Integrative Effects of Treated Wastewater and Synthetic Fertilizers on Productivity, Energy Characteristics, and Elements Uptake of Potential Energy Crops in an Arid Agro-Ecosystem
Abstract
:1. Introduction
2. Materials and Methods
2.1. Locations of the Study
2.2. Soil Analysis
2.3. Water Analysis
2.4. Sowing Process
2.5. Experimental Design and Treatments
2.6. Weather Conditions
2.7. Measurements
2.7.1. Growth Traits and Biomass Yield
2.7.2. Elemental Analysis
2.7.3. Energy Analysis
2.8. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hafez, E.M.; Seleiman, M.F. Response of barley quality traits, yield and antioxidant enzymes to water-stress and chemical inducers. Int. J. Plant Prod. 2017, 11, 477–490. [Google Scholar]
- Ding, Z.; Ali, E.F.; Elmahdy, A.M.; Ragab, K.E.; Seleiman, M.F.; Kheir, A.M.S. Modeling the combined impacts of deficit irrigation, rising temperature and compost application on wheat yield and water productivity. Agric. Water Manag. 2021, 244, 106626. [Google Scholar] [CrossRef]
- Seleiman, M.F.; Al-Suhaibani, N.; Ali, N.; Akmal, M.; Alotaibi, M.; Refay, Y.; Dindaroglu, T.; Abdul-Wajid, H.H.; Battaglia, M.L. Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants 2021, 10, 259. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Zhang, C.; Liu, C.; Fu, A.; Luan, S. A Golgi-localized manganese transporter functions in pollen tube tip growth to control male fertility in Arabidopsis. Plant Commun. 2021, 2, 100178. [Google Scholar] [CrossRef] [PubMed]
- Seleiman, M.F.; Kheir, A.; Al-Dhumri, S.; Alghamdi, A.G.; Omar, E.-S.H.; Aboelsoud, H.M.; Abdella, K.A.; Abou El Hassan, W.H. Exploring optimal tillage improved soil characteristics and productivity of wheat irrigated with different water qualities. Agronomy 2019, 9, 233. [Google Scholar] [CrossRef] [Green Version]
- Seleiman, M.F.; Alotaibi, M.A.; Alhammad, B.A.; Alharbi, B.M.; Refay, Y.; Badawy, S.A. Effects of ZnO nanoparticles and biochar of rice straw and cow manure on characteristics of contaminated soil and sunflower productivity, oil quality, and heavy metals uptake. Agronomy 2020, 10, 790. [Google Scholar] [CrossRef]
- Seleiman, M.F.; Santanen, A.; Mäkelä, P.S.A. Recycling sludge on cropland as fertilizer–Advantages and risks. Resour. Conserv. Recycl. 2020, 155, 104647. [Google Scholar] [CrossRef]
- Seleiman, M.F.; Al-Suhaibani, N.; El-Hendawy, S.; Abdella, K.; Alotaibi, M.; Alderfasi, A. Impacts of Long-and Short-Term of Irrigation with Treated Wastewater and Synthetic Fertilizers on the Growth, Biomass, Heavy Metal Content, and Energy Traits of Three Potential Bioenergy Crops in Arid Regions. Energies 2021, 14, 3037. [Google Scholar] [CrossRef]
- Ventura, D.; Consoli, S.; Barbagallo, S.; Marzo, A.; Vanella, D.; Licciardello, F.; Cirelli, G.L. How to overcome barriers for wastewater agricultural reuse in Sicily (Italy)? Water 2019, 11, 335. [Google Scholar] [CrossRef] [Green Version]
- Jaramillo, M.F.; Restrepo, I. Wastewater reuse in agriculture: A review about its limitations and benefits. Sustainability 2017, 9, 1734. [Google Scholar] [CrossRef] [Green Version]
- Livia, S.; María, M.-S.; Marco, B.; Marco, R. Assessment of wastewater reuse potential for irrigation in rural semi-arid areas: The case study of Punitaqui, Chile. Clean Technol. Environ. Policy 2020, 22, 1325–1338. [Google Scholar] [CrossRef]
- Shilpi, S.; Lamb, D.; Bolan, N.; Seshadri, B.; Choppala, G.; Naidu, R. Waste to watt: Anaerobic digestion of wastewater irrigated biomass for energy and fertiliser production. J. Environ. Manag. 2019, 239, 73–83. [Google Scholar] [CrossRef]
- Sharma, A.; Patni, B.; Shankhdhar, D.; Shankhdhar, S.C. Zinc–an indispensable micronutrient. Physiol. Mol. Biol. Plants 2013, 19, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Hussain, A.; Priyadarshi, M.; Dubey, S. Experimental study on accumulation of heavy metals in vegetables irrigated with treated wastewater. Appl. Water Sci. 2019, 9, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Beltrán-Flores, E.; Torán, J.; Caminal, G.; Blánquez, P.; Sarrà, M. The removal of diuron from agricultural wastewaters by Trametes versicolor immobilized on pinewood in simple channel reactors. Sci. Total Environ. 2020, 728, 138414. [Google Scholar] [CrossRef]
- Mansir, I.; Oertlé, E.; Choukr-Allah, R. Evaluation of the Performance and Quality of Wastewater Treated by M’zar Plant in Agadir, Morocco. Water 2021, 13, 954. [Google Scholar] [CrossRef]
- Chojnacka, K.; Witek-Krowiak, A.; Moustakas, K.; Skrzypczak, D.; Mikula, K.; Loizidou, M. A transition from conventional irrigation to fertigation with reclaimed wastewater: Prospects and challenges. Renew. Sustain. Energy Rev. 2020, 130, 109959. [Google Scholar] [CrossRef]
- Ibekwe, A.M.; Gonzalez-Rubio, A.; Suarez, D.L. Impact of treated wastewater for irrigation on soil microbial communities. Sci. Total Environ. 2018, 622, 1603–1610. [Google Scholar] [CrossRef]
- Bedbabis, S.; Trigui, D.; Ahmed, C.B.; Clodoveo, M.L.; Camposeo, S.; Vivaldi, G.A.; Rouina, B. Ben Long-terms effects of irrigation with treated municipal wastewater on soil, yield and olive oil quality. Agric. Water Manag. 2015, 160, 14–21. [Google Scholar] [CrossRef]
