Short-Term Decomposition and Nutrient-Supplying Ability of Sewage Sludge Digestate, Digestate Compost, and Vermicompost on Acidic Sandy and Calcareous Loamy Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Chemical Analysis
2.3. Data Processing and Statistical Analyses
3. Results
3.1. Properties of the Organic Amendments
3.2. Soil Properties
3.2.1. Changes in the pH and Organic Carbon Content of the Soils
3.2.2. Macroelements (N, P, and K) in Soils
3.3. Plant Biomass and Agronomic Efficiency of Organic Amendments
4. Discussion
4.1. Amendment Properties
4.2. Organic Carbon Content
4.3. Nutrient Content
4.4. Plant Biomass and Agronomic Efficiency
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Świerczek, L.; Cieślik, B.M.; Konieczka, P. The potential of raw sewage sludge in construction industry—A review. J. Clean. Prod. 2018, 200, 342–356. [Google Scholar] [CrossRef]
- Teoh, S.K.; Li, L.Y. Feasibility of alternative sewage sludge treatment methods from a lifecycle assessment (LCA) perspective. J. Clean. Prod. 2020, 247, 119495. [Google Scholar] [CrossRef]
- Zaharioiu, A.; Bucura, F.; Ionete, E.I.; Ionete, R.E.; Ebrasu, D.; Sandru, C.; Marin, F.; Oancea, S.; Niculescu, V.; Miricioiu, M.G.; et al. Thermochemical decomposition of sewage sludge—An eco-friendly solution for a sustainable energy future by using wastes. Rev. Chim. 2020, 71, 171–181. [Google Scholar] [CrossRef]
- Miricioiu, M.G.; Zaharioiu, A.; Oancea, S.; Bucura, F.; Raboaca, M.S.; Filote, C.; Ionete, R.E.; Niculescu, V.C.; Constantinescu, M. Sewage sludge derived materials for CO2 adsorption. Appl. Sci. 2021, 11, 7139. [Google Scholar] [CrossRef]
- Elsalam, H.E.A.; El- Sharnouby, M.E.; Mohamed, A.E.; Raafat, B.M.; El-Gamal, E.H. Effect of Sewage Sludge Compost Usage on Corn and Faba Bean Growth, Carbon and Nitrogen Forms in Plants and Soil. Agronomy 2021, 11, 628. [Google Scholar] [CrossRef]
- Singh, R.P.; Agrawal, M. Potential benefits and risks of land application of sewage sludge. Waste Manag. 2008, 28, 347–358. [Google Scholar] [CrossRef] [PubMed]
- Seleiman, M.F.; Santanen, A.; Mäkelä, P.S. Recycling sludge on cropland as fertilizer–Advantages and risks. Resour. Conserv. Recycl. 2020, 155, 104647. [Google Scholar] [CrossRef]
- Urra, J.; Alkorta, I.; Garbisu, C. Potential Benefits and Risks for Soil Health Derived From the Use of Organic Amendments in Agriculture. Agronomy 2019, 9, 542. [Google Scholar] [CrossRef] [Green Version]
- Ajwa, H.A.; Tabatabai, M.A. Decomposition of different organic materials in soils. Biol. Fert. Soils 1994, 18, 175–182. [Google Scholar] [CrossRef]
- Bernal, M.P.; Navarro, A.F.; Sanchez-Monedero, M.A.; Roig, A.; Cegarra, J. Influence of sewage sludge compost stability and maturity on carbon and nitrogen mineralization in soil. Soil Biol. Biochem. 1998, 30, 305–313. [Google Scholar] [CrossRef]
- Lim, S.L.; Lee, L.H.; Wu, T.Y. Sustainability of using composting and vermicomposting technologies for organic solid waste biotransformation: Recent overview, greenhouse gases emissions and economic analysis. J. Clean. Prod. 2016, 111, 262–278. [Google Scholar] [CrossRef]
- Song, U.; Lee, E.J. Environmental and economical assessment of sewage sludge compost application on soil and plants in a landfill. Resour. Conserv. Recycl. 2010, 54, 1109–1116. [Google Scholar] [CrossRef]
- Garg, P.; Gupta, A.; Satya, S. Vermicomposting of different types of waste using Eisenia foetida: A comparative study. Bioresour. Technol. 2006, 97, 391–395. [Google Scholar] [CrossRef] [PubMed]
