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Abstract: Irrigation with low water quality can adversely affect soil characteristics, optimal moisture
for tillage, and crop productivity, particularly in arid and semi-arid regions. We determined the
optimal moisture for tillage processing and the effects of optimal and wet tillage on physical and
chemical soil characteristics and wheat productivity after irrigation with different water qualities
(waste, saline, and highly saline water). We used the Atterberg limit to determine the suitable
moisture content for tillage. Tillage at optimal moisture content improved soil characteristics by
reducing soil salinity, sodicity, bulk density, shear strength, compaction, and increasing hydraulic
conductivity compared to that of wet tillage. It also enhanced growth and productivity of wheat
grown with low quality of water (i.e., fresh and waste water), resulting in higher grain yield and
root weight at different growth stages than that of saline and highly saline water. In conclusion,
tillage at optimal moisture content alleviates the impact of salinity through improving soil physical
and chemical characteristics. Optimum tillage can be applied at 20 and 24 days from the previous
irrigation in saline and highly saline soils, respectively. Irrigation with waste water resulted in a
higher wheat grain yield than saline and highly saline water.

Keywords: optimal tillage; low water quality; soil characteristics; water productivity; wheat

1. Introduction

Salinity and sodicity issues in either irrigation water or soil are considered a threat to the
soil characteristics, microorganisms, agricultural crop productivity and global food security [1,2].
In addition, rapid human population growth with limited water resources is a critical and growing
global issue. In Egypt (Figure 1), saline-sodic soils represent about 30 of the Northern Nile Delta region
[3]. This region also suffers from limited fresh irrigation water, and depends mainly on waste and
drainage water for the irrigation of food and fodder crops. Irrigated land in the Nile Delta of Egypt is
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about 9.8 M ha, and most of the soil in this region is alluvial and characterized by a heavy clay texture.
Salinity and sodicity, due to the irrigation with low water quality and sea water intrusion, are the
factors that cause soil degradation and create a threat to crop production [3].

Efforts to amend degraded soil involve the application of organic and chemical compounds [2,4]
or creation of an appropriate drainage system [5]. Furthermore, the relationship among soil salinity,
irrigation water quality and tillage time has not been examined under such conditions. The negative
effects of soil tillage application at unsuitable soil moisture appear through forming a shallow hardpan
layer in the soil. This layer can deteriorate soil physical properties, limit root growth, and consequently
reduce crop productivity. Identifying the optimal soil moisture for tillage can reduce the consumed
energy [6]. The appropriate soil moisture for optimal tillage can be determined by identifying the
Atterberg limits (ALS). Atterberg limits include three main characteristics, which are the upper plastic
limit (liquid limit, LL), lower plastic limit (plastic limit, PL), and friability index (FI) [7]. Therefore,
ALS should be determined to identify the optimal soil moisture prior to tillage. Moreover, increasing
salinity and sodicity in irrigation water resources, and thus in different soils, can have a direct impact
on ALS and soil characteristics [8]. Consequently, it can affect crop productivity and quality. Thus,
attention should be paid to a suitable assessment for the management of water resources issues [9].

Wheat (Triticum aestivum L.) is a cereal crop that is considered one of the most strategic crops
worldwide [4,10]. Egypt produces about 50% of the total local consumption (20 M t) annually, and it is
considered one of the largest wheat importing countries worldwide [11,12]. Wheat is cultivated on
about 30% of the total irrigated agricultural land in the North Nile Delta of Egypt. The soil in this
region of Egypt suffers from degradation as a result of the high salinity [2].

Therefore, the main objectives of the current research investigation were: (1) to identify suitable
soil moisture for optimal tillage in different soils irrigated with numerous irrigation water qualities,
and (2) to assess the impacts of tillage in optimal and wet moisture on soil physical and chemical
characteristics as well as on wheat growth and productivity.

2. Materials and Methods

2.1. Experimental Design and Field Practices

Two factors were investigated (i.e., water quality and tillage treatments) in a factorial experiment
to study their effect on soil characteristics and productivity of wheat (Triticum aestivum L., cv “Misr 1”)
during two winter growing seasons in the North Nile Delta, Egypt. Four locations (Figure 1) were
selected based on irrigation water quality (i.e., River Nile fresh water, waste water, saline drainage
water, and highly saline drainage water), representing most irrigation water sources in this region.
The second factor, tillage, included two treatments (i.e., wet and optimal tillage). The required soil
moisture of wet and optimal tillage was derived from Figures 2 and 3. Following the preceding crop,
soils were irrigated, and moisture content was determined daily until the required moisture of wet
tillage (LL) and optimal tillage (FI) was obtained (Figure 2; Figure 3). The type of tillage used in all
locations was the conventional tillage, using the moldboard plow (30 cm depth) followed by laser
land leveling. The optimum tillage derived from friability index was performed after 16, 16, 20 and
24 days from the last irrigation for locations irrigated with fresh, waste, saline and highly saline
water respectively.

