Agricultural LCA for Food Oil of Winter Rapeseed, Sunflower, and Hemp, Based on Czech Standard Cultivation Practices
Abstract
:1. Introduction
2. Materials and Methods
2.1. Goal and Scope Definition
2.2. Data Source and Life Cycle Inventory (LCI)
2.3. Software Data Inventorization
2.4. Determination of Field Emissions
2.5. Impact Assessment
2.6. Study Limitations and the Study Completeness Check
3. Results and Data Interpretation
3.1. Interpretation Based on the Unit of Production
3.2. Interpretation Based on Unit of Land Demand
3.3. Normalization and the Data Weighing
4. Discussion and Perspective
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carré, P.; Pouzet, A. Rapeseed Market, Worldwide and in Europe. OCL 2014, 21, D102. [Google Scholar] [CrossRef]
- Dvořáková, M. Situační a Výhledová Zpráva Olejniny; Ministerstvo zemědělství: Praha, Czech Republic, 2019; ISBN 978-80-7434-586-9. [Google Scholar]
- CZSO (The Czech Statistical Office). Prague: Integrated Operational Program; Uropean Union: Prague, Czech Republic. Available online: https://www.czso.cz/csu/czso/home (accessed on 17 May 2021).
- Cherney, J.; Small, E. Industrial Hemp in North America: Production, Politics and Potential. Agronomy 2016, 6, 58. [Google Scholar] [CrossRef] [Green Version]
- Dhondt, F.; Muthu, S.S. Sustainable Hemp Products. In Hemp and Sustainability; Sustainable Textiles: Production, Processing, Manufacturing & Chemistry; Springer: Singapore, 2021; pp. 95–107. ISBN 9789811633331. [Google Scholar]
- Poore, J.; Nemecek, T. Reducing Food’s Environmental Impacts through Producers and Consumers. Science 2018, 360, 987–992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bunzel, K.; Kattwinkel, M.; Schauf, M.; Thrän, D. Energy Crops and Pesticide Contamination: Lessons Learnt from the Development of Energy Crop Cultivation in Germany. Biomass Bioenergy 2014, 70, 416–428. [Google Scholar] [CrossRef]
- Palmieri, N.; Forleo, M.B.; Suardi, A.; Coaloa, D.; Pari, L. Rapeseed for Energy Production: Environmental Impacts and Cultivation Methods. Biomass Bioenergy 2014, 69, 1–11. [Google Scholar] [CrossRef]
- Fridrihsone, A.; Romagnoli, F.; Cabulis, U. Life Cycle Inventory for Winter and Spring Rapeseed Production in Northern Europe. J. Clean. Prod. 2018, 177, 79–88. [Google Scholar] [CrossRef]
- Notarnicola, B.; Salomone, R.; Petti, L.; Renzulli, P.A.; Roma, R.; Cerutti, A.K. (Eds.) Life Cycle Assessment in the Agri-Food Sector; Springer International Publishing: Cham, Germany, 2015; ISBN 978-3-319-11939-7. [Google Scholar]
- Dijkman, T.J.; Basset-Mens, C.; Antón, A.; Núñez, M. LCA of Food and Agriculture. In Life Cycle Assessment; Hauschild, M.Z., Rosenbaum, R.K., Olsen, S.I., Eds.; Springer International Publishing: Cham, Germany, 2018; pp. 723–754. ISBN 978-3-319-56474-6. [Google Scholar]
- Meier, M.S.; Stoessel, F.; Jungbluth, N.; Juraske, R.; Schader, C.; Stolze, M. Environmental Impacts of Organic and Conventional Agricultural Products–Are the Differences Captured by Life Cycle Assessment? J. Environ. Manag. 2015, 149, 193–208. [Google Scholar] [CrossRef] [PubMed]
- Hauschild, M.Z.; Olsen, S.I.; Rosenbaum, R.K. (Eds.) Life Cycle Assessment: Theory and Practice, 1st ed.; Springer: Cham, Germany, 2018; ISBN 978-3-319-56475-3. [Google Scholar]
- Common Agricultural Policy (CAP). Sustainable agriculture in the Common Agricultural Policy. European Commission. 2021. Available online: https://ec.europa.eu/info/food-farming-fisheries/sustainability/sustainable-cap_en/ (accessed on 24 January 2021).