- Ngo, P.T.; Rumpel, C.; Dignac, M.F.; Billou, D.; Duc, T.T.; Jouquet, P. Transformation of buffalo manure by composting or vermicomposting to rehabilitate degraded tropical soils. Ecol. Eng. 2011, 37, 269–276. [Google Scholar] [CrossRef]
- Fornes, F.; Mendoza-Hernández, D.; García-de-la-Fuente, R.; Abad, M.; Belda, R.M. Composting versus vermicomposting: A comparative study of organic matter evolution through straight and combined processes. Bioresour. Technol. 2012, 118, 296–305. [Google Scholar] [CrossRef] [PubMed]
- Ngo, P.T.; Rumpel, C.; Doan, T.T.; Jouquet, P. The effect of earthworms on carbon storage and soil organic matter composition in tropical soil amended with compost and vermicompost. Soil Biol. Biochem. 2012, 50, 214–220. [Google Scholar] [CrossRef]
- Doan, T.T.; Ngo, P.T.; Rumpel, C.; Nguyen, B.V.; Jouquet, P. Interactions between compost, vermicompost and earthworms influence plant growth and yield: A one-year greenhouse experiment. Sci. Hortic. 2013, 160, 148–154. [Google Scholar] [CrossRef]
- Ievinsh, G.; Andersone-Ozola, U.; Zeipiņa, S. Comparison of the effects of compost and vermicompost soil amendments in organic production of four herb species. Biol. Agric. Hortic. 2020, 36, 267–282. [Google Scholar] [CrossRef]
- Kalantari, S.; Ardalan, M.M.; Alikhani, H.A.; Shorafa, M. Comparison of compost and vermicompost of yard leaf manure and inorganic fertilizer on yield of corn. Commun. Soil Sci. Plant Anal. 2010, 42, 123–131. [Google Scholar] [CrossRef]
- Yagi, R.; Ferreira, M.E.; Cruz, M.C.P.D.; Barbosa, J.C. Organic matter fractions and soil fertility under the influence of liming, vermicompost and cattle manure. Sci. Agric. 2003, 60, 549–557. [Google Scholar] [CrossRef]
- Belda, R.M.; Mendoza-Hernández, D.; Fornes, F. Nutrient-rich compost versus nutrient-poor vermicompost as growth media for ornamental-plant production. J. Plant Nutr. Soil Sci. 2013, 176, 827–835. [Google Scholar] [CrossRef]
- Tognetti, C.; Laos, F.; Mazzarino, M.J.; Hernández, M.T. Composting vs. vermicomposting: A comparison of end product quality. Compost Sci. Util. 2005, 13, 6–13. [Google Scholar] [CrossRef]
- ISO 10390:2005 Soil Quality–Determination of pH; International Organization for Standardization: Geneva, Switzerland, 2005.
- MSZ-08-0452:1980 Use of High-Capacity Analyser Systems for Soils Analyses. Quantitative Determination of the Organic Carbon Content of the Soil on Contiflo Analyzer System; Hungarian Standard Association: Budapest, Hungary, 1980. (In Hungarian) [Google Scholar]
- ISO 11261:1995. Soil Quality—Determination of Total Nitrogen—Modified Kjeldahl Method; International Organization for Standardization: Geneva, Switzerland, 1995.
- MSZ EN ISO 5983-2:2009 Animal Feeding Stuffs. Determination of Nitrogen Content and Calculation of Crude Protein Content. Part 2: Block Digestion and Steam Distillation Method; Hungarian Standard Association: Budapest, Hungary, 2009. (In Hungarian)
- MSZ 20135:1999. Determination of the Soluble Nutrient Element Content of the Soil; Hungarian Standard Association: Budapest, Hungary, 1999. (In Hungarian)
- MSZ 21470-50:2006. Environmental Testing of Soils. Determination of Total and Soluble Toxic Element, Heavy Metal and Chromium (VI) Content; Hungarian Standard Association: Budapest, Hungary, 2006. (In Hungarian)