- Levy, G.J.; Fine, P.; Goldstein, D.; Azenkot, A.; Zilberman, A.; Chazan, A.; Grinhut, T. Long term irrigation with treated wastewater (TWW) and soil sodification. Biosyst. Eng. 2014, 128, 4–10. [Google Scholar] [CrossRef]
- Seleiman, M.F.; Santanen, A.; Stoddard, F.L.; Mäkelä, P. Feedstock quality and growth of bioenergy crops fertilized with sewage sludge. Chemosphere 2012, 89, 1211–1217. [Google Scholar] [CrossRef]
- Seleiman, M.F.; Santanen, A.; Jaakkola, S.; Ekholm, P.; Hartikainen, H.; Stoddard, F.L.; Mäkelä, P.S.A. Biomass yield and quality of bioenergy crops grown with synthetic and organic fertilizers. Biomass Bioenergy 2013, 59, 477–485. [Google Scholar] [CrossRef]
- Seleiman, M.F. Towards Sustainable Intensification of Feedstock Production with Nutrient Cycling. Ph.D. Thesis, University of Helsinki, Helsinki, Finland, 2014. [Google Scholar]
- Gresshoff, P.M.; Rangan, L.; Indrasumunar, A.; Scott, P.T. A new bioenergy crop based on oil-rich seeds from the legume tree Pongamia pinnata. Energy Emiss. Control Technol. 2017, 5, 19–26. [Google Scholar] [CrossRef] [Green Version]
- Yadav, P.; Priyanka, P.; Kumar, D.; Yadav, A.; Yadav, K. Bioenergy Crops: Recent advances and future outlook. Prospect. Renew. Bioprocess. Futur. Energy Syst. 2019, 315–335. [Google Scholar]
- Von Cossel, M.; Wagner, M.; Lask, J.; Magenau, E.; Bauerle, A.; Von Cossel, V.; Warrach-Sagi, K.; Elbersen, B.; Staritsky, I.; Van Eupen, M. Prospects of bioenergy cropping systems for a more social-ecologically sound bioeconomy. Agronomy 2019, 9, 605. [Google Scholar] [CrossRef] [Green Version]
- Mergoum, M.; Sapkota, S.; ElDoliefy, A.E.A.; Naraghi, S.M.; Pirseyedi, S.; Alamri, M.S.; AbuHammad, W. Triticale (x Triticosecale Wittmack) Breeding. In Advances in Plant Breeding Strategies: Cereals; Springer: Berlin/Heidelberg, Germany, 2019; pp. 405–451. [Google Scholar]
- Cantale, C.; Petrazzuolo, F.; Correnti, A.; Farneti, A.; Felici, F.; Latini, A.; Galeffi, P. Triticale for bioenergy production. Agric. Agric. Sci. Procedia 2016, 8, 609–616. [Google Scholar] [CrossRef]
- Jablonowski, N.D.; Schrey, S.D. Bioenergy Crops: Current Status and Future Prospects. Agronomy 2021, 11, 316. [Google Scholar] [CrossRef]
- Klikocka, H.; Kasztelan, A.; Zakrzewska, A.; Wyłupek, T.; Szostak, B.; Skwaryło-Bednarz, B. The energy efficiency of the production and conversion of spring triticale grain into bioethanol. Agronomy 2019, 9, 423. [Google Scholar] [CrossRef] [Green Version]
- Omidi, A.H.; Khazaei, H.; Monneveux, P.; Stoddard, F. Effect of cultivar and water regime on yield and yield components in safflower (Carthamus tinctorius L.). Turk. J. F. Crop. 2012, 17, 10–15. [Google Scholar]
- Nosheen, A.; Naz, R.; Tahir, A.T.; Yasmin, H.; Keyani, R.; Mitrevski, B.; Bano, A.; Tong Chin, S.; Marriott, P.J.; Hussain, I. Improvement of safflower oil quality for biodiesel production by integrated application of PGPR under reduced amount of NP fertilizers. PLoS ONE 2018, 13, e0201738. [Google Scholar] [CrossRef]
- Liu, B.; Benson, A. Winter Safflower Biodiesel: A Green Biofuel for the Southern High Plains. In Proceedings of the Southern Agricultural Economics Annual Meeting, Corpus Christi, TX, USA, 5–8 February 2011. [Google Scholar]
- Oğuz, H.; Öğüt, H.; Gökdoğan, O. The investigation of Turkey agriculture region production and support model to the effect of biodiesel industry. Iğdır Univ. J. Inst. Sci. Technol. 2012, 77–84. [Google Scholar]
- Yesilyurt, M.K.; Cesur, C.; Aslan, V.; Yilbasi, Z. The production of biodiesel from safflower (Carthamus tinctorius L.) oil as a potential feedstock and its usage in compression ignition engine: A comprehensive review. Renew. Sustain. Energy Rev. 2020, 119, 109574. [Google Scholar] [CrossRef]
- Zhang, M.; Malhi, S.S. Perspectives of oilseed rape as a bioenergy crop. Biofuels 2010, 1, 621–630. [Google Scholar] [CrossRef]
- Umesha, S.; Manukumar, H.M.G.; Chandrasekhar, B. Sustainable agriculture and food security. In Biotechnology for Sustainable Agriculture; Elsevier: Amsterdam, The Netherlands, 2018; pp. 67–92. [Google Scholar]
- Balkhair, K.S.; Ashraf, M.A. Field accumulation risks of heavy metals in soil and vegetable crop irrigated with sewage water in western region of Saudi Arabia. Saudi J. Biol. Sci. 2016, 23, S32–S44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montemurro, N.; Cucci, G.; Mastro, M.A.; Lacolla, G.; Lonigro, A. The Nitrogen Role in Vegetables Irrigated with Treated Municipal Wastewater. Agron. Res. 2017, 15, 2012–2025. [Google Scholar] [CrossRef]
- National Research Council. Use of Reclaimed Water and Sludge in Food Crop Production; National Academies Press: Washington, DC, USA, 1996; 63p. [Google Scholar] [CrossRef]
- Abba, N.; Boon Sung, C.T.; Paing, T.N.; Kee Zuan, A.T. Wastewater from Washed Rice Water as Plant Nutrient Source: Current Understanding and Knowledge Gaps. Pertanika J. Sci. Technol. 2021, 29, 1347–1369. [Google Scholar] [CrossRef]
- Cottenie, A.; Verloo, M.; Velghe, M.; Camerlynck, R. Chemical Analysis of Plant and Soil. Manual Laboratory of Analytical and Agrochemistry; RUG Laboratory of Analytical and Agrochemistry: Gent, Belgium, 1982; 63p. [Google Scholar]
- Burt, R. Kellogg Soil Survey Laboratory Methods Manual; Soil Survey Investigations Report No. 42; USDA, National Resources Conservation Service: Washington, DC, USA, 1982; 1001p.