The experimental plot area was 10 m length× 10 m width (=100 m2). Wheat grains were sown with
a rate of 140 kg ha−1 on 16th November and 18th November during 2016 and 2017 seasons, respectively.
Fertilizers were applied as soil amendment at the rates of 180 kg N ha−1 on two equal doses before first
and second irrigation, 35 kg P2O5 ha−1 during tillage process, and 55 kg K2O ha−1 as one dose directly
before first irrigation. Weeds were controlled using Granstar 75% DF (tribenuron-methyl; 19.2 g ha−1)
at 25 days after sowing (BBCH stage 13) [13], and Topic 15% WP (clodinafop-propargyl; 350 g ha−1) at
45 days after sowing (BBCH stage 30) [13].
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2.2. Study Locations, Soil and Water Properties

The four different water resources were used in four different locations (Figure 1) as follows:
fresh water (source: River Nile) as control; waste water (source: Gharbia main drain); saline water
(source: Nashart drain), and; highly saline water (source: Omoum drain). The physical and chemical
analysis of soil from each location are shown in Table 1. Soil texture was silty clay in the four locations.
The preceding crop in all locations was rice in the first growing season and maize in the second
season. The soil salinity (EC; dS m−1) and sodium adsorption ration (SAR; %) of irrigation water
were: fresh, 0.45 and 3.0; waste, 1.21 and 5.5; saline, 7.50 and 13.2; and highly saline water, 7.80 and
16.5, respectively. In waste water, nitrate-nitrogen, ammonium-nitrogen, phosphate-phosphorus
and potassium were 10.1, 5.0, 2.5 and 2.1 mg/L, respectively. From each location, three replications
were assessed. Interestingly, all locations were restricted to the first climatic zone at high latitudes,
confirming the similarity of weather conditions (Figure 2).

The Atterberg limit (ALS) characteristics were determined in different soils prior to cultivation in
order to identify the suitable moisture content of tillage (friability range) under different soil qualities.
Soil ALS as moisture content is presented in Figure 2, and converted hereafter to time elapsed after
irrigation. After determining ALS for each soil, tillage was performed at two types of moisture content,
i.e., at optimal and wet moisture content, to explore and assess the impacts of both tillage types on
physical and chemical characteristics of soil as well as on crop productivity.
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Figure 1. Map of the studied locations at North Nile Delta of Egypt. Four locations were irrigated from
different water sources. MY= Meet Yazeed (fresh water); GMD = Gharbia Main Drain (waste water);
ND = Nashart Drain (saline water); and OD = Omoum Drain (highly saline water).

Scheduling of irrigation for all plots was applied based on 50% moisture depletion of soil available
water. The applied irrigation water quantity was calculated by compensating soil moisture before
the irrigation up to the field capacity. Leaching requirements (LR), according to [14], were calculated
before the application of the irrigation (particularly ND and OD), as follows:

LR =
ECiw

5(ECe− ECiw)
(1)
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where: ECiW = salinity of water (dS m−1); and ECe = crop tolerance for soil salinity (dS m−1) based on
the measured soil EC.

Applied irrigation was measured and controlled using a cut throat flume (20 × 90 cm) according
to Early [15] using the following equations:

Free f low Q = C × (Ha)
n (2)

where: Q = Discharge in cumecs (1 cumecs = 10 m3); C = flow discharge coefficient = 0.74 for (20 × 90);
n = constant = 1.84; Ha = water head at upper stream gauge.

Submerged f low Q =
C (Ha −Hb)

n

−

(
log10 S

) (3)

where: C = 0.413 for 20 × 90; Hb = water head at downstream gauge; n = 1.482 for CTF of 20 ×
90; S = actual submergence fraction (Hb/Ha); if (Hb/Ha) ≤ 65% = free flow; if (Hb/Ha) ≥ 65% =

sub-mergence flow.

Table 1. Physical and chemical analysis of soil in all studied locations prior to conducting the experiments.
A = Particle size distribution (%); B = Physical soil properties; C = Chemical soil properties.

