstract
:1. Introduction
- (i)
- Analyse and recommend sustainable production technology of sunflowers in intercropping systems. The research considered sunflowers as the main cash crop, and investigated different legumes as complementary crops;
- (ii)
- Define the most suitable legumes for intercropping with sunflowers. The aim is to determine how legumes affect sunflower production, qualitative, physiological and morphological traits;
- (iii)
- Analyse how this system affects perenniallegumes as crops that remain for exploration in the second year after the sunflower harvest (in the first year).
2. Materials and Methods
2.1. Experimental Design
2.2. Field Site Description
2.2.1. Location and Weather Conditions
2.2.2. Soil Sampling and Characteristics
2.3. Plant Biometric Assessment
2.3.1. Yield and Yield-Related Traits in Sunflower
2.3.2. Biomass and Biomass-Related Traits in Legumes
2.3.3. Land Equivalent Ratio (LER)
2.4. Statistical Analyses
3. Results
3.1. Yield and Yield-Related Traits in Sunflower
3.2. Biomass and Biomass-Related Traits in Legumes
3.3. Indicators of Intercropping Competition and Efficiency
4. Discussion
4.1. Yield and Yield-Related Traits in Sunflower
4.2. Biomass and Biomass Related Traits in Legumes
4.3. Land Equivalent Ratio (LERmax)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Debaeke, P.; Casadebaig, P.; Flenet, F.; Langlade, N. Sunflower crop and climate change: Vulnerability, adaptation, and mitigation potential from case-studies in Europe. OCL Oilseeds Fats Crop. Lipids 2017, 24, D102. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Climate Change 2014: Synthesis Report. In Core Writing Team; Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Stomph, T.; Dordas, C.; Baranger, A.; de Rijk, J.; Dong, B.; Evers, J.; Gu, C.; Li, L.; Simon, J.; Steen Jensen, E.; et al. Designing intercrops for high yield, yield stability and efficient use of resources: Are there principles? Adv. Agron. 2020, 160, 1–50. [Google Scholar] [CrossRef]
- European Commission. Communication for the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. EU Biodiversity Strategy for 2030. Bringing Nature Back into Our Lives. 2020. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52020DC0380 (accessed on 21 April 2021).
- Vandenncer, J.H. The Ecology of Intercropping; Cambridge University Press: Cambridge, UK, 1989; p. 231. Available online: https://www.cambridge.org/core/journals/experimental-agriculture/article/abs/ecology-of-intercropping-by-j-h-vandermeer-cambridge-cambridge-university-press-1989-pp-237-3000/D053A24CEC50A9141A22CA758E7A2ADA (accessed on 21 April 2021).
- Caviglia, O.P.; Sadras, V.O.; Andrade, F.H. Intensification of agriculture in the south-eastern Pampas: I. Capture and efficiency in the use of water and radiation in double-cropped wheat–soybean. Field Crops Res. 2004, 87, 117–129. [Google Scholar] [CrossRef]
- Ren, W.; Hu, L.; Zhang, J.; Sun, C.; Tang, J.; Yuan, Y.; Chen, X. Can positive interactions between cultivated species help to sustain modern agriculture? Front. Ecol. Environ. 2014, 12, 507–514. [Google Scholar] [CrossRef]
- Šeremešić, S.; Manojlović, M.; Ilin, Ž.; Vasić, M.; Varga-Gvozdanović, J.; Subašić, A.; Vojnov, B. Effect of intercropping on the morphological and nutritional properties of carrots and onions in organic agriculture. J. Process. Energy Agric. 2018, 22, 80–84. Available online: https://scindeks-clanci.ceon.rs/data/pdf/1821-4487/2018/1821-44871802080S.pdf (accessed on 6 January 2021). [CrossRef] [Green Version]