- Mattsson, B.; Cederberg, C.; Blix, L. Agricultural Land Use in Life Cycle Assessment (LCA): Case Studies of Three Vegetable Oil Crops. J. Clean. Prod. 2000, 8, 283–292. [Google Scholar] [CrossRef]
- Eurostat. Agriculture–Overview. 2021. Available online: https://ec.europa.eu/eurostat/web/agriculture. (accessed on 18 October 2021).
- Carus, M.; Sarmento, L. The European Hemp Industry: Cultivation, Processing and Applications for Fibres, Shivs, Seeds and Flowers; European Industrial Hemp, Belgium Association: Brusel, Belgium, 2016; pp. 1–9. [Google Scholar]
- Bernas, J.; Konvalina, P.; Burghila, D.V.; Teodorescu, R.I.; Bucur, D. The Energy and Environmental Potential of Waste from the Processing of Hulled Wheat Species. Agriculture 2020, 10, 592. [Google Scholar] [CrossRef]
- Bernas, J.; Bernasová, T.; Gerstberger, P.; Moudrý, J.; Konvalina, P.; Moudrý, J. Cup Plant, an Alternative to Conventional Silage from a LCA Perspective. Int. J. Life Cycle Assess 2021, 26, 311–326. [Google Scholar] [CrossRef]
- ISO. 14040—Environmental Management–Life Cycle Assessment–Principles and Framework; International Organization for Standardization: Geneva, Switzerland, 2006. [Google Scholar]
- ISO. 14044—Environmental Management–Life Cycle Assessment–Requirements and Guidelines; International Organization for Standardization: Geneva, Switzerland, 2006. [Google Scholar]
- Agronormativy. Normativy pro Zemědělskou a Potravinářskou výrobu: AGroConsult. 2015. Available online: http://www.agronormativy.cz/ (accessed on 5 April 2021).
- Wernet, G.; Bauer, C.; Steubing, B.; Reinhard, J.; Moreno-Ruiz, E.; Weidema, B. The Ecoinvent Database Version 3 (Part I): Overview and Methodology. Int. J. Life Cycle Assess 2016, 21, 1218–1230. [Google Scholar] [CrossRef]
- Durlinger, B.; Koukouna, E.; Broekema, R.; Van Paassen, M.; Scholten, J. Agri-Footprint 4.0-Part 1: Methodology and Basic Principles; Agri-Footprint: Gouda, The Netherlands, 2017; p. 52. [Google Scholar]
- Nemecek, T.; Bengoa, X.; Lansche, J.; Roesch, A.; Faist-Emmenegger, M.; Rossi, V.; Humbert, S. Methodological Guidelines for the Life Cycle Inventory of Agricultural Products. Version 3.5. December 2019. World Food LCA Database (WFLDB); Quantis and Agroscope: Lausanne, Switzerland; Zurich, Switzerland, 2019; p. 88. [Google Scholar]
- Nemecek, T.; Kägi, T. Life Cycle Inventories of Swiss and European Agricultural Production Systems. Final Report Ecoinvent V2.0 No. 15a, 1st ed.; AgroscopeReckenholz-Taenikon Research Station ART; Swiss Centre for Life Cycle Inventories: Zürich, Switzerland; Dübendorf, Switzerland, 2007; p. 360. [Google Scholar]
- Pre Consultants, ReCiPe 2021 [WWW Document]. Available online: https://pre-sustainability.com/articles/recipe/ (accessed on 14 September 2021).
