Production Systems and Prospects of Cowpea (Vigna unguiculata (L.) Walp.) in the United States
Abstract
:1. Introduction
2. Cowpea in the United States
3. Production Systems and Major Challenges in the United States
3.1. Agronomic Practices
3.2. Pests and Diseases
3.3. Weed Management Challenges
4. Economic Outlook
Marketing Systems
5. Research and Improvement Efforts in the United States
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kalloo, G.; Bergh, B. Genetic Improvement of Vegetable Crops; Newnes: Oxford, UK, 2012. [Google Scholar]
- D’Andrea, A.C.; Kahlheber, S.; Logan, A.L.; Watson, D.J. Early domesticated cowpea (Vigna unguiculata) from Central Ghana. Antiquity 2007, 81, 686–698. [Google Scholar] [CrossRef]
- Herniter, I.A.; Muñoz-Amatriaín, M.; Close, T.J. Genetic, textual, and archeological evidence of the historical global spread of cowpea (Vigna unguiculata [L.] Walp.). Legume Sci. 2020, 2, e57. [Google Scholar] [CrossRef]
- Singh, B. Advances in Cowpea Research; IITA: Ibadan, Nigeria, 1997. [Google Scholar]
- FAOSTAT Database. 2021. Available online: http://www.fao.org/faostat (accessed on 15 August 2021).
- Padulosi, S.; Ng, N. Origin, taxonomy, and morphology of Vigna unguiculata (L.) Walp. In Advances in Cowpea Research; IITA: Ibadan, Nigeria, 1997; pp. 1–12. [Google Scholar]
- Vaillancourt, R.; Weeden, N. Chloroplast DNA polymorphism suggests Nigerian center of domestication for the cowpea, Vigna unguiculata (Leguminosae). Am. J. Bot. 1992, 79, 1194–1199. [Google Scholar] [CrossRef] [PubMed]
- Fatokun, C.; Girma, G.; Abberton, M.; Gedil, M.; Unachukwu, N.; Oyatomi, O.; Yusuf, M.; Rabbi, I.; Boukar, O. Genetic diversity and population structure of a mini-core subset from the world cowpea (Vigna unguiculata (L.) Walp.) germplasm collection. Sci. Rep. 2018, 8, 16035. [Google Scholar] [CrossRef] [Green Version]
- Munoz-Amatriain, M.; Lo, S.; Herniter, I.A.; Boukar, O.; Fatokun, C.; Carvalho, M.; Castro, I.; Guo, Y.-N.; Huynh, B.-L.; Roberts, P.A. The UCR Minicore: A valuable resource for cowpea research and breeding. Legume Sci. 2021, 3, e95. [Google Scholar] [CrossRef]
- Gómez, C. Cowpea: Post-Harvest Operations; FAO of United Nations: Rome, Italy, 2004. [Google Scholar]
- Timko, M.P.; Ehlers, J.D.; Roberts, P.A. Cowpea. In Pulses, Sugar and Tuber Crops; Springer: Berlin/Heidelberg, Germany, 2007; pp. 49–67. [Google Scholar]
- Fery, R.; Halli, A. Cowpea breeding in the USA: New varieties and improved germplasm. Chall. Oppor. Enhancing Sustain. Cowpea Prod. 2002, 62, 424–428. [Google Scholar]
- Wight, W.F. The History of the Cowpea and Its Introduction into America; US Government Printing Office: Washington, DC, USA, 1907. [Google Scholar]
- Davis, D.; Oelke, E.; Oplinger, E.; Doll, J.; Hanson, C.; Putnam, D. Cowpea. In Alternative Field Crops Manual; University of Wisconsin Cooperative or Extension Service: Madison, WI, USA, 1991; Available online: http://www.hort.purdue.edu/newcrop/afcm/cowpea.Html (accessed on 15 August 2021).
- Hall, A.E.; Frate, C.A. Blackeye Bean Production in California; University of California, Agriculture and Natural Resources: Davis, CA, USA, 1996; Volume 21518. [Google Scholar]
- U.S. Dry Bean Commission. Dry Bean Production across the US. 2014. Available online: www.usdrybeans.com (accessed on 15 August 2021).