- Chen, W.; Lu, S.; Jiao, W.; Wang, M.; Chang, A.C. Reclaimed water: A safe irrigation water source? Environ. Dev. 2013, 8, 74–83. [Google Scholar] [CrossRef]
- Becerra-Castro, C.; Lopes, A.R.; Vaz-Moreira, I.; Silva, E.F.; Manaia, C.M.; Nunes, O.C. Wastewater reuse in irrigation: A microbiological perspective on implications in soil fertility and human and environmental health. Environ. Int. 2015, 75, 117–135. [Google Scholar] [CrossRef] [Green Version]
- Nicolás, E.; Alarcón, J.J.; Mounzer, O.; Pedrero, F.; Nortes, P.A.; Alcobendas, R.; Romero-Trigueros, C.; Bayona, J.M.; Maestre-Valero, J.F. Long-term physiological and agronomic responses of mandarin trees to irrigation with saline reclaimed water. Agric. Water Manag. 2016, 166, 1–8. [Google Scholar] [CrossRef]
- Gu, X.; Xiao, Y.; Yin, S.; Liu, H.; Men, B.; Hao, Z.; Qian, P.; Yan, H.; Hao, Q.; Niu, Y. Impact of long-term reclaimed water irrigation on the distribution of potentially toxic elements in soil: An in-situ experiment study in the North China Plain. Int. J. Environ. Res. Public Health 2019, 16, 649. [Google Scholar] [CrossRef] [Green Version]
- Snyder, R.; Tegeder, M. Targeting nitrogen metabolism and transport processes to improve plant nitrogen use efficiency. Front. Plant Sci. 2021, 11, 2330. [Google Scholar] [CrossRef]
- de Bang, T.C.; Husted, S.; Laursen, K.H.; Persson, D.P.; Schjoerring, J.K. The molecular–physiological functions of mineral macronutrients and their consequences for deficiency symptoms in plants. New Phytol. 2021, 229, 2446–2469. [Google Scholar] [CrossRef] [PubMed]
- Kolodiazhnyi, O.I. Phosphorus Compounds of Natural Origin: Prebiotic, Stereochemistry, Application. Symmetry 2021, 13, 889. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, F.; Lu, H.; Liu, Y.; Mao, C. Phosphate uptake and transport in plants: An elaborate regulatory system. Plant Cell Physiol. 2021, 62, 564–572. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, S.; Naveed, M.; Afzal, M.; Seleiman, M.F.; Al-Suhaibani, N.A.; Zahir, Z.A.; Mustafa, A.; Refay, Y.; Alhammad, B.A.; Ashraf, S.; et al. Unveiling the Potential of Novel Macrophytes for the Treatment of Tannery Effluent in Vertical Flow Pilot Constructed Wetlands. Water 2020, 12, 549. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Wu, J.; Xu, B.; Zheng, W.; Zhang, X.; Wang, J. Influence of reclaimed water irrigation on soil quality on lawn soil. J. Soil Water Conserv. 2011, 25, 245–249. [Google Scholar]
- Li, Y.; Li, J.; Zhang, H. Effects of chlorination on soil chemical properties and nitrogen uptake for tomato drip irrigated with secondary sewage effluent. J. Integr. Agric. 2014, 13, 2049–2060. [Google Scholar] [CrossRef] [Green Version]
- Wei, G.; Andersen, M.N.; Qi, X.; Ping, L.I.; Li, Z.; Fan, X.; Yuan, Z. Effects of reclaimed water irrigation and nitrogen fertilization on the chemical properties and microbial community of soil. J. Integr. Agric. 2017, 16, 679–690. [Google Scholar]
- Hashem, M.S.; Qi, X.-B. Treated Wastewater Irrigation—A Review. Water 2021, 13, 1527. [Google Scholar] [CrossRef]
- Abd-Elwahed, M.S. Influence of long-term wastewater irrigation on soil quality and its spatial distribution. Ann. Agric. Sci. 2018, 63, 191–199. [Google Scholar] [CrossRef]
- Xu, J.; Wu, L.; Chang, A.C.; Zhang, Y. Impact of long-term reclaimed wastewater irrigation on agricultural soils: A preliminary assessment. J. Hazard. Mater. 2010, 183, 780–786. [Google Scholar] [CrossRef]
- Sánchez–González, A.; Chapela–Lara, M.; Germán–Venegas, E.; Fuentes-García, R.; del Río-Portilla, F.; Siebe, C. Changes in quality and quantity of soil organic matter stocks resulting from wastewater irrigation in formerly forested land. Geoderma 2017, 306, 99–107. [Google Scholar] [CrossRef]
- Carrow, R.; Duncan, R.R.; Huck, M.T. Turfgrass and Landscape Irrigation Water Quality: Assessment and Management; CRC Press: Boca Raton, FL, USA, 2008; ISBN 0429140673. [Google Scholar]