- Martin-Guay, M.O.; Paquetteb, A.; Duprasa, J.; Rivesta, D. The new Green Revolution: Sustainable intensification of agriculture by intercropping. Sci. Total Environ. 2018, 615, 767–772. [Google Scholar] [CrossRef] [PubMed]
- Maitra, S.; Hossain, A.; Brestic, M.; Skalicky, M.; Ondrisik, P.; Gitari, H.; Brahmachari, K.; Shankar, T.; Bhadra, P.; Palai, J.B.; et al. Intercropping—A low input agricultural strategy for food and environmental security. Agronomy 2021, 11, 343. [Google Scholar] [CrossRef]
- Rad, S.V.; Valadabadi, S.A.R.; Pouryousef, M.; Saifzadeh, S.; Zakrin, H.R.; Mastinu, A. Quantitative and qualitative evaluation of Sorghum bicolor L. under intercropping with legumes and different weed control methods. Horticulturae 2020, 6, 78. [Google Scholar] [CrossRef]
- Federer, W.T. Statistical design and analysis for intercropping experiments: Volume 1: Two crops; Springer Science & Business: Berlin/Heidelberg, Germany, 2012. [Google Scholar] [CrossRef] [Green Version]
- Brooker, R.W.; Bennett, A.E.; Cong, W.F.; Daniell, T.J.; George, T.S.; Hallett, P.D.; Hawes, C.; Iannetta, P.P.M.; Jones, H.G.; Karley, J.K.; et al. Improving intercropping: A synthesis of research in agronomy, plant physiology and ecology. New Phytol. 2015, 206, 107–117. [Google Scholar] [CrossRef] [PubMed]
- Hauggaard-Nielsen, H.; Gooding, M.; Ambus, P.; Corre-Hellou, G.; Crozat, Y.; Dahlmann, C.; Dibet, A.; von Fragstein, P.; Pristeri, A.; Monti, M.; et al. Pea–barley intercropping for efficient symbiotic N2-fixation, soil N acquisition and use of other nutrients in Europe an organic cropping systems. Field Crop. Res. 2009, 113, 64–71. [Google Scholar] [CrossRef]
- Ugrenović, V.; Ugrinović, M. Organska proizvodnja i biodiverzitet. In Pokrovni Usevi—Ostvarenje Održivosti u Sistemima Ekološke Poljoprivrede; Ugrenović, V., Filipović, V., Eds.; Institut “Tamiš”: Pančevo, Srbija, 2014; pp. 1–15. [Google Scholar]
- Iverson, A.L.; Marín, L.E.; Ennis, K.K.; Gonthier, D.J.; Connor Barrie, B.T.; Remfert, J.L.; Cardinale, B.J.; Perfecto, I. Do polycultures promote win-wins or trade-offs in agricultural ecosystem services? Ameta-analysis. J. Appl. Ecol. 2014, 51, 1593–1602. [Google Scholar] [CrossRef]
- Bousselin, X.; Cassagne, N.; Baux, A.; Valantin-Morison, M.; Herrera, J.M.; Lorin, M.; Hédan, M.; Fustec, J. Interactions between plants and plant-soil in functionally complex mixtures including grass pea, faba bean and niger, intercropped with oilseed rape. Agronomy 2021, 11, 1493. [Google Scholar] [CrossRef]
- de la Fuente, E.; Suárez, S.; Lenardis, A.; Poggio, S. Intercropping sunflower and soybean in intensive farming systems: Evaluating yield advantage and effect on weed and insect assemblages. NJAS—Wagening. J. Life Sci. 2014, 70–71, 47–52. [Google Scholar] [CrossRef] [Green Version]
- FAO—Food and Agriculture Organization of the United Nations. World Fertilizer Trends and Outlook to 2020. 2017. Available online: http://www.fao.org/3/i6895e/i6895e.pdf (accessed on 12 December 2020).
- Jensen, E.S.; Carlsson, G.; Hauggaard-Nielsen, H. Intercropping of grain legumes and cereals improves the use of soil N resources and reduces the requirement for synthetic fertilizer N: A global-scale analysis. Agron. Sustain. Dev. 2020, 40, 5. [Google Scholar] [CrossRef] [Green Version]
- International Union of Soil Sciences (IUSS) Working Group WRB. World Reference Base for Soil Resources 2014, update 2015. In International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015; Available online: http://www.fao.org/3/i3794en/I3794en.pdf (accessed on 12 December 2020).