- Fery, R.L. The cowpea: Production, utilization, and research in the United States. Hortic. Rev. 1990, 12, 197–222. [Google Scholar]
- Riley, D.G.; Sparks, A.N. Chalcodermus aeneus (Coleoptera: Curculionidae): Historical pest status, potential for spread, and current management. Fla. Entomol. 2019, 102, 490–494. [Google Scholar] [CrossRef]
- Ndeve, A.D.; Santos, J.R.; Matthews, W.C.; Huynh, B.L.; Guo, Y.-N.; Lo, S.; Muñoz-Amatriaín, M.; Roberts, P.A. A novel root-knot nematode resistance QTL on chromosome Vu01 in Cowpea. G3 Genes Genomes Genet. 2019, 9, 1199–1209. [Google Scholar] [CrossRef] [Green Version]
- Osipitan, O.A. Weed interference and control in cowpea production: A review. J. Agric. Sci. 2017, 9, 11–20. [Google Scholar]
- Norsworthy, J.K.; Oliveira, M.J. Comparison of the critical period for weed control in wide-and narrow-row corn. Weed Sci. 2004, 52, 802–807. [Google Scholar] [CrossRef]
- Osipitan, O.A.; Adigun, J.A.; Kolawole, R.O. Row spacing determines critical period of weed control in crop: Cowpea (Vigna unguiculata) as a case study. Azarian J. Agric. 2016, 3, 90–96. [Google Scholar]
- Daramola, O.S.; Adeyemi, O.R.; Adigun, J.A.; Adejuyigbe, C.O. Influence of row spacing and weed control methods on weed population dynamics in soybean (Glycine max L.). Int. J. Pest Manag. 2020, 66, 1–16. [Google Scholar] [CrossRef]
- Adigun, J.; Osipitan, A.; Lagoke, S.T.; Adeyemi, R.O.; Afolami, S.O. Growth and yield performance of cowpea (Vigna unguiculata (L.) Walp) as influenced by row-spacing and period of weed interference in South-West Nigeria. J. Agric. Sci. 2014, 6, 188. [Google Scholar] [CrossRef] [Green Version]
- Liebman, M.; Dyck, E. Crop rotation and intercropping strategies for weed management. Ecol. Appl. 1993, 3, 92–122. [Google Scholar] [CrossRef] [PubMed]
- Ehlers, J.; Hall, A. Cowpea (Vigna unguiculata L. Walp). Field Crop. Res. 1997, 53, 187–204. [Google Scholar] [CrossRef]
- Transparency Market Research (2020) Cowpea Market: Cowpeas Market (Nature: Organic and Conventional; Form: Whole, Flour, and Split; and End-use Application: B2B, Household/Retail, Store-based Retail, and Online [e-Commerce])–Global Industry Analysis, Size, Share, Growth, Trends, and Forecast, 2020–2030. Available online: https://www.transparencymarketresearch.com/cowpeas-market.html (accessed on 13 November 2021).
- Hussain, M.; Basahy, A. Nutrient composition and ammo acid pattern of cowpea (Vigna unguiculata (L.) Walp, Fabaceae) grown in the Gizan area of Saudi Arabia. Int. J. Food Sci. Nutr. 1998, 49, 117–124. [Google Scholar] [CrossRef]
- Dakora, F.D.; Belane, A.K. Evaluation of protein and micronutrient levels in edible cowpea (Vigna Unguiculata L. Walp.) leaves and seeds. Front. Sustain. Food Syst. 2019, 3, 70. [Google Scholar] [CrossRef]
- Weng, Y.; Qin, J.; Eaton, S.; Yang, Y.; Ravelombola, W.S.; Shi, A. Evaluation of seed protein content in USDA cowpea germplasm. HortScience 2019, 54, 814–817. [Google Scholar] [CrossRef] [Green Version]
- Fanzo, J. The Nutrition Challenge in Sub-Saharan Africa; United Nations Development Programme: New York, NY, USA; Regional Bureau for Africa: New York, NY, USA, 2012. [Google Scholar]
- Gerrano, A.S.; Jansen van Rensburg, W.S.; Venter, S.L.; Shargie, N.G.; Amelework, B.A.; Shimelis, H.A.; Labuschagne, M.T. Selection of cowpea genotypes based on grain mineral and total protein content. Acta Agric. Scand. Sect. B—Soil Plant. Sci. 2019, 69, 155–166. [Google Scholar] [CrossRef]
- Quinn, J.; Myers, R. Cowpea: A Versatile Legume for Hot, Dry Conditions; Thomas Jefferson Institute: Portland, OR, USA, 1999; Available online: www.hort.purdue.edu/newcroparticles/ji-compeahtml (accessed on 13 November 2021).