- Pereira, B.F.F.; He, Z.L.; Silva, M.S.; Herpin, U.; Nogueira, S.F.; Montes, C.R.; Melfi, A.J. Reclaimed wastewater: Impact on soil–plant system under tropical conditions. J. Hazard. Mater. 2011, 192, 54–61. [Google Scholar] [CrossRef]
- De Carlo, L.; Battilani, A.; Solimando, D.; Caputo, M.C. Application of time-lapse ERT to determine the impact of using brackish wastewater for maize irrigation. J. Hydrol. 2020, 582, 124465. [Google Scholar] [CrossRef]
- Farooq, M.; Rashid, A.; Nadeem, F.; Stuerz, S.; Asch, F.; Bell, R.W.; Siddique, K.H.M. Boron nutrition of rice in different production systems. A review. Agron. Sustain. Dev. 2018, 38, 1–24. [Google Scholar]
- Sarıdaş, M.A.; Karabıyık, Ş.; Eti, S.; Paydaş Kargı, S. Boron Applications and Bee Pollinators Increase Strawberry Yields. Int. J. Fruit Sci. 2021, 21, 481–491. [Google Scholar] [CrossRef]
- Palmer, C.M.; Guerinot, M. Lou Facing the challenges of Cu, Fe and Zn homeostasis in plants. Nat. Chem. Biol. 2009, 5, 333–340. [Google Scholar] [CrossRef] [Green Version]
- Hänsch, R.; Mendel, R.R. Physiological functions of mineral micronutrients (cu, Zn, Mn, Fe, Ni, Mo, B, cl). Curr. Opin. Plant. Biol. 2009, 12, 259–266. [Google Scholar] [CrossRef]
- Kawachi, M.; Kobae, Y.; Mori, H.; Tomioka, R.; Lee, Y.; Maeshima, M. A mutant strain Arabidopsis thaliana that lacks vacuolar membrane zinc transporter MTP1 revealed the latent tolerance to excessive zinc. Plant. Cell Physiol. 2009, 50, 1156–1170. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Kim, S.A.; Lee, J.; Guerinot, M.L.; An, G. Zinc deficiency-inducible OsZIP8 encodes a plasma membrane-localized zinc transporter in rice. Mol. Cells 2010, 29, 551–558. [Google Scholar] [CrossRef]
- Ceballos-Laita, L.; Gutierrez-Carbonell, E.; Takahashi, D.; Lonsdale, A.; Abadía, A.; Doblin, M.S.; Bacic, A.; Uemura, M.; Abadía, J.; López-Millán, A.F. Effects of Excess Manganese on the Xylem Sap Protein Profile of Tomato (Solanum lycopersicum) as Revealed by Shotgun Proteomic Analysis. Int. J. Mol. Sci. 2020, 21, 8863. [Google Scholar] [CrossRef]
- Castro, C.B.; Ferreira, M.P.; Caterina, G.C.M.N. Metalloenzyme mechanisms correlated to their turnover number and metal lability. Curr. Res. Chem. Biol. 2021, 1, 100004. [Google Scholar] [CrossRef]
- Angulo-Bejarano, P.I.; Puente-Rivera, J.; Cruz-Ortega, R. Metal and Metalloid Toxicity in Plants: An Overview on Molecular Aspects. Plants 2021, 10, 635. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Feng, Q.; Li, C.; Wei, Y.; Zhao, Y.; Feng, Y.; Zheng, H.; Li, F.; Li, H. Impacts of aquaculture wastewater irrigation on soil microbial functional diversity and community structure in arid regions. Sci. Rep. 2017, 7, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Mkhinini, M.; Boughattas, I.; Alphonse, V.; Livet, A.; Gıustı-Mıller, S.; Bannı, M.; Bousserrhıne, N. Heavy metal accumulation and changes in soil enzymes activities and bacterial functional diversity under long-term treated wastewater irrigation in East Central region of Tunisia (Monastir governorate). Agric. Water Manag. 2020, 235, 106150. [Google Scholar] [CrossRef]
- Wang, J.-F.; Wang, G.; Wanyan, H. Treated wastewater irrigation effect on soil, crop and environment: Wastewater recycling in the loess area of China. J. Environ. Sci. 2007, 19, 1093–1099. [Google Scholar] [CrossRef]
- Tabassum, D.; Azad, S.; Inam, A. Utility of city wastewater as a source of irrigation water for mustard. J. Ind. Pollut. Control. 2007, 23, 391–396. [Google Scholar]
- Akhtar, N.; Inam, A.; Inam, A.; Khan, N.A. Effects of city wastewater on the characteristics of wheat with varying doses of nitrogen, phosphorus, and potassium. Recent Res. Sci. Technol. 2012, 4, 18–29. [Google Scholar]
- Huang, Z.; Miao, Z.; Hou, L.; Jiao, Z.; Ma, M. Effect of irrigation time and mode with reclaimed water on growth and quality of crops. J. Agro-Environ. Sci. 2007, 6, 1–10. [Google Scholar]
- El-Nahhal, Y.; Tubail, K.; Safi, M.; Safi, J.M. Effect of treated waste water irrigation on plant growth and soil properties in Gaza Strip, Palestine. Am. J. Plant. Sci. 2013, 4. [Google Scholar] [CrossRef] [Green Version]