- Granlund, M.; Zimmerman, D.C. Effect of drying conditions on oil contents of sunflower (Helianthus annuus L.) seed determined by wide-line Nuclear Magnetic Resonance (NMR). North Dak. Acad. Sci. Proc. 1975, 27, 128–132. [Google Scholar]
- Willey, R.W. Intercropping—Its importance and research needs. I. Competition and yield advantages. Field Crop. Abstr. 1979, 32, 1–10. [Google Scholar]
- SAS Institute. The SAS System for Windows; Release 9. 2; SAS Inst.: Cary, NC, USA, 2011. [Google Scholar]
- IBM Corp. Released. IBM SPSS Statistics for Windows; Version 24.0; IBM Corp: Armonk, NY, USA, 2016. [Google Scholar]
- Donatelli, M.; Srivastava, A.K.; Duveiller, G.; Niemeyer, S.; Fumagalli, D. Climate change impact and potential adaptation strategies under alternate realizations of climate scenarios for three major crops in Europe. Environ. Res. Lett. 2015, 10, e75005. Available online: https://iopscience.iop.org/article/10.1088/1748-9326/10/7/075005/pdf (accessed on 22 February 2021). [CrossRef] [Green Version]
- Debaeke, P.; Casadebaig, P.; Langlade, N.B. New challenges for sunflower ideotyping in changing environments and more ecological cropping systems. OCL 2021, 28, 29. [Google Scholar] [CrossRef]
- Mrđa, J. The Effect of Seed Quality on the Developmental Dynamics, Yield and Quality of Sunflower. Ph.D. Thesis, Faculty of Agriculture, University of Novi Sad, Novi Sad, Serbia, 2015. Available online: https://www.cris.uns.ac.rs/DownloadFileServlet/Disertacija144611228383810.pdf?controlNumber=(BISIS)96075&fileName=144611228383810.pdf&id=4497&licenseAccepted=true (accessed on 8 November 2020).
- Kholghi, M.; Bernousi, I.; Darvishzadeh, R.; Pirzad, A. Correlation and path-coefficient analysis of seed yield and yield related trait in Iranian confectionery sunflower populations. Afr. J. Biotechnol. 2011, 10, 13058–13063. Available online: https://www.ajol.info/index.php/ajb/article/view/96515/85837 (accessed on 8 November 2020).
- Radanović, A.; Miladinović, D.; Cvejić, S.; Jocković, M.; Jocić, S. Sunflower genetics from ancestors to modern hybrids—A review. Genes 2018, 9, 528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Škorić, D.; Mihaljčević, M.; Jocić, S.; Marinković, R.; Dozet, B.; Atlagić, J.; Hladni, N. The latest achievements in sunflower breeding. In Proceedings of the 37. Savetovanje Proizvodnja i Prerada Uljarica, Budva, Yugoslavia, 27–31 May 1996; Tehnološki Fakultet Novi Sad: Novi Sad, Srbija, 1996. [Google Scholar]
- Vratarić, M.; Sudarić, A. Oplemenjivanje i Genetika Suncokreta. U Suncokret (Helianthus annuus L.); Poljoprivredni Institut Osijek: Osjek, Hrvatska, 2004; pp. 69–162. [Google Scholar]
- Miller, J.F.; Hammond, J.J. Inheritance of reduced height in sunflower. Euphytica 1991, 53, 131–136. [Google Scholar] [CrossRef]
- Schneiter, A.A. Production of semi dwarf and dwarf sunflower in the northern Great Plains of the United States. Field Crop. Res. 1992, 30, 391–401. [Google Scholar] [CrossRef]
- Velasco, L.; Pérez-Vich, B.; Muñoz-Ruz, J.; Fernández-Martínez, J.M.; Friedt, W. Inheritance of reduced plant height in the sunflower line Dw89. Plant Breed. 2003, 122, 441–443. [Google Scholar] [CrossRef]
- Beg, A.; Pourdad, S.S.; Pala, M.; Oweis, T. Effect of supplementary irrigation and variety on yield and some agronomic characters of sunflower growing under rainfed conditions in northern Syria. Helia 2007, 30, 87–98. [Google Scholar] [CrossRef]
- Balalić, I. Multivariate Analysis of Interaction between Hybrids and Planting Dates for Oil Content, Yield and Yield Components in Sunflower. Ph.D. Thesis, Faculty of Agriculture, University of Novi Sad, Novi Sad, Serbia, 2009. [Google Scholar]
- Marinković, R.; Dozet, B.; Vasić, D. Sunflower Breeding; Monography, Školska Knjiga: Novi Sad, Serbia, 2003. [Google Scholar]
- Gontcharov, S.; Zaharova, M. Vegetation period and hybrid sunflower productivity in breeding for earliness. In Proceedings of the 17th International Sunflower Conference, Cordoba, Spain, 8–12 June 2008; pp. 531–533. Available online: https://www.isasunflower.org/fileadmin/documents/aaProceedings/17thISC_CordobaVol2/531sergey.pdf (accessed on 6 January 2021).