- Day, J.C. Population Projections of the United States, by Age, Sex, Race, and Hispanic Origin: 1992 to 2050; US Department of Commerce: Washington, DC, USA; Economics and Statistics Administration, Bureau of the Census: Sutland, MD, USA, 1992. [Google Scholar]
- Bingen, R.J.; Hall, A.; Ndoye, M. California cowpeas and food policy in Senegal. World Dev. 1988, 16, 857–865. [Google Scholar] [CrossRef]
- Osipitan, O.A.; Dille, J.A.; Assefa, Y.; Radicetti, E.; Ayeni, A.; Knezevic, S.Z. Impact of cover crop management on level of weed suppression: A meta-analysis. Crop. Sci. 2019, 59, 833–842. [Google Scholar] [CrossRef]
- Soti, P.; Racelis, A. Cover crops for weed suppression in organic vegetable systems in semiarid subtropical Texas. Org. Agric. 2020, 10, 429–436. [Google Scholar] [CrossRef]
- Kaiser, C.; Ernst, M. Cowpea (Southernpea). In CCD-CP-119; Center for Crop Diversification: Lexington, KY, USA; University of Kentucky College of Agriculture, Food and Environment: Lexington, KY, USA, 2021; Available online: http://www.uky.edu/ccd/sites/www.uky.edu.ccd/files/cowpea.pdf (accessed on 13 November 2021).
- Ahmed, F.E.; Hall, A.E. Heat injury during early floral bud development in cowpea. Crop. Sci. 1993, 33, 764–767. [Google Scholar] [CrossRef]
- Ahmed, F.E.; Hall, A.E.; DeMason, D.A. Heat injury during floral development in cowpea (Vigna unguiculata, Fabaceae). Am. J. Bot. 1992, 79, 784–791. [Google Scholar] [CrossRef]
- Ismail, A.M.; Hall, A.E. Reproductive-stage heat tolerance, leaf membrane thermostability and plant morphology in cowpea. Crop. Sci. 1999, 39, 1762–1768. [Google Scholar] [CrossRef]
- Ehlers, J.; Matthews, W., Jr.; Hall, A.; Roberts, P. Inheritance of a broad-based form of root-knot nematode resistance in cowpea. Crop. Sci. 2000, 40, 611–618. [Google Scholar] [CrossRef]
- Roberts, P.; Matthews, W.; Ehlers, J. New resistance to virulent root-knot nematodes linked to the Rk locus of cowpea. Crop. Sci. 1996, 36, 889–894. [Google Scholar] [CrossRef]
- Li, J.; Timko, M.P. Gene-for-gene resistance in Striga-cowpea associations. Science 2009, 325, 1094. [Google Scholar] [CrossRef]
- Ouédraogo, J.; Maheshwari, V.; Berner, D.; St-Pierre, C.-A.; Belzile, F.; Timko, M. Identification of AFLP markers linked to resistance of cowpea (Vigna unguiculata L.) to parasitism by Striga gesnerioides. Theor. Appl. Genet. 2001, 102, 1029–1036. [Google Scholar] [CrossRef]
- Muchero, W.; Ehlers, J.D.; Close, T.J.; Roberts, P.A. Mapping QTL for drought stress-induced premature senescence and maturity in cowpea [Vigna unguiculata (L.) Walp.]. Tag. Theor. Appl. Genet. 2009, 118, 849–863. [Google Scholar] [CrossRef] [PubMed]