- Zema, D.A.; Bombino, G.; Andiloro, S.; Zimbone, S.M. Irrigation of energy crops with urban wastewater: Effects on biomass yields, soils and heating values. Agric. Water Manag. 2012, 115, 55–65. [Google Scholar] [CrossRef]
- Stolarski, M.J.; Śnieg, M.; Krzyżaniak, M.; Tworkowski, J.; Szczukowski, S. Short rotation coppices, grasses and other herbaceous crops: Productivity and yield energy value versus 26 genotypes. Biomass Bioenergy 2018, 119, 109–120. [Google Scholar] [CrossRef]
- Jankowski, K.J.; Dubis, B.; Sokólski, M.M.; Załuski, D.; Bórawski, P.; Szempliński, W. Productivity and energy balance of maize and sorghum grown for biogas in a large-area farm in Poland: An 11-year field experiment. Ind. Crop. Prod. 2020, 148, 112326. [Google Scholar] [CrossRef]
- Matheyarasu, R.; Seshadri, B.; Kumar, P.; Shilpi, S.; Bolan, N.S. The Effect of Wastewater Irrigation Rate on Dry Matter Yield of Selected Field Crops. Int. J. Water Wastewater Treat. 2017, 3, 1–9. [Google Scholar] [CrossRef]
- Chen, W.; Lu, S.; Pan, N.; Wang, Y.; Wu, L. Impact of reclaimed water irrigation on soil health in urban green areas. Chemosphere 2015, 119, 654–661. [Google Scholar] [CrossRef]
- Umair Hassan, M.; Aamer, M.; Umer Chattha, M.; Haiying, T.; Khan, I.; Seleiman, M.F.; Rasheed, A.; Nawaz, M.; Rehman, A.; Talha Aslam, M.; et al. Sugarcane Distillery Spent Wash (DSW) as a Bio-Nutrient Supplement: A Win-Win Option for Sustainable Crop Production. Agronomy 2021, 11, 183. [Google Scholar] [CrossRef]
- DeLuca, T.H.; Pingree, M.R.A.; Gao, S. Assessing soil biological health in forest soils. In Developments in Soil Science; Elsevier: Amsterdam, The Netherlands, 2019; Volume 36, pp. 397–426. ISBN 0166-2481. [Google Scholar]
- Qu, Y.; Tang, J.; Li, Z.; Zhou, Z.; Wang, J.; Wang, S.; Cao, Y. Soil Enzyme Activity and Microbial Metabolic Function Diversity in Soda Saline–Alkali Rice Paddy Fields of Northeast China. Sustainability 2020, 12, 10095. [Google Scholar] [CrossRef]
- Tzortzakis, N.; Saridakis, C.; Chrysargyris, A. Treated Wastewater and Fertigation Applied for Greenhouse Tomato Cultivation Grown in Municipal Solid Waste Compost and Soil Mixtures. Sustainability 2020, 12, 4287. [Google Scholar] [CrossRef]
- Faizan, S.; Kausar, S.; Akhtar, N. Influence of wastewater application and fertilizer use on growth, photosynthesis, nutrient homeostatis, yield and heavy metal accumulation in okra (Abelmoschus esculentus L. Moench). Pak. J. Biol. Sci. 2014, 17, 630–640. [Google Scholar] [CrossRef]
- Khaskhoussy, K.; Kahlaoui, B.; Nefzi, B.M.; Jozdan, O.; Dakheel, A.; Hachicha, M. Effect of treated wastewater irrigation on heavy metals distribution in a Tunisian soil. Eng. Technol. Appl. Sci. Res. 2015, 5, 805–810. [Google Scholar] [CrossRef]
- Fang, W.; Delapp, R.C.; Kosson, D.S.; van der Sloot, H.A.; Liu, J. Release of heavy metals during long-term land application of sewage sludge compost: Percolation leaching tests with repeated additions of compost. Chemosphere 2017, 169, 271–280. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.S.; Zhang, K.; Han, L.; Su, D.; Wang, N.; Li, Y. Effects of reclaimed water irrigation on soil environment of greenbelt. J. Beijing Univ. 2006, 28, 78–84. [Google Scholar]
- Wu, C.; Huang, G.; Liu, H.; Wu, W.; Xu, C. Experimental investigation on heavy metal distribution in soil-crop system with irrigation of treated sewage effluent. Nongye Gongcheng Xuebao Trans. Chin. Soc. Agric. Eng. 2006, 22, 91–96. [Google Scholar]
- Duarah, I.; Deka, M.; Saikia, N.; Boruah, H.P.D. Phosphate solubilizers enhance NPK fertilizer use efficiency in rice and legume cultivation. 3 Biotech. 2011, 1, 227–238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tilak, K.; Ranganayaki, N.; Pal, K.K.; De, R.; Saxena, A.K.; Nautiyal, C.S.; Mittal, S.; Tripathi, A.K.; Johri, B.N. Diversity of plant growth and soil health supporting bacteria. Curr. Sci. 2005, 136–150. [Google Scholar]