- Fridrihsone, A.; Romagnoli, F.; Cabulis, U. Environmental Life Cycle Assessment of Rapeseed and Rapeseed Oil Produced in Northern Europe: A Latvian Case Study. Sustainability 2020, 12, 5699. [Google Scholar] [CrossRef]
- Fridrihsone, A.; Romagnoli, F.; Kirsanovs, V.; Cabulis, U. Life Cycle Assessment of Vegetable Oil Based Polyols for Polyurethane Production. J. Clean. Prod. 2020, 266, 121403. [Google Scholar] [CrossRef]
- Gibbs, K.E.; Mackey, R.L.; Currie, D.J. Human Land Use, Agriculture, Pesticides and Losses of Imperiled Species. Divers. Distrib. 2009, 15, 242–253. [Google Scholar] [CrossRef]
- Geiger, F.; Bengtsson, J.; Berendse, F.; Weisser, W.W.; Emmerson, M.; Morales, M.B.; Ceryngier, P.; Liira, J.; Tscharntke, T.; Winqvist, C.; et al. Persistent Negative Effects of Pesticides on Biodiversity and Biological Control Potential on European Farmland. Basic Appl. Ecol. 2010, 11, 97–105. [Google Scholar] [CrossRef]
- Meehan, T.D.; Werling, B.P.; Landis, D.A.; Gratton, C. Agricultural Landscape Simplification and Insecticide Use in the Midwestern United States. Proc. Natl. Acad. Sci. USA 2011, 108, 11500–11505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schader, C.; Stolze, M.; Gattinger, A. Environmental performance of organic farming. In Green Technologies in Food Production and Processing; Food Engineering Series; Boye, J.I., Arcand, Y., Eds.; Springer: Boston, MA, USA, 2012; pp. 183–210. ISBN 978-1-4614-1586-2. [Google Scholar]
- Kočí, V. Na LCA založené Srovnání Environmentálních Dopadů Obnovitelných Zdrojů Energie: Odhad LCA Charakterizačních Profilů Výroby Elektrické Energie z Obnovitelných Zdrojů Energie v ČR pro Projekt OZE–RESTEP; LCA Studio, VŠCHT: Praha, Czech Republic, 2012. [Google Scholar]
- Kočí, V. Posuzování životního cyklu Life Cycle Assessment-LCA; Vodní zdroje Ekomonitor: Chrudim, Czech Republic, 2009; ISBN 978-80-86832-42-5. [Google Scholar]
- Schau, E.M.; Fet, A.M. LCA Studies of Food Products as Background for Environmental Product Declarations. Int. J. Life Cycle Assess 2008, 13, 255–264. [Google Scholar] [CrossRef]
- Seda, M.; Antòn, A.; Munoz, P. Analyzing the Influence of the Functional Unit in Agricultural LCA. In Proceedings of the 7th International Conference on Life Cycle Assessment in the Agri-food Sector, Bari, Italy, 22–24 September 2010; pp. 85–90. [Google Scholar]
- McManus, M.C.; Hammond, G.P.; Burrows, C.R. Life-Cycle Assessment of Mineral and Rapeseed Oil in Mobile Hydraulic Systems. J. Ind. Ecol. 2003, 7, 163–177. [Google Scholar] [CrossRef]
- Stow, M.; McManus, M.C.; Bannister, C. A life cycle assessment comparison of rapeseed biodiesel and conventional diesel. In Sustainable Vehicle Technologies: Driving the Green Agenda 14–15 November 2012, Gaydon, Grande-Bretagne, Proceedings of the Sustainable Vehicle Technologies Conference; Woodhead Publishing: Oxford, UK, 2012; ISBN 978-0-85709-456-8. [Google Scholar]
- Iriarte, A.; Rieradevall, J.; Gabarrell, X. Life Cycle Assessment of Sunflower and Rapeseed as Energy Crops under Chilean Conditions. J. Clean. Prod. 2010, 18, 336–345. [Google Scholar] [CrossRef]