- Muchero, W.; Ehlers, J.D.; Roberts, P.A. Restriction site polymorphism-based candidate gene mapping for seedling drought tolerance in cowpea [Vigna unguiculata (L.) Walp.]. Tag. Theor. Appl. Genet. 2010, 120, 509–518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muchero, W.; Roberts, P.A.; Diop, N.N.; Drabo, I.; Cisse, N.; Close, T.J.; Muranaka, S.; Boukar, O.; Ehlers, J.D. Genetic architecture of delayed senescence, biomass, and grain yield under drought stress in cowpea. PLoS ONE 2013, 8, e70041. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lucas, M.R.; Ehlers, J.D.; Roberts, P.A.; Close, T.J. Markers for quantitative inheritance of resistance to foliar thrips in cowpea. Crop. Sci. 2012, 52, 2075–2081. [Google Scholar] [CrossRef]
- Muchero, W.; Ehlers, J.D.; Roberts, P.A. QTL analysis for resistance to foliar damage caused by Thrips tabaci and Frankliniella schultzei (Thysanoptera: Thripidae) feeding in cowpea [Vigna unguiculata (L.) Walp.]. Mol. Breed. 2010, 25, 47–56. [Google Scholar] [CrossRef] [Green Version]
- Huynh, B.-L.; Ehlers, J.D.; Ndeve, A.; Wanamaker, S.; Lucas, M.R.; Close, T.J.; Roberts, P.A. Genetic mapping and legume synteny of aphid resistance in African cowpea (Vigna unguiculata L. Walp.) grown in California. Mol. Breed. 2015, 35, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Lucas, M.R.; Huynh, B.L.; da Silva Vinholes, P.; Cisse, N.; Drabo, I.; Ehlers, J.D.; Roberts, P.A.; Close, T.J. Association Studies and Legume Synteny Reveal Haplotypes Determining Seed Size in Vigna unguiculata. Front. Plant Sci. 2013, 4, 95. [Google Scholar] [CrossRef] [Green Version]
- Lucas, M.R.; Huynh, B.L.; Roberts, P.A.; Close, T.J. Introgression of a rare haplotype from Southeastern Africa to breed California blackeyes with larger seeds. Front. Plant Sci. 2015, 6, 126. [Google Scholar] [CrossRef] [Green Version]
- Timko, M.P.; Rushton, P.J.; Laudeman, T.W.; Bokowiec, M.T.; Chipumuro, E.; Cheung, F.; Town, C.D.; Chen, X. Sequencing and analysis of the gene-rich space of cowpea. BMC Genom. 2008, 9, 103. [Google Scholar] [CrossRef] [Green Version]
- Muchero, W.; Diop, N.N.; Bhat, P.R.; Fenton, R.D.; Wanamaker, S.; Pottorff, M.; Hearne, S.; Cisse, N.; Fatokun, C.; Ehlers, J.D.; et al. A consensus genetic map of cowpea [Vigna unguiculata (L) Walp.] and synteny based on EST-derived SNPs. Proc. Natl. Acad. Sci. USA 2009, 106, 18159–18164. [Google Scholar] [CrossRef] [Green Version]
- Muñoz-Amatriaín, M.; Mirebrahim, H.; Xu, P.; Wanamaker, S.I.; Luo, M.; Alhakami, H.; Alpert, M.; Atokple, I.; Batieno, B.J.; Boukar, O. Genome resources for climate-resilient cowpea, an essential crop for food security. Plant J. 2017, 89, 1042–1054. [Google Scholar] [CrossRef] [Green Version]
- Lonardi, S.; Muñoz-Amatriaín, M.; Liang, Q.; Shu, S.; Wanamaker, S.I.; Lo, S.; Tanskanen, J.; Schulman, A.H.; Zhu, T.; Luo, M.-C.; et al. The genome of cowpea (Vigna unguiculata [L.] Walp.). Plant J. 2019, 98, 767–782. [Google Scholar] [CrossRef] [Green Version]
- Huynh, B.L.; Ehlers, J.D.; Huang, B.E.; Muñoz-Amatriaín, M.; Lonardi, S.; Santos, J.R.; Ndeve, A.; Batieno, B.J.; Boukar, O.; Cisse, N. A multi-parent advanced generation inter-cross (MAGIC) population for genetic analysis and improvement of cowpea (Vigna unguiculata L. Walp.). Plant J. 2018, 93, 1129–1142. [Google Scholar] [CrossRef] [Green Version]