A

Location Sand Silt Clay Texture

MY 15 32 53 Clay
GMD 17 33 50 Clay
ND 9.0 36 55 Clay
OD 7.0 37 56 Clay

B

Location FC (%) WP (%) AW (%) Bd (mg m−3) HC (cm d−1) SS (N cm−2) PR (N cm−1)

MY 43 22 21 1.12 1.55 0.26 165
GMD 44 22 22 1.25 1.56 0.29 190
ND 40 20 20 1.35 1.29 0.65 205
OD 38 18 20 1.55 1.25 0.78 226

C

Location Available N
(mg kg−1)

Available P
(mg kg−1) Available K (mg kg−1) OM (%) EC (dS m−1) ESP pH

MY 68.5 11.5 255.5 1.5 2.5 12.7 7.8
GMD 75.5 13.3 268.4 1.6 3.6 14.4 8.1
ND 55.7 10.2 245.3 1.4 6.7 22.5 8.0
OD 50.2 9.0 233.8 1.1 7.9 24.8 8.2

EC = soil electrical conductivity; ESP = soil exchangeable percentage; Bd = soil bulk density; HC = saturated
hydraulic conductivity; SS = shear strength; PR = soil penetration resistance; OM = soil organic matter; FC = soil
field capacity; WP = permanent wilting point; AW = soil available water. MY = Meet Yazeed; GMD = Gharbia Main
Drain; ND = Nashart Drain; OD = Omoum Drain.

2.3. Measurements

2.3.1. Soil Physical and Chemical Analysis

Before tillage, soil Atterberg limits (liquid limit, LL; plastic limit, PL, and; friability index, FI)
were determined according to the standard methods of [16] for controling the required moisture of
tillage treatments. The LL was determined by the Casagrande three-point method. Soil samples were
saturated with distilled water, remolded and put in the dish of Casagrande apparatus. The sample was
divided into two parts by a grooving tool. The dish was alternatively raised above the base by a crank
and dropped freely into the base until the two sides of a groove come together. The number of blows
required to do this was recorded. The linear relationship between the water content and the log of the
number of blows was plotted, and the gravimetric water content corresponding to 25.0 blows was
recorded as the LL [16,17]. The PL was determined by measuring the soil moisture content at which
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the soil crumbles, when it was rolled down to a thread of about 3.0 mm in diameter [16,17]. The FI was
calculated as the difference between LL and PL.

Soil samples for different locations prior to sowing and at harvest were collected and analyzed
for chemical analysis (EC and ESP) using standard method described by Cottenie [18], Burt [19],
Nelson [20] (Table 1, Figure 4). Soil physical properties were analyzed using undisturbed soil samples
as described by Garcia [21] and Klute [22]. Soil field capacity (FC) and wilting point (WP) were
measured using pressure membrane apparatus by determining the moisture contents at 0.33 and
15 bars. Saturated hydraulic conductivity (Ks) was determined by a Guelph permeameter apparatus
(Model 2800, Eijkelkamp Company, Goor, Netherlands) as described by Reynolds and Elrick [23] using
the following equation:

K f s = (0.0041)(Y) (R2) − (0.0054)(Y)(R1) (4)

where R1 = the rate of water level change in well (H1) set at 5 cm; R2 = the rate of water level change in
well (H2) set at 10 cm; Y = the reservoir constant, when the inner reservoir in clay soil = 2.14 cm2.

Soil compaction as a function of penetration resistance was determined in the field capacity as
described by Herrick and Jones [24]. Soil shear strength (SS) was also determined in the field using
the van shear test [25] by inserting the van into the soil at a known depth and rotating it manually to
measure the maximum torque (T max). Then, SS was calculated according the following equation:

C =
T max

π
[

dh2
2 + d

6

]
3

(5)

where C = soil shear strength expressed as cohesiveness (N cm−2); d = diameter of the van (cm); h = the
length of van (cm); T max = maximum torque (N.m).

2.3.2. Wheat Yield, Phenology, Water Productivity and Root Weight Density

At maturity, one m2 area from the middle of each experimental plot was harvested and weighed
to obtain the total biomass (biological yield). Then, the grains of the harvested area of wheat plants
were separated through a thresher machine, dried overnight in an oven at 70 ◦C and weighed to
obtain the grain yield. The straw yield was obtained by subtracting the grain yield from biological
yield. Furthermore, phenological development stages such as anthesis (days from sowing to heading,
i.e., from sowing until 50% of spikes emerge completely from the flag sheath) and maturity (days from
sowing until 50% of peduncles turned yellow) were recorded. Water productivity was calculated via
dividing grain yield by the applied irrigation water. Roots were collected at different growth stages
(i.e., tillering, anthesis, and maturity) using collecting soil cores [26] and measuring root characteristics.
The core diameter was 8.0 cm and 10.0 cm in length. Then, the collected soil and roots were soaked in
water and sieved through a 0.25 mm grid. The obtained roots were cleaned, and healthy roots (white or
brown) were separated from dead roots and organic debris [27]. Finally, root weight density (mg roots
cm−3 soil) was calculated according to Li [26].