- Queirós, J.; Malça, J.; Freire, F. Environmental Life-Cycle Assessment of Rapeseed Produced in Central Europe: Addressing Alternative Fertilization and Management Practices. J. Clean. Prod. 2015, 99, 266–274. [Google Scholar] [CrossRef]
- Moitzi, G.; Neugschwandtner, R.W.; Kaul, H.-P.; Wagentristl, H. Energy Efficiency of Winter Wheat in a Long-Term Tillage Experiment under Pannonian Climate Conditions. Eur. J. Agron. 2019, 103, 24–31. [Google Scholar] [CrossRef]
- Moitzi, G.; Neugschwandtner, R.W.; Kaul, H.-P.; Wagentristl, H. Comparison of Energy Inputs and Energy Efficiency for Maize in a Long-Term Tillage Experiment under Pannonian Climate Conditions. Plant Soil Environ. 2021, 67, 45–52. [Google Scholar] [CrossRef]
- Moitzi, G.; Neugschwandtner, R.W.; Kaul, H.-P.; Wagentristl, H. Effect of Tillage Systems on Energy Input and Energy Efficiency for Sugar Beet and Soybean under Pannonian Climate Conditions. Plant Soil Environ. 2021, 67, 137–146. [Google Scholar] [CrossRef]
- Soane, B.D.; Ball, B.C.; Arvidsson, J.; Basch, G.; Moreno, F.; Roger-Estrade, J. No-till in Northern, Western and South-Western Europe: A Review of Problems and Opportunities for Crop Production and the Environment. Soil Tillage Res. 2012, 118, 66–87. [Google Scholar] [CrossRef] [Green Version]
- Houshyar, E.; Grundmann, P. Environmental Impacts of Energy Use in Wheat Tillage Systems: A Comparative Life Cycle Assessment (LCA) Study in Iran. Energy 2017, 122, 11–24. [Google Scholar] [CrossRef]
- Känkänen, H.; Alakukku, L.; Salo, Y.; Pitkänen, T. Growth and Yield of Spring Cereals during Transition to Zero Tillage on Clay Soils. Eur. J. Agron. 2011, 34, 35–45. [Google Scholar] [CrossRef]
- Brentrup, F.; Küsters, J.; Lammel, J.; Barraclough, P.; Kuhlmann, H. Environmental Impact Assessment of Agricultural Production Systems Using the Life Cycle Assessment (LCA) Methodology II. The Application to N Fertilizer Use in Winter Wheat Production Systems. Eur. J. Agron. 2004, 20, 265–279. [Google Scholar] [CrossRef]
- Hasler, K.; Bröring, S.; Omta, S.W.F.; Olfs, H.-W. Life Cycle Assessment (LCA) of Different Fertilizer Product Types. Eur. J. Agron. 2015, 69, 41–51. [Google Scholar] [CrossRef]
- Smith, P.; Martino, D.; Cai, Z.; Gwary, D.; Janzen, H.; Kumar, P.; McCarl, B.; Ogle, S.; O’Mara, F.; Rice, C.; et al. Greenhouse Gas Mitigation in Agriculture. Phil. Trans. R. Soc. B 2008, 363, 789–813. [Google Scholar] [CrossRef] [Green Version]
- Stolze, M.; Piorr, A.; Häring, A.M.; Dabbert, S. The Environmental Impacts of Organic Farming in Europe; Institut für Landwirtschaftliche Betriebslehre, Universität Hohenheim: Stuttgart-Hohenheim, Germany, 2000; ISBN 978-3-933403-05-6. [Google Scholar]
- Niggli, U. Organic agriculture: A productive means of low-carbon and high biodiversity food production. In Trade and Environment Review-Promoting Poles of Clean Growth to Foster the Transition to a More Sustainable Economy; United Nations Switzerland.Conference on Trade and Development (UNCTAD): Geneva, Switzerland, 2010; pp. 112–118. [Google Scholar]
- Neugschwandtner, R.W.; Bernhuber, A.; Kammlander, S.; Wagentristl, H.; Klimek-Kopyra, A.; Lošák, T.; Zholamanov, K.K.; Kaul, H.-P. Nitrogen Yields and Biological Nitrogen Fixation of Winter Grain Legumes. Agronomy 2021, 11, 681. [Google Scholar] [CrossRef]