- Olowe, V.I.O.; Adebimpe, O.A. Intercropping sunflower with soya beans enhances total crop productivity. Biol. Agric. Hortic. 2009, 26, 365–377. [Google Scholar] [CrossRef]
- Kandel, H.J.; Schneiter, A.A.; Johnson, B.L. Intercropping legumes in to sunflower at different growth stages. Crop Sci. 1997, 37, 1532–1537. [Google Scholar] [CrossRef]
- Hladni, N.; Jocić, S.; Miklič, V.; Miladinović, D.; Zorić, M. Interrelationship between 1000 seed weight with other quantitative traits in confectionary sunflower. Ekin J. Crop Breed. Genet. 2016, 2, 51–56. Available online: https://dergipark.org.tr/en/download/article-file/211599 (accessed on 8 November 2020).
- Rosner, K.; Bodner, G.; Hage-Ahmed, K.; Steinkellner, S. Long-term soil tillage and cover cropping affected arbuscular mycorrhizal fungi, nutrient concentrations, and yield in sunflower. Agron. J. 2018, 110, 2664–2672. [Google Scholar] [CrossRef]
- Dowling, A.; Sadras, V.O.; Roberts, P.; Doolette, A.; Zhou, Y.; Denton, M.D. Legume-oilseed intercropping in mechanised broad acre agriculture—A review. Field Crop. Res. 2021, 260, 107980. [Google Scholar] [CrossRef]
Soil Chemical Properties | ||||||
---|---|---|---|---|---|---|
pH | CaCO3 % (vol %) | OM % (mas %) | total N % (mas %) | AL-P2O5 mg kg−1 | AL-K2O mg kg−1 | |
in KCl | in H2O | |||||
7.05 | 7.94 | 1.06 | 3.13 | 0.236 | 933 | 423 |
Soli Texture | ||||||
rough sand (2–0.2 mm) % | fine sand (0.2–0.02 mm) % | silt (0.02–0.002 mm) % | clay (˂0.002 mm) % | texture class (Tommerup) | ||
0.82 | 38.12 | 31.30 | 30.31 | loamy clay |
Trait | Model 1 | Model 2 |
---|---|---|
plant height/bud phase (PHB) | 707.4 | 718.6 |
plant height/flower phase (PHF) | 717.8 | 732.7 |
head diameter (HD) | 380.5 | 393.8 |
total leaf area/bud phase (TLAB) | 1549.3 | 1525.5 |
total leaf area/flower phase (TLAF) | 1579.5 | 1594.5 |
number of full seeds per head (NFSH) | 1304.9 | 1286.3 |
thousand-seed weight (TSW) | 670.7 | 681.2 |
seed yield per head (SYH) | 782.2 | 781.1 |
seed yield (SY) | 168.2 | 163.5 |
oil content (OC) | 389.5 | 401.8 |
oil yield (OY) | 14.5 | 11.7 |
Source of Variation | PHB | PHF | HD | TLAB | TLAF | NFSH | TSW | SYH | SY | OC | OY |
---|---|---|---|---|---|---|---|---|---|---|---|
year | 693.91 ** | 61.99 ** | 2.83 * | 61.15 ** | 66.56 ** | 73.39 ** | 41.15 ** | 5.56 * | 6.07 * | 111.45 ** | 15.55 ** |
type of cropping | 100.21 ** | 103.82 ** | 64.13 ** | 137.15 ** | 100.82 ** | 95.44 ** | 1.75 ns | 111.39 ** | 116.77 ** | 5.73 * | 103.43 ** |
hybrid | 873.88 ** | 1828.98 ** | 173.77 ** | 572.70 ** | 624.12 ** | 510.37 ** | 4426.96 ** | 336.86 ** | 311.99 ** | 1478.75 ** | 43.03 ** |