2.4. Statistical Analysis

Data obtained from the effects of different water resources and tillage methods on wheat and soil
characteristics were subjected to an ANOVA using PASW statistics v. 21.0 (IBM Inc., Chicago, IL, USA).
Standard error of mean (S.E.M.) was obtained from analysis of variance table.

3. Results

3.1. Suitable Moisture of Optimal and Wet Tillage in Soils Irrigated with Different Water Qualities

Soil LL and PL were higher in saline water (ND) and highly saline water (OD) irrigation than that
of soil irrigated with fresh (MY) and waste water (GMD) (Figure 2). The lowest FI was obtained from
soil irrigated with waste water in comparison to other soils (Figure 2). Liquid limit (LL) increased by
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1.0, 4.3, and 10.7%, and PL increased by 3.4, 9.5, and 22.7%, while FI decreased by 1.2, 4.7, and 10.0%
for soils irrigated with waste, saline, and highly saline water, respectively, in comparison to that of the
control (fresh water). This indicates that non-saline and saline sodic soils irrigated with low water
quality could be optimally tilled when soil moisture was between 15.3 and 17.0%. On the other hand,
wet tillage could be achieved when soil moisture ranged from 46.5–51.5% for non-saline and saline
sodic soils irrigated with different low water qualities (Figure 2). As farmers cannot control the suitable
soil moisture of tillage, we converted FI into elapsed days following previous irrigation (Figure 3).
In this case, the suitable time of optimum tillage could be applied at 16, 16, 20, and 24 days after
previous irrigation for soils irrigated with fresh, waste, saline, and highly saline water, respectively
(Figure 3).
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Agronomy 2019, 9, 233 7 of 12 

7 
 

 
Figure 3. Liquid and plastic limits as days elapsed following irrigation for different locations. MY = Meet 
Yazeed (fresh water); GMD = Gharbia Main Drain (waste water); ND = Nashart Drain (saline water); and 
OD = Omoum Drain (highly saline water). 

3.2. Effect of Wet and Optimal Tillage on Soil Chemical and Physical Characteristics Irrigated with Different Water 
Qualities 

Tillage process and irrigation with low water quality resulted in a significant (p ≤ 0.05) influence on 
soil chemical and physical characteristics (Figure 4), representing the importance of tillage at the optimal 
moisture for improving such characteristics compared to that of the wet tillage process. Application of 
irrigation with high salinity and sodicity resulted in an increase in soil electrical conductivity (EC), 
exchangeable sodium percentage (ESP), bulk density (Bd), shear strength (SS), and penetration resistance 
(PR), but with a decrease in soil hydraulic conductivity (HC). However, application of fresh water resulted 
in the highest positive impact on soil properties, followed by the irrigation with waste water. 

Tillage application at the optimal moisture resulted in a significant (p ≤ 0.05) improvement in soil 
physical and chemical characteristics with all irrigation sources in comparison to that of wet tillage 
application (Figure 4). In soil treated with optimal tillage, soil salinity (EC) was reduced by 4.1, 17.1, 13.0, 
and 10.0% when fresh, waste, saline, and high salinity water was applied in comparison to that of the initial 
soil salinity prior to wheat sowing, respectively (Figure 4). Similarly, soil ESP decreased by 1.6, 2.0, 2.2, and 
2.8% when fresh, waste, saline, and high salinity water was applied in comparison to the initial soil salinity 
prior to wheat sowing, respectively. 

Figure 3. Liquid and plastic limits as days elapsed following irrigation for different locations.
MY = Meet Yazeed (fresh water); GMD = Gharbia Main Drain (waste water); ND = Nashart Drain
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3.2. Effect of Wet and Optimal Tillage on Soil Chemical and Physical Characteristics Irrigated with Different
Water Qualities

Tillage process and irrigation with low water quality resulted in a significant (p ≤ 0.05) influence
on soil chemical and physical characteristics (Figure 4), representing the importance of tillage at
the optimal moisture for improving such characteristics compared to that of the wet tillage process.
Application of irrigation with high salinity and sodicity resulted in an increase in soil electrical
conductivity (EC), exchangeable sodium percentage (ESP), bulk density (Bd), shear strength (SS),
and penetration resistance (PR), but with a decrease in soil hydraulic conductivity (HC). However,
application of fresh water resulted in the highest positive impact on soil properties, followed by the
irrigation with waste water.