- Pandey, A.; Li, F.; Askegaard, M.; Olesen, J.E. Biological Nitrogen Fixation in Three Long-Term Organic and Conventional Arable Crop Rotation Experiments in Denmark. Eur. J. Agron. 2017, 90, 87–95. [Google Scholar] [CrossRef]
- Neugschwandtner, R.W.; Kaul, H.-P.; Moitzi, G.; Klimek-Kopyra, A.; Lošák, T.; Wagentristl, H. A Low Nitrogen Fertiliser Rate in Oat–Pea Intercrops Does Not Impair N2 Fixation. Acta Agric. Scand. Sect. B—Soil Plant Sci. 2021, 71, 182–190. [Google Scholar] [CrossRef]
- Rigby, D.; Cáceres, D. Organic Farming and the Sustainability of Agricultural Systems. Agric. Syst. 2001, 68, 21–40. [Google Scholar] [CrossRef]
- Moudrý, J.; Bernas, J.; Moudrý, J.; Konvalina, P.; Ujj, A.; Manolov, I.; Stoeva, A.; Rembialkowska, E.; Stalenga, J.; Toncea, I.; et al. Agroecology Development in Eastern Europe—Cases in Czech Republic, Bulgaria, Hungary, Poland, Romania, and Slovakia. Sustainability 2018, 10, 1311. [Google Scholar] [CrossRef] [Green Version]
- Zagata, L.; Hrabák, J.; Lošťák, M. Post-Socialist Transition as a Driving Force of the Sustainable Agriculture: A Case Study from the Czech Republic. Agroecol. Sustain. Food Syst. 2020, 44, 238–257. [Google Scholar] [CrossRef]
- Tuomisto, H.L.; Hodge, I.D.; Riordan, P.; Macdonald, D.W. Does Organic Farming Reduce Environmental Impacts? A Meta-Analysis of European Research. J. Environ. Manag. 2012, 112, 309–320. [Google Scholar] [CrossRef] [PubMed]
- Charles, R.; Jolliet, O.; Gaillard, G.; Pellet, D. Environmental Analysis of Intensity Level in Wheat Crop Production Using Life Cycle Assessment. Agric. Ecosyst. Environ. 2006, 113, 216–225. [Google Scholar] [CrossRef]
- Nedbal, V.; Duffková, R.; Brom, J. Water quality protection by spectral determination of precise doses of fertilizers on arable land. In Proceedings of the 20th International Multidisciplinary Scientific GeoConference (SGEM), Albena, Bulgaria, 28 June–6 July 2019; Volume 19, pp. 317–324. Available online: https://doi.org/10.5593/sgem2019V/1.4/S02.039 (accessed on 15 October 2021).
- Knudsen, M.T.; Halberg, N.; Olesen, J.E.; Byrne, J.; Iyer, V.; Toly, N. Global trends in agriculture and food systems. In Global Development of Organic Agriculture: Challenges and Prospects; Halberg, N., Alrøe, H.F., Knudsen, M.T., Kristensen, E.S., Eds.; CABI: Wallingford, UK, 2006; pp. 1–48. ISBN 978-1-84593-078-3. [Google Scholar]
- Coley, D.; Howard, M.; Winter, M. Local Food, Food Miles and Carbon Emissions: A Comparison of Farm Shop and Mass Distribution Approaches. Food Policy 2009, 34, 150–155. [Google Scholar] [CrossRef]
- Birkved, M.; Hauschild, M.Z. Pest LCI—A Model for Estimating Field Emissions of Pesticides in Agricultural LCA. Ecol. Model. 2006, 198, 433–451. [Google Scholar] [CrossRef]
- Gavrilescu, M. Fate of Pesticides in the Environment and Its Bioremediation. Eng. Life Sci. 2005, 5, 497–526. [Google Scholar] [CrossRef]
- Kadlikova, K.; Vaclavikova, M.; Halesova, T.; Kamler, M.; Markovic, M.; Erban, T. The Investigation of Honey Bee Pesticide Poisoning Incidents in Czechia. Chemosphere 2021, 263, 128056. [Google Scholar] [CrossRef]