- Abd El-Aziz, N. Stimulatory effect of NPK fertilizer and benzyladenine on growth and chemical constituents of Codiaeum variegatum L. Am. J. Agric. Environ. Sci. 2007, 2, 711–719. [Google Scholar]
- Rahman, K.M.; Zhang, D. Effects of fertilizer broadcasting on the excessive use of inorganic fertilizers and environmental sustainability. Sustainability 2018, 10, 759. [Google Scholar] [CrossRef] [Green Version]
Physico-Chemical Soil Traits | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Parameters | Old Cultivated Soil | Virgin Soil | ||||||||
pH (soil paste 1:5) | 7.80 | 7.91 | ||||||||
Saturation percentage (%) | 28.02 | 23.16 | ||||||||
EC (dS m−1) | 3.60 | 3.75 | ||||||||
Organic matter (%) | 0.52 | 0.40 | ||||||||
CaCO3 (%) | 28.81 | 30.72 | ||||||||
Field capacity (%) | 18.24 | 15.03 | ||||||||
Wilting point (%) | 7.04 | 7.96 | ||||||||
Sand (%) | 56.65 | 58.90 | ||||||||
Silt (%) | 28.46 | 26.52 | ||||||||
Clay (%) | 14.89 | 14.58 | ||||||||
Texture | Sandy loam | Sandy loam | ||||||||
Macro and trace elements analysis | ||||||||||
Elements Depth | N | K | P | Fe | Mn | Cu | Cd | Co | Zn | |
Soil | g kg−1 DM | mg kg−1 DM | ||||||||
Virgin soil | 0–20 cm | 0.53 | 1.40 | 0.03 | 1.44 | 41.23 | 4.23 | 5.22 | 0.00 | 6.97 |
20–40 cm | 1.40 | 1.55 | 0.05 | 0.93 | 49.57 | 2.03 | 4.63 | 0.00 | 4.80 | |
40–60 cm | 0.36 | 0.50 | 0.03 | 1.00 | 49.17 | 1.47 | 4.75 | 0.15 | 5.10 | |
Old cultivated soil | 0–20 cm | 5.87 | 1.67 | 0.06 | 1.49 | 44.47 | 4.93 | 8.96 | 0.00 | 11.50 |
20–40 cm | 3.07 | 2.43 | 0.09 | 1.39 | 55.83 | 10.02 | 9.20 | 0.64 | 9.10 | |
40–60 cm | 3.00 | 0.90 | 0.07 | 1.38 | 56.80 | 9.03 | 8.22 | 1.97 | 9.70 |
Parameter | Value | Parameter | Value |
---|---|---|---|
Cr (mg L−1) | <0.001 | pH 7.1 | 7.1 |
Cd (mg L−1) | <0.0001 | EC (dS m−1) | 1.8 |
Cu (mg L−1) | <0.001 | NH4+ (mg L−1) | 3.3 |
Pb (mg L−1) | <0.001 | NO3− (mg L−1) | 5.9 |
Ni (mg L−1) | <0.001 | PO43− (mg L−1) | 4.2 |
Zn (mg L−1) | 0.041 | K+ (mg L−1) | 15.9 |
Al (mg L−1) | 0.034 | Ca2+ (mg L−1) | 98.0 |
B (mg L−1) | 0.609 | Mg2+ (mg L−1) | 30.1 |
Co (mg L−1) | <0.001 | Na+ (mg L−1) | 282.0 |
Fe (mg L−1) | 0.051 | Cl− (mg L−1) | 261.1 |
As (mg L−1) | <0.001 | Mn (mg L−1) | 0.019 |
Parameters | Precipitation (mm) | Maximum Temperature (°C) | Minimum Temperature (°C) | Average Temperature (°C) | Relative Humidity (%) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Months | S1 | S2 | S1 | S2 | S1 | S2 | S1 | S2 | S1 | S2 | |
November | 0.31 | 0.27 | 35.37 | 34.82 | 5.05 | 5.84 | 20.21 | 20.33 | 41.69 | 41.21 | |
December | 0.02 | 0.10 | 27.40 | 27.46 | 4.01 | 4.95 | 15.71 | 16.21 | 45.31 | 44.36 | |
January | 0.10 | 0.05 | 29.34 | 28.65 | 1.23 | 2.01 | 15.29 | 15.33 | 40.19 | 40.68 | |
February | 0.00 | 0.00 | 33.79 | 32.43 | 1.21 | 2.08 | 17.50 | 17.26 | 28.44 | 29.26 | |
March | 0.00 | 0.00 | 35.80 | 36.19 | 6.98 | 7.01 | 21.39 | 21.60 | 25.69 | 26.02 | |
April | 0.98 | 1.02 | 39.91 | 38.63 | 14.13 | 15.11 | 27.02 | 26.87 | 31.50 | 30.24 | |
May | 0.01 | 0.00 | 42.91 | 41.77 | 19.21 | 19.94 | 31.06 | 30.86 | 17.69 | 17.05 | |
Long-term 1981–2020 | |||||||||||
November | 0.23 | 32.55 | 8.68 | 20.62 | 36.59 | ||||||
December | 0.19 | 27.84 | 3.22 | 15.53 | 44.90 | ||||||
January | 0.22 | 27.64 | 0.99 | 14.32 | 43.26 | ||||||
February | 0.26 | 30.86 | 2.73 | 16.80 | 35.72 | ||||||
March | 0.28 | 34.86 | 6.84 | 20.85 | 31.72 | ||||||
April | 0.16 | 39.05 | 12.24 | 25.65 | 26.57 | ||||||
May | 0.06 | 43.33 | 19.03 | 31.18 | 17.56 |
Parameters | Plant Height (cm) | Total Chlorophyll (SPAD Value) | Leaf Area Plant−1 (cm2) | Total Biomass (t ha−1 DM) | |
---|---|---|---|---|---|
Treatments | |||||
Safflower | |||||
Water treatments | |||||
L1 + TWW | 171.03 a | 52.50 a | 370.85 a | 26.10 a | |
L2 + TWW | 156.94 b | 50.13 b | 319.03 b | 17.23 b | |
L3 + GW | 140.86 c | 41.73 c | 228.90 c | 13.83 c | |
Significance | ** | ** | ** | ** | |
Fertilizer treatments | |||||
F50 | 154.15 a | 47.17 b | 295.87 b | 18.52 b | |
F100 | 158.40 a | 49.07 a | 316.65 a | 19.59 a | |
Significance | ns | * | ** | * | |
Canola | |||||
Water treatments | |||||