Tillage application at the optimal moisture resulted in a significant (p ≤ 0.05) improvement in soil
physical and chemical characteristics with all irrigation sources in comparison to that of wet tillage
application (Figure 4). In soil treated with optimal tillage, soil salinity (EC) was reduced by 4.1, 17.1,
13.0, and 10.0% when fresh, waste, saline, and high salinity water was applied in comparison to that of
the initial soil salinity prior to wheat sowing, respectively (Figure 4). Similarly, soil ESP decreased by
1.6, 2.0, 2.2, and 2.8% when fresh, waste, saline, and high salinity water was applied in comparison to
the initial soil salinity prior to wheat sowing, respectively.
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optimal and wet tillage systems. EC = Electrical conductivity; ESP = exchangeable sodium percentage;
Bd = bulk density; HC = hydraulic conductivity; SS = shear strength; PR = penetration resistance;
MY= Meet Yazeed (fresh water); GMD = Gharbia Main Drain (waste water); ND = Nashart Drain
(saline water); and OD = Omoum Drain (highly saline water).
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3.3. Growth and Yield Characteristics of Wheat Irrigated with Different Water Qualities

Tillage at optimal soil moisture content resulted in a significant (p ≤ 0.01) increase in grain yield
ha−1, biological yield ha−1, number of days from sowing to heading and maturity, root weight at
tillering, heading, and maturity stages by 21.0, 21.2, 3.9, 5.7, 15.3, 25.0, and 29.6% in comparison to that
of wet tillage, respectively (Table 2). Moreover, irrigation water applied and water productivity were
higher by 4.5 and 15% with optimal tillage than that of wet tillage, respectively.

The highest grain yield and root weights at different growth stages were obtained when wheat
plants were irrigated with fresh water followed by waste water in comparison to plants irrigated
with saline or highly saline water (Table 2). However, the highest applied irrigation water and the
lowest water productivity were obtained when saline and high saline water were applied (Table 2).
The interaction effects between tillage and water resources factors were not significant (p ≥ 0.05), except
with root weight at maturity.

Table 2. Effect of tillage and different irrigation water sources on wheat yields, phenology, irrigation
water characteristics, and roots weight.

Treatments
Yield (kg ha−1) Days after Sowing Till Applied Irrigation

Water (m3 ha−1)
Water Productivity

(kg m−3)
Roots Weight (mg cm−3) at

Grain Biological Heading Maturity Tillering Heading Maturity

Tillage (T)

Optimal tillage 6983.4 20950.2 99.8 154.1 4139.2 1.70 0.88 1.43 1.22
Wet tillage 5761.7 17285.2 96.0 147.4 3960.4 1.47 0.76 1.15 0.94

S.E.M 77.9 233.8 0.51 0.45 23.3 0.02 0.02 0.02 0.024

Water Sources (WS)

Fresh Water 8121.0 24363.0 103.5 157.0 3789.2 2.14 1.02 1.63 1.30
Waste Water 6975.3 20926.0 100.5 152.3 4008.5 1.73 0.83 1.43 1.17
Saline Water 5920.6 17762.0 96.0 148.1 4130.4 1.42 0.76 1.15 0.99

High SalineWater 4473.3 13420.0 91.6 145.6 4271.1 1.04 0.67 0.95 0.87
S.E.M 110.2 330.7 0.72 0.6 32.9 0.03 0.02 0.038 0.03

ANOVA

T ** ** ** ** ** ** ** ** **
WS ** ** ** ** ** ** ** ** **

T ×WS NS NS NS NS NS NS NS NS *

S.E.M. = Standard error of means; NS, p ≥ 0.05; * p ≤ 0.05; ** p ≤ 0.01. Meet Yazeed (fresh water); Gharbia Main
Drain (waste water); Nashart Drain (saline water); and Omoum Drain (highly saline water).