- Andr, J.; Kočárek, M.; Jursík, M.; Fendrychová, V.; Tichý, L. Effect of Adjuvants on the Dissipation, Efficacy and Selectivity of Three Different Pre-Emergent Sunflower Herbicides. Plant Soil Environ. 2017, 63, 409–415. [Google Scholar] [CrossRef] [Green Version]
- Stejskalová, M.; Konradyová, V.; Suchanová, M.; Kazda, J. Is Pollinator Visitation of Helianthus Annuus (Sunflower) Influenced by Cultivar or Pesticide Treatment? Crop. Prot. 2018, 114, 83–89. [Google Scholar] [CrossRef]
- Veselá, T.; Nedbal, V.; Brom, J. Detection of pesticide in a small agricultural basin after 15 years of application ban. In Proceedings of the 20th International Multidisciplinary Scientific GeoConference SGEM, Albena, Bulgaria, 18–24 August 2020; Volume 20, pp. 75–82. [Google Scholar] [CrossRef]
- Rehman, M.; Fahad, S.; Du, G.; Cheng, X.; Yang, Y.; Tang, K.; Liu, L.; Liu, F.-H.; Deng, G. Evaluation of Hemp (Cannabis Sativa, L.) as an Industrial Crop: A Review. Environ. Sci. Pollut. Res. 2021, 28, 52832–52843. [Google Scholar] [CrossRef] [PubMed]
- Żuk-Gołaszewska, K.; Gołaszewski, J. Hemp production. Sustain. Agric. Rev. 2020, 42, 1–36. [Google Scholar]
- Halvorson, A.D.; Wienhold, B.J.; Black, A.L. Tillage, nitrogen, and cropping system effects on soil carbon sequestration. Soil Sci. Soc. Am. J. 2002, 66, 906. [Google Scholar]
- MZE. Eroze od roku 2019–Uživatelská Příručka; Ministerstvo Zemědělství České Republiky: Prague, Czech Republic, 2019; p. 52. [Google Scholar]
- Dingha, B.; Sandler, L.; Bhowmik, A.; Akotsen-Mensah, C.; Jackai, L.; Gibson, K.; Turco, R. Industrial Hemp Knowledge and Interest among North Carolina Organic Farmers in the United States. Sustainability 2019, 11, 2691. [Google Scholar] [CrossRef] [Green Version]
- Finnan, J.; Styles, D. Hemp: A More Sustainable Annual Energy Crop for Climate and Energy Policy. Energy Policy 2013, 58, 152–162. [Google Scholar] [CrossRef]
Unit | Rapeseed | Sunflower | Hemp | |
---|---|---|---|---|
Outputs | ||||
Seeds yield | kg ha−1 | 3500 | 2800 | 500 |
Straw yield | kg ha−1 | 4200 | 7000 | 9000 |
Cake yield | kg ha−1 | 2206.4 | 1715.8 | 409.9 |
Food oil | L ha−1 | 1293.6 | 1084.2 | 190.2 |
Seed oiliness | % | 42 | 44 | 36 |
Cake oiliness | % | 12 | 12 | 12 |
Land demand for generating the same yield # | ha | 1 | 1.3 | 6.8 |
Mass allocation principle (based on outputs) | ||||
Food oil | %EL | 16.8 | 11.06 | 1.98 |
Cake | %EL | 28.65 | 17.51 | 4.27 |
Straw | %EL | 54.55 | 71.75 | 93.75 |
Inputs from technosphere—Material/fuels | ||||
Tillage, cultivating, chiselling | ha | 0.8 | 0.2 | 2 |
Tillage, rolling | ha | 0.3 | – | 2 |
Tillage, harrowing, by spring tine harrow | ha | 0.3 | 1.6 | – |
Tillage, harrowing, by offset levelling disc harrow | ha | – | 0.3 | – |
Tillage, harrowing, by offset disk harrow | ha | – | 1 | – |
Fertilizing, by broadcaster | ha | 1.45 | 1.1 | 0.87 |
Potassium chloride, as K2O, at plant | kg ha−1 | 15 | 9 | 9 |
Phosphoric acid, as P2O5, at plant | kg ha−1 | 23.03 | – | – |
Ammonium nitrate phosphate (ANP), as P2O5, at plant | kg ha−1 | – | 9 | – |
Triple superphosphate, as P2O5, at plant | kg ha−1 | – | – | 19.75 |