year × type of cropping | 23.47 ** | 20.10 ** | 10.15 ns | 2.60 * | 1.73 ns | 4.62 ** | 1.36 ns | 5.57 ** | 5.07 ** | 4.07 * | 5.96 ** |
year × hybrid | 253.97 ** | 68.87 ** | 22.76 ** | 173.15 ** | 67.43 ** | 13.99 ** | 6.02 ** | 9.56 ** | 10.81 ** | 23.01 ** | 12.26 ** |
type of cropping × hybrid | 5.37 ** | 5.10 ** | 4.85 * | 0.79 ns | 2.51 * | 6.98 ** | 0.67 ns | 1.59 ns | 2.16 ns | 2.48 * | 1.21 ns |
year × type of cropping × hybrid | 6.65 ** | 6.59 ** | 1.29 ns | 1.11 ns | 1.69 ns | 1.72 ns | 1.63 ns | 2.48 * | 2.37 * | 1.55 ns | 1.87 * |
Trait | Intercrop | NS Gricko | Dukat | Rimi PR |
---|---|---|---|---|
HD (cm) | common vetch | 16.50 Aa | 18.71 Ba | 16.77 Aa |
red clover | 19.23 Ab | 21.60 Bb | 17.75 Cab | |
alfalfa | 19.68 Ab | 21.82 Bb | 17.83 Cab | |
control | 18.98 Ab | 21.91 Bb | 18.55 Ab | |
OC (g 100 g−1) | common vetch | 36.34 Aa | 46.88 Ba | 41.96 Ca |
red clover | 36.64 Aa | 47.03 Ba | 41.49 Ca | |
alfalfa | 36.38 Aa | 47.26 Ba | 40.09 Ca | |
control | 36.70 Aa | 47.51 Ba | 42.51 Ca | |
PHB (cm) | common vetch | 143.84 Aa | 125.50 Ba | 161.30 Ca |
red clover | 163.63 Abc | 134.84 Bb | 179.72 Cb | |
alfalfa | 160.49 Ab | 135.99 Bb | 177.61 Cb | |
control | 169.01 Ac | 136.11 Bb | 179.68 Cb | |
PHF (cm) | common vetch | 205.66 Aa | 155.25 Ba | 202.30 Aa |
red clover | 225.53 Abc | 165.71 Bb | 222.41 Ab | |
alfalfa | 220.01 Ab | 165.51 Bb | 221.34 Ab | |
control | 231.50 Ac | 167.98 Bb | 223.33 Cb | |
SY (t ha−1) | common vetch | 3.59 Aa | 2.31 Ba | 2.77 Ca |
red clover | 4.58 Ab | 2.91 Bb | 3.65 Cb | |
alfalfa | 4.57 Ab | 2.83 Bb | 3.74 Cbc | |
control | 4.93 Ab | 3.55 Cc | 4.05 Cc | |
TLAF (cm2) | common vetch | 3070.79 Aa | 4661.62 Ba | 6574.56 Ca |
red clover | 4560.81 Aa | 5407.54 Bb | 7709.15 Cb | |
alfalfa | 4217.81 Ab | 5890.04 Bc | 7596.71 Cb | |
control | 5024.42 Ac | 6634.81 Bd | 8264.15 Cc | |
TSW (g) | common vetch | 119.26 Aa | 53.01 Ba | 54.22 Ba |
red clover | 120.99 Aa | 51.52 Ba | 55.17 Ba | |
alfalfa | 121.87 Aa | 53.27 Ba | 53.30 Ba | |
control | 123.51 Aa | 53.50 Ba | 55.42 Ba | |
NFSH (number) | common vetch | 775 Aa | 1106 Ba | 1269 Ca |
red clover | 940 Ab | 1370 Bb | 1700 Cb | |
alfalfa | 924 Ab | 1378 Bb | 1683 Cb | |
control | 997 Ab | 1618 Bc | 1824 Cb | |
OY (kg ha−1) | common vetch | 1.30 Aa | 1.07 Ba | 1.17 ABa |
red clover | 1.68 Ab | 1.37 Bb | 1.51 Ab | |
alfalfa | 1.64 Ab | 1.34 Bb | 1.57 ABc | |
control | 1.81 Ab | 1.64 Ac | 1.73 Ac | |
SYH (g) | common vetch | 90.22 Aa | 57.84 Ba | 69.34 Ca |
red clover | 114.46 Abc | 72.81 Bb | 91.16 Cb | |
alfalfa | 112.59 Ab | 71.38 Bb | 93.53 Cb | |
control | 123.14 Ac | 85.00 Bc | 100. 46 Cb | |