L1 + TWW | 144.50 a | 49.79 a | 2933.00 a | 19.75 a | |
L2 + TWW | 128.31 b | 44.94 b | 2358.38 b | 14.64 b | |
L3 + GW | 114.53 c | 38.75 c | 1668.38 c | 11.88 c | |
Significance | ** | ** | ** | ** | |
Fertilizer treatments (F) | |||||
F50 | 127.18 a | 41.85 b | 2235.00 b | 14.85 a | |
F100 | 131.05 a | 47.14 a | 2404.83 a | 15.99 a | |
Significance | ns | ** | ** | ns | |
Triticale | |||||
Water treatments | |||||
L1 + TWW | 91.90 a | 52.05 a | 210.75 a | 11.39 a | |
L2 + TWW | 86.67 b | 53.00 a | 195.12 b | 7.73 b | |
L3 + GW | 77.71 c | 49.30 b | 122.37 c | 6.17 c | |
Significance | ** | ** | ** | ** | |
Fertilization (F) | |||||
F50 | 85.00 a | 49.84 b | 172.33 b | 8.23 a | |
F100 | 85.85 a | 53.06 a | 179.83 a | 8.63 a | |
Significance | ns | ** | ** | ns |
Parameters | Energy Content (MJ kg−1 DM) | Gross Energy (GJ ha−1) | Nitrogen (g kg−1 DM) | Potassium (g kg−1 DM) | Phosphorus (g kg−1 DM) | |
---|---|---|---|---|---|---|
Treatments | ||||||
Safflower | ||||||
Water sources (L&WS) | ||||||
L1 + TWW | 17.24 a | 449.93 a | 23.59 a | 21.92 a | 3.09 a | |
L2 + TWW | 16.62 b | 286.45 b | 15.67 b | 9.90 b | 2.72 a | |
L3 + GW | 15.75 c | 217.91 c | 13.30 c | 9.19 b | 1.25 b | |
Significance | ** | ** | ** | ** | ** | |
Fertilization (F) | ||||||
F50 | 16.49 a | 308.29 b | 16.95 b | 13.53 a | 2.29 b | |
F100 | 16.58 a | 327.91 a | 18.07 a | 13.81 a | 2.41 a | |
Significance | ns | ** | ** | ns | ** | |
Canola | ||||||
Water sources (L&WS) | ||||||
L1 + TWW | 16.82 a | 332.28 a | 27.30 a | 20.30 a | 2.59 a | |
L2 + TWW | 16.05 a | 234.95 b | 25.40 b | 11.48 b | 1.38 b | |
L3 + GW | 14.97 b | 177.92 c | 21.77 c | 5.86 c | 0.88 c | |
Significance | ** | ** | ** | ** | ** | |
Fertilization (F) | ||||||
F50 | 15.84 b | 237.68 b | 22.61 b | 11.32 b | 1.35 b | |
F100 | 16.06 a | 259.08 a | 27.04 a | 13.76 a | 1.88 a | |
Significance | ** | ** | ** | ** | ** | |
Triticale | ||||||
Water sources (L&WS) | ||||||
L1 + TWW | 17.02 a | 193.98 a | 24.27 a | 19.07 a | 3.01 a | |
L2 + TWW | 15.50 b | 119.94 b | 21.26 b | 14.29 b | 2.96 b | |
L3 + GW | 16.39 ab | 101.20 c | 19.01 c | 10.71 c | 1.40 c | |
Significance | * | ** | ** | ** | ** | |
Fertilization (F) | ||||||
F50 | 16.24 a | 134.57 b | 20.44 b | 13.97 b | 2.33 b | |
F100 | 16.37 a | 142.18 a | 22.59 a | 15.41 a | 2.58 a | |
Significance | ns | ** | ** | ** | * |
Parameters | B | Mn | Cu | Zn | Cd | Pb | Ni | |
---|---|---|---|---|---|---|---|---|
Treatments | (mg kg−1 DM) | |||||||
Safflower | ||||||||
L1 + TWW | F50 | 3.85 b | 14.83 b | 13.95 a | 90.45 a | 1.45 a | 9.14 a | 48.06 a |
F100 | 5.03 a | 17.28 a | 8.22 b | 88.60 b | 1.45 a | 9.82 a | 49.84 a | |
L2 + TWW | F50 | 0.71 c | 7.18 c | 4.12 d | 66.34 c | 1.04 a | 7.46 b | 44.23 b |
F100 | 0.86 c | 8.75 c | 7.55 c | 58.77 d | 1.10 a | 7.37 b | 45.73 b | |
L3 + GW | F50 | 0.31 d | 4.95 d | 0.32 e | 54.43 e | 0.96 a | 2.90 c | 36.71 c |
F100 | 0.40 d | 5.58 d | 0.32 e | 53.30 e | 0.99 a | 2.95 c | 38.08 c | |
Significance | ** | ** | ** | * | ns | ** | * | |
Canola | ||||||||
L1 + TWW | F50 | 4.33 a | 29.24 a | 2.34 b | 58.43 b | 1.06 a | 9.42 ab | 45.78 b |
F100 | 4.07 a | 31.44 b | 2.54 a | 69.05 a | 1.09 a | 10.10 a | 48.78 a | |
L2 + TWW | F50 | 1.00 b | 9.58 e | 1.25 c | 57.08 b | 0.98 a | 8.78 b | 45.32 b |
F100 | 1.20 b | 10.20 e | 2.23 b | 57.05 b | 1.03 a | 9.14 ab | 45.56 b | |
L3 + GW | F50 | 0.32 c | 15.30 d | 0.86 d | 51.48 c | 0.35 b | 3.53 d | 36.19 c |
F100 | 0.71 c | 17.18 c | 0.86 d | 52.01 c | 0.35 b | 4.82 c | 35.54 c | |
Significance | ** | * | ** | ** | * | ** | * | |
Triticale | ||||||||
L1 + TWW | F50 | 1.20 b | 21.55 b | 0.34 a | 61.50 b | 1.01 a | 9.10 ab | 45.98 a |
F100 | 1.95 a | 31.62 a | 0.35 a | 86.57 a | 1.05 a | 10.73 a | 46.54 a | |
L2 + TWW | F50 | 1.12 b | 14.86 c | 0.25 a | 59.54 b | 0.97 a | 8.27 b | 43.10 c |
F100 | 1.17 b | 15.43 c | 0.23 a | 60.52 b | 1.01 a | 8.21 b | 44.92 b | |
L3 + GW | F50 | 0.67 c | 4.62 e | 0.24 a | 51.63 c | 0.31 b | 3.55 c | 35.00 d |