- Torri, S.; Alvarez, R.; Lavado, R. Mineralization of carbon from sewage sludge in three soils of the Argentine Pampas. Commun. Soil Sci. Plant Anal. 2003, 34, 2035–2043. [Google Scholar] [CrossRef]
- Agegnehu, G.; Nelson, P.N.; Bird, M.I. The effects of biochar, compost and their mixture and nitrogen fertilizer on yield and nitrogen use efficiency of barley grown on a Nitisol in the highlands of Ethiopia. Sci. Total Environ. 2016, 569–570, 869–879. [Google Scholar] [CrossRef]
- Doublet, J.; Francou, C.; Poitrenaud, M.; Houot, S. Influence of bulking agents on organic matter evolution during sewage sludge composting; consequences on compost organic matter stability and N availability. Bioresour. Technol. 2011, 102, 1298–1307. [Google Scholar] [CrossRef] [PubMed]
- Lv, B.; Zhang, D.; Cui, Y.; Yin, F. Effects of C/N ratio and earthworms on greenhouse gas emissions during vermicomposting of sewage sludge. Bioresour. Technol. 2018, 268, 408–414. [Google Scholar] [CrossRef]
- Gupta, R.; Garg, V.K. Stabilization of primary sewage sludge during vermicomposting. J. Hazard. Mater. 2008, 153, 1023–1030. [Google Scholar] [CrossRef]
- Rékási, M.; Mazsu, N.; Draskovits, E.; Bernhardt, B.; Szabó, A.; Rivier, P.A.; Farkas, C.; Borsányi, B.; Pirkó, B.; Molnár, S.; et al. Comparing the agrochemical properties of compost and vermicomposts produced from municipal sewage sludge digestate. Bioresour. Technol. 2019, 291, 121861. [Google Scholar] [CrossRef]
- Qiu, S.; McComb, A.J.; Bell, R.W. Ratios of C, N and P in soil water direct microbial immobilisation–mineralisation and N availability in nutrient amended sandy soils in southwestern Australia. Agric. Ecosyst. Environ. 2008, 127, 93–99. [Google Scholar] [CrossRef]
- Correa, R.S.; White, R.E.; Weatherley, A.J. Effect of compost treatment of sewage sludge on nitrogen behavior in two soils. Waste Manag. 2006, 26, 614–619. [Google Scholar] [CrossRef] [PubMed]
- Merckx, R.; den Hartog, A.; van Veen, J.A. Turnover of root derived material and related microbial biomass formation in soils of different texture. Soil Biol. Biochem. 1985, 17, 565–569. [Google Scholar] [CrossRef]
- Scott, N.A.; Cole, C.V.; Elliott, E.T.; Huffman, S.A. Soil Textural Control on Decomposition and Soil Organic Matter Dynamics. Soil Sci. Soc. Am. J. 1996, 60, 1102–1109. [Google Scholar] [CrossRef]
- Hamdi, H.; Hechmi, S.; Khelil, M.N.; Zoghlami, I.R.; Benzarti, S.; Mokni-Tlili, S.; Hassen, A.; Jedidi, N. Repetitive land application of urban sewage sludge: Effect of amendment rates and soil texture on fertility and degradation parameters. CATENA 2019, 172, 11–20. [Google Scholar] [CrossRef]
- Carabassa, V.; Ortiz, O.; Alcañiz, J.M. Sewage sludge as an organic amendment for quarry restoration: Effects on soil and vegetation. Land Degrad. Dev. 2018, 29, 2568–2574. [Google Scholar] [CrossRef]
- Huang, C.C.; Chen, Z.S. Carbon and nitrogen mineralization of sewage sludge compost in soils with a different initial pH. Soil Sci. Plant Nutr. 2009, 55, 715–724. [Google Scholar] [CrossRef]
- Khalil, M.I.; Hossain, M.B.; Schmidhalter, U.S. Carbon and nitrogen mineralization in different upland soils of the subtropics treated with organic materials. Soil Biol. Biochem. 2005, 37, 1507–1518. [Google Scholar] [CrossRef]
- Nugroho, S.G.; Kuwatsuka, S. Concurrent observation of several processes of nitrogen metabolism in soil amended with organic materials. Soil Sci. Plant Nutr. 1990, 36, 215–224. [Google Scholar] [CrossRef]