4. Discussion

Determining the optimum moisture content for tillage is very important for obtaining good tilth
with low energy requirements, particularly in the regions that suffer from limited water resources.
Atterberg limits are very important for soil physics studies, as can specify the suitable moisture content
for tillage process. Moreover, LL and PL could be correlated with other soil engineering characteristics
such as soil compressibility, shrinking, and swelling as well as permeability. Also, salinity and sodicity
of soil and/or low quality of irrigation water can have a negative impacts on Atterberg limits and related
characteristics. High salinity in soil can cause a reduction in Atterberg limits due to the reduction in
the double layer thickness, zeta potential, and water content [28]. In addition, the repulsive forces in
soil microstructure are reduced in response to the reduction of distance among particles as a result
of salinity action [29]. This can cause prevailing Van der Waals attractive force, increasing capillary
stress between particle boundaries and creating aggregation [30]. In contrast, Na+ ion, in the form
of either SAR in irrigation water or ESP in soil, can lead to an increase in ALS due to the dispersion
action of Na+, consequently increasing the double layer thickness. Therefore, LL and PL increased
with increasing soil ESP (Table 1) and water SAR. Moisture content of ALS was converted into days
elapsed after irrigation to facilitate the control of farmers by exposing soil for the intensive irrigation
and determining soil moisture daily. Then, curves expressing the relationship between time (days) and
moisture content were drawn (Figure 3). Thus, moisture content in LL and PL were converted into
time elapsed following irrigation. Our data showed that the longest period where optimal tillage in
soil can be applied was 20 and 24 days after irrigation with saline and highly saline water, respectively,
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compared with soils irrigated with fresh or waste water. At such time, soils are likely to show an
optimal friability when tilled at 17.0, 16.8, 16.2, and 15.3% of moisture content for soil irrigated with
fresh, waste, saline, and high saline water, respectively.

The highest EC, ESP, Bd, SS, and PR, and the lowest HC in soils irrigated with waste water and
saline water may be due to irrigation with low water quality for decades, leading to a high level
of salinity [31,32]. Tillage at optimal moisture content improved soil characteristics in the current
investigation. This can be due to the improvement of soil structure with optimal friability and good
tilth, consequently enhancing the efficiency of leaching and drainage [33]. On the contrary, wet tillage
deteriorated soil properties, as the soil was susceptible to compaction with high moisture content [34],
causing waterlogging and negative efficiency through either leaching or drainage.

Irrigation with low water quality resulted in a reduction in grain yield, phenology characteristics,
and water productivity (Table 2). This could be due to the osmotic potential of salinity in the
soil solution, which can be associated with an equivalent reduction in both nutrient absorbance
and transpiration [35,36]. In addition, salinity and sodicity induced by irrigation water caused
deterioration in soil physical characteristics via increasing the bulk density, compaction, and shear
strength, and decreasing hydraulic conductivity (Figure 4), restricting root weight density (Table 2).
Increased application of irrigation water in soils irrigated with saline- and highly saline water compared
to those irrigated with fresh water could be mainly attributed to the additional water requirements
due to leaching in saline soils. Consequently, water productivity in saline soils was less than that of
non-saline soils due to the increment of irrigation water applied and the reduction in wheat yield.
Tillage at optimal moisture content improved soil physical and chemical characteristics, representing
likely improvements in wheat yield and water productivity under different water resources. Although
irrigation water applied in optimal tillage was higher than that in wet tillage, water productivity was
higher in optimal tillage due to the subsequent increase in the grain yield (Table 2).

The four different locations were varied in the productivity of wheat in terms of grain and
biological yield (Table 2). The highest grain yield ha−1 was obtained from Meet Yazeed and Gharbia
Main Drain, while the lowest grain yield ha−1 was obtained from Nashart Drain and Omoum Drain.
The highest reduction in grain yield that was obtained from Nashart Drain and Omoum Drain could
be due to the highest EC and ESP of soil and water. In addition, it can be due to the lowest N and
P availability of water and soil in these locations compared with the other two locations (Table 1).
High salinity level in soil can interfere with biological uptake of the essential nutrients and water uptake,
consequently it can disturb the physiological functions needed for plant growth and productivity [1].

5. Conclusion

The optimal moisture for suitable and optimal tillage was found to be between 15–17% for the
soils that were irrigated with fresh, waste, saline, and highly saline water. Application of tillage at these
soil moisture levels improved physical and chemical soil characteristics, wheat grain yield and water
productivity. Meanwhile, tillage in wet moisture content increased soil compaction and deteriorated
soil properties causing degradation and crop failure. Irrigation of wheat with waste water resulted in
higher grain yield than that obtained from plants irrigated with saline or high saline water. However,
further research is required to check the concentration of micro-elements in grain wheat as a result of
irrigation with waste water.
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