F100 | 0.86 c | 9.15 d | 0.21 a | 52.92 c | 0.36 b | 4.15 c | 35.33 d | |
Significance | ** | ** | ns | ** | * | ** | * |
Parameters | N | K | P | B | Mn | Cu | Zn | Cd | Pb | Ni | |
---|---|---|---|---|---|---|---|---|---|---|---|
Treatments | (kg ha−1 DM) | ||||||||||
Safflower | |||||||||||
L1 + TWW | F50 | 579.10 b | 554.30 b | 75.84 b | 0.098 b | 0.377 b | 0.355 a | 2.303 a | 0.037 a | 0.233 b | 1.223 b |
F100 | 653.09 a | 590.11 a | 85.33 a | 0.135 a | 0.462 a | 0.220 b | 2.370 a | 0.039 a | 0.263 a | 1.333 a | |
L2 + TWW | F50 | 261.84 c | 162.53 d | 45.33 c | 0.012 c | 0.121 d | 0.069 d | 1.114 b | 0.017 b | 0.125 c | 0.742 d |
F100 | 278.12 c | 179.10 c | 48.44 c | 0.015 c | 0.154 c | 0.133 c | 1.039 b | 0.019 b | 0.130 c | 0.808 c | |
L3 + GW | F50 | 167.08 e | 121.84 f | 16.00 d | 0.004 d | 0.066 f | 0.004 e | 0.726 c | 0.013 c | 0.039 d | 0.489 f |
F100 | 201.63 d | 132.65 e | 18.64 d | 0.006 d | 0.080 e | 0.005 e | 0.764 c | 0.014 c | 0.042 d | 0.546 e | |
Significance | * | * | * | ** | ** | ** | * | * | ** | * | |
Canola | |||||||||||
L1 + TWW | F50 | 454.33 b | 358.14 b | 42.47 b | 0.081 a | 0.549 b | 0.044 a | 1.098 b | 0.020 a | 0.177 b | 0.860 b |
F100 | 629.35 a | 446.09 a | 60.47 a | 0.084 a | 0.652 a | 0.053 a | 1.430 a | 0.023 a | 0.209 a | 1.009 a | |
L2 + TWW | F50 | 333.77 d | 150.89 d | 15.19 d | 0.014 b | 0.137 e | 0.018 c | 0.818 c | 0.014 b | 0.126 c | 0.649 c |
F100 | 411.14 c | 185.68 c | 25.42 c | 0.018 b | 0.153 e | 0.033 b | 0.853 c | 0.015 b | 0.137 c | 0.681 c | |
L3 + GW | F50 | 232.88 f | 50.22 f | 8.58 f | 0.004 c | 0.175 d | 0.010 c | 0.589 e | 0.004 c | 0.040 d | 0.414 d |
F100 | 285.74 e | 90.43 e | 12.44 e | 0.009 c | 0.211 c | 0.011 c | 0.641 d | 0.004 c | 0.059 d | 0.438 d | |
Significance | ** | ** | ** | * | ** | * | ** | ** | ** | * | |
Triticale | |||||||||||
L1 + TWW | F50 | 255.71 b | 208.89 b | 32.99 a | 0.013 b | 0.239 b | 0.004 a | 0.681 b | 0.011 a | 0.101 b | 0.509 a |
F100 | 298.24 a | 225.77 a | 35.60 a | 0.023 a | 0.371 a | 0.004 a | 1.014 a | 0.012 a | 0.126 a | 0.546 a | |
L2 + TWW | F50 | 158.01 d | 95.80 d | 22.18 b | 0.008 c | 0.112 c | 0.002 b | 0.448 d | 0.007 b | 0.062 c | 0.324 b |
F100 | 170.93 c | 125.85 c | 23.50 b | 0.009 c | 0.123 c | 0.002 b | 0.481 c | 0.008 b | 0.065 c | 0.357 b | |
L3 + GW | F50 | 105.29 f | 62.99 f | 6.42 d | 0.004 d | 0.028 e | 0.001 b | 0.315 f | 0.002 c | 0.022 e | 0.214 c |
F100 | 129.64 e | 69.28 e | 10.84 c | 0.005 d | 0.057 d | 0.001 b | 0.330 e | 0.002 c | 0.045 d | 0.220 c | |
Significance | ** | ** | * | ** | ** | * | ** | * | ** | * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Suhaibani, N.; Seleiman, M.F.; El-Hendawy, S.; Abdella, K.; Alotaibi, M.; Alderfasi, A. Integrative Effects of Treated Wastewater and Synthetic Fertilizers on Productivity, Energy Characteristics, and Elements Uptake of Potential Energy Crops in an Arid Agro-Ecosystem. Agronomy 2021, 11, 2250. https://doi.org/10.3390/agronomy11112250
Al-Suhaibani N, Seleiman MF, El-Hendawy S, Abdella K, Alotaibi M, Alderfasi A. Integrative Effects of Treated Wastewater and Synthetic Fertilizers on Productivity, Energy Characteristics, and Elements Uptake of Potential Energy Crops in an Arid Agro-Ecosystem. Agronomy. 2021; 11(11):2250. https://doi.org/10.3390/agronomy11112250
Chicago/Turabian StyleAl-Suhaibani, Nasser, Mahmoud F. Seleiman, Salah El-Hendawy, Kamel Abdella, Majed Alotaibi, and Ali Alderfasi. 2021. "Integrative Effects of Treated Wastewater and Synthetic Fertilizers on Productivity, Energy Characteristics, and Elements Uptake of Potential Energy Crops in an Arid Agro-Ecosystem" Agronomy 11, no. 11: 2250. https://doi.org/10.3390/agronomy11112250
APA StyleAl-Suhaibani, N., Seleiman, M. F., El-Hendawy, S., Abdella, K., Alotaibi, M., & Alderfasi, A. (2021). Integrative Effects of Treated Wastewater and Synthetic Fertilizers on Productivity, Energy Characteristics, and Elements Uptake of Potential Energy Crops in an Arid Agro-Ecosystem. Agronomy, 11(11), 2250. https://doi.org/10.3390/agronomy11112250