- Szili-Kovács, T.; Zsuposné Oláh, Á.; Kátai, J.; Villányi, I.; Takács, T. Talajbiológiai és talajkémiai változók közötti összefüggések néhány tartamkísérlet talajában. Agrok. Talajt. 2009, 58, 309–324. [Google Scholar] [CrossRef]
- Pietri, J.A.; Brookes, P.C. Nitrogen mineralisation along a pH gradient of a silty loam UK soil. Soil Biol. Biochem. 2008, 40, 797–802. [Google Scholar] [CrossRef]
- Amlinger, I.; Götz, B.; Dreher, P.; Geszti, J.; Weissteiner, C. Nitrogen in biowaste and yard waste compost: Dynamics of mobilisation and availability—a review. Eur. J. Soil Biol. 2003, 39, 107–116. [Google Scholar] [CrossRef]
- Pedra, F.; Polo, A.; Ribeiro, A.; Domingues, H. Effects of municipal solid waste compost and sewage sludge on mineralization of soil organic matter. Soil Biol. Biochem. 2007, 39, 1375–1382. [Google Scholar] [CrossRef]
- Liu, X.-J.A.; van Groenigen, K.J.; Dijkstra, P.; Hungate, B.A. Increased plant uptake of native soil nitrogen following fertilizer addition—Not a priming effect? Appl. Soil Ecol. 2017, 114, 105–110. [Google Scholar] [CrossRef]
- Bai, Y.C.; Gu, C.H.; Tao, T.Y.; Wang, L.; Feng, K.; Shan, Y.H. Growth characteristics, nutrient uptake, and metal accumulation of ryegrass (Lolium perenne L.) in sludge-amended mudflats. Acta Agric. Scand. 2013, 63, 352–359. [Google Scholar]
- Kuzyakov, Y. Priming effects: Interactions between living and dead organic matter. Soil Biol. Biochem. 2010, 42, 1363–1371. [Google Scholar] [CrossRef]
- Penn, C.J.; Camberato, J.J. A critical review on soil chemical processes that control how soil pH affects phosphorus availability to plants. Agriculture 2019, 9, 120. [Google Scholar] [CrossRef] [Green Version]
- Kahiluoto, H.; Kuisma, M.; Ketoja, E.; Salo, T.; Heikkinen, J. Phosphorus in manure and sewage sludge more recyclable than in soluble inorganic fertilizer. Environ. Sci. Technol. 2015, 49, 2115–2122. [Google Scholar] [CrossRef] [Green Version]
- Sims, J.T.; Pierzynski, G.M. Chemistry of phosphorus in soils. In Chemical Processes in Soils, 1st ed.; Tabatabai, M.A., Sparks, D.L., Eds.; Soil Science Society of America Inc.: Madison, WI, USA, 2005; Volume 8, pp. 151–186. [Google Scholar]
- Nieves-Cordones, M.; Al Shiblawi, F.R.; Sentenac, H. Roles and transport of sodium and potassium in plants. In The Alkali Metal Ions: Their Role for Life; Sigel, A., Sigel, H., Sigel, R., Eds.; Springer: Cham, Switzerland, 2016; pp. 291–324. [Google Scholar]
- Timmermann, F.; Kluge, R.; Bolduan, R.; Mokry, M.; Janning, S.; Grosskopf, W.; Schreiber, A.; Ziegler, W.; Koscielniak, N. Nachhaltige Kompostverwertung in der Landwirtschaft. In Praxisbzogene Anwendungsrichtlinien sowie Vermarktungskonzepte für den nachhaltigen Einsatz von gütegesicherten Komposten imlandwirtschaftlichen Pflanzenbau; DBU Abschlussbericht zum Verbundforschungsprojekt Hrsg: Leonberg, Germany, 2003. [Google Scholar]
- Cheng, H.; Xu, W.; Liu, J.; Zhao, Q.; He, Y.; Chen, G. Application of composted sewage sludge (CSS) as a soil amendment for turfgrass growth. Ecol. Eng. 2007, 29, 96–104. [Google Scholar] [CrossRef]
- Limon-Ortega, A.; Sayre, K.D.; Francis, C.A. Wheat nitrogen use efficiency in a bed planting system in Northwest Mexico. Agron. J. 2000, 92, 303–308. [Google Scholar] [CrossRef]
- Koós, S.; Pirkó, B.; Szatmári, G.; Csathó, P.; Magyar, M.; Szabó, J.; Fodor, N.; Pásztor, L.; Laborczi, A.; Pokovai, K.; et al. Influence of the Shortening of the Winter Fertilization Prohibition Period in Hungary Assessed by Spatial Crop Simulation Analysis. Sustainability 2021, 13, 417. [Google Scholar] [CrossRef]