TLAB (cm2) | common vetch | 3127.81 Aa | 5135.06 Ba | 5845.54 Ca |
red clover | 4299.48 Ab | 6129.38 Bb | 6983.31 Cb | |
alfalfa | 4248.19 Aa | 6289.92 Bb | 6802.96 Bb | |
control | 5062.58 Ab | 7123.08 Bc | 7541.52 Bc |
Trait | Model 1 | Model 2 |
---|---|---|
total aboveground biomass (fresh) | 899.2 | 888.7 |
crop height | 529.8 | 530.0 |
shoots per plant | 168.4 | 155.4 |
Source of variation | Total Aboveground Biomass (Fresh) | Crop Height | Shoots Per Plant |
---|---|---|---|
year | 33.60 ** | 71.20 ** | 2.26 ns |
legume | 40.84 ** | 233.97 ** | 709.32 ** |
type of cropping | 44.28 ** | 223.87 ** | 62.36 ** |
year × legume | 17.01 ** | 3.78 * | 1.15 ns |
year × type of cropping | 1.41 ns | 0.95 ns | 1.57 ns |
type of cropping × legume | 4.81 * | 3.64 * | 2.06 ns |
year × type of cropping × legume | 1.10 * | 4.96 ** | 0.30 ns |
Trait | Type of Cropping | Common Vetch | Red Clover | Alfalfa |
---|---|---|---|---|
total aboveground biomass (fresh) | NS Gricko | 245.69 a | 321.01 a | 280.62 bc |
Dukat | 269.56 a | 306.48 a | 245.95 ab | |
Rimi PR | 297.42 ab | 335.09 ab | 223.07 a | |
control | 370.51 b | 394.77 b | 328.80 c | |
crop height | NS Gricko | 45.0 a | 31.5 a | 45.5 a |
Dukat | 54.0 b | 41.0 b | 60.0 b | |
Rimi PR | 50.5 ab | 35.5 ab | 50.0 ab | |
control | 64.0 c | 53.5 c | 71.5 c | |
number of shoots per plant | NS Gricko | / | 6 a | 2 a |
Dukat | / | 6 a | 2 a | |
Rimi PR | / | 6 a | 2 a | |
control | / | 8 b | 4 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Babec, B.; Šeremešić, S.; Hladni, N.; Ćuk, N.; Stanisavljević, D.; Rajković, M. Potential of Sunflower-Legume Intercropping: A Way Forward in Sustainable Production of Sunflower in Temperate Climatic Conditions. Agronomy 2021, 11, 2381. https://doi.org/10.3390/agronomy11122381
Babec B, Šeremešić S, Hladni N, Ćuk N, Stanisavljević D, Rajković M. Potential of Sunflower-Legume Intercropping: A Way Forward in Sustainable Production of Sunflower in Temperate Climatic Conditions. Agronomy. 2021; 11(12):2381. https://doi.org/10.3390/agronomy11122381
Chicago/Turabian StyleBabec, Brankica, Srđan Šeremešić, Nada Hladni, Nemanja Ćuk, Dušan Stanisavljević, and Miloš Rajković. 2021. "Potential of Sunflower-Legume Intercropping: A Way Forward in Sustainable Production of Sunflower in Temperate Climatic Conditions" Agronomy 11, no. 12: 2381. https://doi.org/10.3390/agronomy11122381
APA StyleBabec, B., Šeremešić, S., Hladni, N., Ćuk, N., Stanisavljević, D., & Rajković, M. (2021). Potential of Sunflower-Legume Intercropping: A Way Forward in Sustainable Production of Sunflower in Temperate Climatic Conditions. Agronomy, 11(12), 2381. https://doi.org/10.3390/agronomy11122381