Solid manure loading and spreading | kg ha−1 | 12,000 | 10,000 | 4000 |
Manure, solid, cattle | kg ha−1 | 12,000 | 10,000 | 4000 |
Tillage, ploughing | kg ha−1 | 1 | 1 | 0.1 |
Application of plant protection product by field sprayer | kg ha−1 | 5.9 | 4.9 | 1.4 |
Napropamide | g ha−1 | 90 | – | – |
Herbicide, unspecified, mix for oil crops, at plant | kg ha−1 | 2.29 | 3.65 | 2.45 |
Fungicide, unspecified, mix for oil crops, at plant | kg ha−1 | – | 6.1 | – |
Sowing | ha | 1 | 1 | 1 |
Seeds | kg ha−1 | 4 | 5 | 60 |
Chloroacetanilide herbicides, at plant | g ha−1 | 372 | – | – |
Metaldehyde | g ha−1 | 40 | – | – |
Fluazifop-p-butyl, at plant | g ha−1 | 75 | – | – |
Calcium ammonium nitrate (CAN), as N, at plant | kg ha−1 | 266.3 | – | 40 |
Nitrogen fertiliser, as N | g ha−1 | 126 | – | – |
Manure management, cattle, liquid-slurry, warm, per kg DM | kg | 100 | – | 200 |
Slurry application, spreader with trailed hoses, per m3 | m3 ha−1 | 2 | – | 4 |
Dinitrophenol herbicides, at plant | g ha−1 | 0.12 | – | – |
Ammonium nitrate (AN), as N, at plant | kg | 60 | 70 | – |
Plant growth regulator, at plant | g | 0.37 | 0.2 | – |
Urea ammonium nitrate (UAN) (with 30% N), at plant | kg ha−1 | 0.09 | 0 | – |
Magnesium oxide | kg ha−1 | 0.03 | 3.5 | – |
Sulfur | kg ha−1 | 0.024 | – | – |
Boric oxide | kg ha−1 | 0.018 | – | – |
Insecticide, unspecified, mix for oil seed crops, at plant | kg ha−1 | 0.65 | 0.25 | 0.25 |
Combine harvesting | ha | 1 | 1 | 1 |
Transport, tractor, and trailer, agricultural | tkm | 35 | 28 | 5 |
Land-use change, annual crop, annualized on 20 years | ha | 1 | 1 | 1 |
Inputs from nature | ||||
Land occupation * | ha | 1 | 1 | 1 |
Water (as a medium for plant protection products) * | L ha−1 | 2040 | 1470 | 557.5 |
Emissions to air | ||||
Nitrogen oxides, CZ | kg ha−1 | 1.75 | 1.21 | 0.31 |
Dinitrogen monoxide | kg ha−1 | 8.32 | 5.74 | 1.46 |
Ammonia, CZ | kg ha−1 | 11.86 | 6.01 | 10.29 |
Emissions to groundwater | ||||
Nitrate | kg ha−1 | 0.276 | 0.265 | 0.169 |
Phosphorus | kg ha−1 | 0.848 | 0.266 | 0.275 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bernas, J.; Bernasová, T.; Nedbal, V.; Neugschwandtner, R.W. Agricultural LCA for Food Oil of Winter Rapeseed, Sunflower, and Hemp, Based on Czech Standard Cultivation Practices. Agronomy 2021, 11, 2301. https://doi.org/10.3390/agronomy11112301
Bernas J, Bernasová T, Nedbal V, Neugschwandtner RW. Agricultural LCA for Food Oil of Winter Rapeseed, Sunflower, and Hemp, Based on Czech Standard Cultivation Practices. Agronomy. 2021; 11(11):2301. https://doi.org/10.3390/agronomy11112301
Chicago/Turabian StyleBernas, Jaroslav, Tereza Bernasová, Václav Nedbal, and Reinhard W. Neugschwandtner. 2021. "Agricultural LCA for Food Oil of Winter Rapeseed, Sunflower, and Hemp, Based on Czech Standard Cultivation Practices" Agronomy 11, no. 11: 2301. https://doi.org/10.3390/agronomy11112301
APA StyleBernas, J., Bernasová, T., Nedbal, V., & Neugschwandtner, R. W. (2021). Agricultural LCA for Food Oil of Winter Rapeseed, Sunflower, and Hemp, Based on Czech Standard Cultivation Practices. Agronomy, 11(11), 2301. https://doi.org/10.3390/agronomy11112301