- Cookson, W.R.; Rowarth, J.S.; Cameron, K.C. The response of a perennial ryegrass (Lolium perenne L.) seed crop to nitrogen fertilizer application in the absence of moisture stress. Grass Forage Sci. 2000, 55, 314–325. [Google Scholar] [CrossRef]
Parameter | Acidic Sand | Calcareous Loam | DS | COM | VC | |
---|---|---|---|---|---|---|
pH | 5.18 | 8.14 | 6.84 | 7.01 | 6.77 | |
OC | % | 0.32 | 1.65 | 25 | 19.1 | 21.9 |
Total N | % | 0.04 | 0.2 | 3.72 | 2.19 | 3.13 |
C/N | 8 | 8.25 | 6.72 | 8.72 | 7.00 | |
NH4-N | mg/kg | 1.92 | 3 | 2216 | 1919 | 202 |
NO3-N | mg/kg | 0.59 | 2.21 | 24.7 | 121 | 127 |
Total P | mg/kg | 233 | 829 | 20,606 | 11,582 | 24,139 |
Total K | mg/kg | 1109 | 5466 | 1294 | 4906 | 1719 |
Total Ca | mg/kg | 595 | 29,711 | 49,372 | 45,536 | 56,587 |
Total Mg | mg/kg | 974 | 9634 | 5536 | 6387 | 6155 |
Sand % (<0.05 mm) | % | 85 | 17 | - | - | - |
Silt % (0.05–0.002 mm) | % | 10 | 60 | - | - | - |
Clay % (>0.002 mm) | % | 5 | 23 | - | - | - |
Dry matter * | % | - | - | 22.7 | 65.5 | 34.8 |
Treatment | OC | N | NH4-N | NO3-N | P | K | Ca | Mg |
---|---|---|---|---|---|---|---|---|
DS 1% | 567 | 84 | 5.0 | 0.056 | 47 | 2.94 | 112 | 12.6 |
DS 3% | 1700 | 253 | 15.1 | 0.168 | 140 | 8.81 | 336 | 37.7 |
COM 1% | 1252 | 144 | 12.6 | 0.790 | 76 | 32.13 | 298 | 41.8 |
COM 3% | 3755 | 431 | 37.7 | 2.369 | 228 | 96.40 | 895 | 125.5 |
VC 1% | 762 | 109 | 0.7 | 0.441 | 84 | 5.98 | 197 | 21.4 |
VC 3% | 2287 | 327 | 2.1 | 1.323 | 252 | 17.95 | 591 | 64.3 |
Soils | DS | COM | VC |
---|---|---|---|
Acidic sand | 49 ± 18 aA | 81 ± 27 aA | 24 ± 35 aA |
Calcareous loam | 22 ± 44 aA | 88 ± 67 aA | 86 ± 33 aA |
Mean | 35 ± 34 | 85 ± 46 | 55 ± 46 |
Total N | Inorganic N | Total P | Plant-Available P | Total K | Plant-Available K | |
---|---|---|---|---|---|---|
Biomass on acidic sand | 0.491 * | 0.907 *** | 0.813 *** | 0.777 ** | NS | NS |
Biomass on calcareous loam | 0.587 ** | 0.533 * | NS | NS | NS | NS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uzinger, N.; Szécsy, O.; Szűcs-Vásárhelyi, N.; Padra, I.; Sándor, D.B.; Lončarić, Z.; Draskovits, E.; Rékási, M. Short-Term Decomposition and Nutrient-Supplying Ability of Sewage Sludge Digestate, Digestate Compost, and Vermicompost on Acidic Sandy and Calcareous Loamy Soils. Agronomy 2021, 11, 2249. https://doi.org/10.3390/agronomy11112249
Uzinger N, Szécsy O, Szűcs-Vásárhelyi N, Padra I, Sándor DB, Lončarić Z, Draskovits E, Rékási M. Short-Term Decomposition and Nutrient-Supplying Ability of Sewage Sludge Digestate, Digestate Compost, and Vermicompost on Acidic Sandy and Calcareous Loamy Soils. Agronomy. 2021; 11(11):2249. https://doi.org/10.3390/agronomy11112249
Chicago/Turabian StyleUzinger, Nikolett, Orsolya Szécsy, Nóra Szűcs-Vásárhelyi, István Padra, Dániel Benjámin Sándor, Zdenko Lončarić, Eszter Draskovits, and Márk Rékási. 2021. "Short-Term Decomposition and Nutrient-Supplying Ability of Sewage Sludge Digestate, Digestate Compost, and Vermicompost on Acidic Sandy and Calcareous Loamy Soils" Agronomy 11, no. 11: 2249. https://doi.org/10.3390/agronomy11112249
APA StyleUzinger, N., Szécsy, O., Szűcs-Vásárhelyi, N., Padra, I., Sándor, D. B., Lončarić, Z., Draskovits, E., & Rékási, M. (2021). Short-Term Decomposition and Nutrient-Supplying Ability of Sewage Sludge Digestate, Digestate Compost, and Vermicompost on Acidic Sandy and Calcareous Loamy Soils. Agronomy, 11(11), 2249. https://doi.org/10.3390/agronomy11112249