- Lo, S.; Fatokun, C.; Boukar, O.; Gepts, P.; Close, T.J.; Muñoz-Amatriaín, M. Identification of QTL for perenniality and floral scent in cowpea (Vigna unguiculata [L.] Walp.). PLoS ONE 2020, 15, e0229167. [Google Scholar] [CrossRef] [PubMed]
- Lo, S.; Muñoz-Amatriaín, M.; Boukar, O.; Herniter, I.; Cisse, N.; Guo, Y.-N.; Roberts, P.A.; Xu, S.; Fatokun, C.; Close, T.J. Identification of QTL controlling domestication-related traits in cowpea (Vigna unguiculata L. Walp). Sci. Rep. 2018, 8, 6261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lo, S.; Parker, T.; Muñoz-Amatriaín, M.; Berny-Mier y Teran, J.C.; Jernstedt, J.; Close, T.J.; Gepts, P. Genetic, anatomical, and environmental patterns related to pod shattering resistance in domesticated cowpea (Vigna unguiculata [L.] Walp). J. Exp. Bot. 2021, 72, 6219–6229. [Google Scholar] [CrossRef] [PubMed]
- Lo, S.; Muñoz-Amatriaín, M.; Hokin, S.A.; Cisse, N.; Roberts, P.A.; Farmer, A.D.; Xu, S.; Close, T.J. A genome-wide association and meta-analysis reveal regions associated with seed size in cowpea [Vigna unguiculata (L.) Walp]. Theor. Appl. Genet. 2019, 132, 3079–3087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herniter, I.A.; Lo, R.; Muñoz-Amatriaín, M.; Lo, S.; Guo, Y.-N.; Huynh, B.-L.; Lucas, M.; Jia, Z.; Roberts, P.A.; Lonardi, S.; et al. Seed Coat Pattern QTL and Development in Cowpea (Vigna unguiculata [L.] Walp.). Front. Plant Sci. 2019, 10, 1346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herniter, I.A.; Muñoz-Amatriaín, M.; Lo, S.; Guo, Y.-N.; Close, T.J. Identification of Candidate Genes Controlling Black Seed Coat and Pod Tip Color in Cowpea (Vigna unguiculata [L.] Walp). G3: Genes Genomes Genet. 2018, 8, 200521–202018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steinbrenner, A.D.; Muñoz-Amatriaín, M.; Chaparro, A.F.; Aguilar-Venegas, J.M.; Lo, S.; Okuda, S.; Glauser, G.; Dongiovanni, J.; Shi, D.; Hall, M. A receptor-like protein mediates plant immune responses to herbivore-associated molecular patterns. Proc. Natl. Acad. Sci. USA 2020, 117, 31510–31518. [Google Scholar] [CrossRef]
- Xiong, H.; Shi, A.; Mou, B.; Qin, J.; Motes, D.; Lu, W.; Ma, J.; Weng, Y.; Yang, W.; Wu, D. Genetic diversity and population structure of cowpea (Vigna unguiculata L. Walp). PLoS ONE 2016, 11, e0160941. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Osipitan, O.A.; Fields, J.S.; Lo, S.; Cuvaca, I. Production Systems and Prospects of Cowpea (Vigna unguiculata (L.) Walp.) in the United States. Agronomy 2021, 11, 2312. https://doi.org/10.3390/agronomy11112312
Osipitan OA, Fields JS, Lo S, Cuvaca I. Production Systems and Prospects of Cowpea (Vigna unguiculata (L.) Walp.) in the United States. Agronomy. 2021; 11(11):2312. https://doi.org/10.3390/agronomy11112312
Chicago/Turabian StyleOsipitan, O. Adewale, Jeneen S. Fields, Sassoum Lo, and Ivan Cuvaca. 2021. "Production Systems and Prospects of Cowpea (Vigna unguiculata (L.) Walp.) in the United States" Agronomy 11, no. 11: 2312. https://doi.org/10.3390/agronomy11112312