Fertilization with Municipal Wastewater Phosphorus Adsorbed to Alginate Beads: Results from a Pot Experiment with Italian Ryegrass
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of AFP
2.2. Plant Cultivation
2.3. Soil and Plant Material Sampling
2.4. Analytical Procedure
2.5. Statistical Analysis
3. Results
3.1. Grass Yields
3.2. Grass Chemical Properties
3.3. Impacts on Soil Chemical Properties
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sapek, A. Phosphorus in the human food chain and the Polish environment. Inż. Ekol. 2009, 21, 62–72. [Google Scholar]
- Cordell, D.; Drangert, J.O.; White, S. The story of phosphorus: Global food security and food for thought. Glob. Environ. Chang. 2009, 19, 292–305. [Google Scholar] [CrossRef]
- Dawson, C.J.; Hilton, J. Fertiliser availability in a resource-limited world: Production and recycling of nitrogen and phosphorus. Food Policy 2011, 36, 14–22. [Google Scholar] [CrossRef]
- De Boer, M.D.; Wolzak, L.A.; Slootweg, J. Phosphorus: Reserves, production, and applications. In Phosphorus Recovery Recycled; Springer: Singapore, 2019; pp. 75–100, ISBN 978-981108031-9, ISBN 978-981108030-2. [Google Scholar] [CrossRef]
- Kok, D.J.D.; Pande, S.; Lier, J.B.V.; Ortigara, A.R. Global phosphorus recovery from wastewater for agricultural reuse. Hydrol. Earth Syst. Sci. 2018, 22, 5781–5799. [Google Scholar] [CrossRef] [Green Version]
- Smil, V. Phosphorus in the environment: Natural Flows and Human Interferences. Annu. Rev. Energy Environ. 2000, 25, 53–88. [Google Scholar] [CrossRef] [Green Version]
- Filippelli, G.M. The global phosphorus cycle: Past, Present, and Future. Elements 2008, 4, 89–95. [Google Scholar] [CrossRef]
- Bashan, L.; Bashan, Y. Recent advances in removing phosphorus from wastewater and its future use as fertilizer (1997–2003). Water Res. 2004, 38, 4222–4246. [Google Scholar] [CrossRef] [PubMed]
- Egleab, L.; Rechbergerab, H.; Krampea, J.; Zessnerab, M. Phosphorus recovery from municipal wastewater: An integrated comparative technological environmental and economic assessment of P recovery technologies. Sci. Total Environ. 2016, 571, 522–542. [Google Scholar] [CrossRef] [Green Version]
- Iticescua, C.; Georgescu, L.; Murariu, G.; Circiumaru, A.; Timofti, M. The Characteristics of Sewage Sludge Used on Agricultural Lands. In Recent Advances on Environment, Chemical Engineering and Materials, Proceedings of the AIP Conference Proceedings, Sliema, Malta, 22–24 June 2018; American Institute of Physics: College Park, MD, USA, 2018; pp. 020001-1–020001-8. [Google Scholar] [CrossRef]
- Vanlauwe, B.; Giller, K.E. Popular myths around soil fertility management in sub-Saharan Africa. Agric. Ecosyst. Environ. 2006, 116, 34–46. [Google Scholar] [CrossRef]
- Singh, R.P.; Agrawal, M. Potential benefits and risks of land application of sewage sludge. Waste Manag. 2008, 28, 347–358. [Google Scholar] [CrossRef]
- Hwang, H.J.; Choi, E. Nutrient control with other sludges in anaerobic digestions of BPR sludge. Water Sci. Technol. 1998, 38, 295–302. [Google Scholar] [CrossRef]
- Stávkováa, J.; Maroušek, J. Novel sorbent shows promising financial results on P recovery from sludge water. Chemosphere 2021, 276, 130097. [Google Scholar] [CrossRef] [PubMed]
- Chirag, M.; Mehta, W.; Wendell, O.; Khunjar, V. Technologies to Recover Nutrients from Waste Streams: A Critical Review. Crit. Rev. Envi. Sci. Tec. 2015, 45, 385–427. [Google Scholar] [CrossRef] [Green Version]
- Sengupta, S.; Pandit, A. Selective removal of phosphorus from wastewater combined with its recovery as a solid-phase fertilizer. Water Res. 2011, 45, 3318–3330. [Google Scholar] [CrossRef] [PubMed]
- Cornel, P.; Schaum, C. Phosphorus recovery from wastewater: Needs technologies and costs. Water Sci. Technol. 2009, 59, 1069–1076. [Google Scholar] [CrossRef] [PubMed]
- Sengupta, S.; Nawaz, T.; Beaudry, J. Nitrogen and Phosphorus Recovery from Wastewater. Curr. Pollut. Rep. 2015, 1, 155–166. [Google Scholar] [CrossRef] [Green Version]
- Berg, U.; Donnert, D.; Weidler, P.; Kaschka, E.; Knoll, G.; Nuesch, R. Phosphorus removal and recovery from wastewater by tobermorite-seeded crystallization of calcium phosphate. Water. Sci. Technol. 2006, 53, 131–138. [Google Scholar] [CrossRef] [Green Version]
- Okano, K.; Uemoto, M.; Kagami, J.; Miura, K.; Aketo, T.M.; Toda, M.; Honda, K.; Ohtake, H. Novel technique for phosphorus recovery from aqueous solutions using amorphous calcium silicate hydrates (A-CSHs). Water Res. 2013, 47, 2251–2259. [Google Scholar] [CrossRef]
- Siwek, H.; Bartkowiak, A.; Włodarczyk, M.; Sobecka, K. Removal of Phosphate from Aqueous Solution Using Alginate/Iron (III) Chloride Capsules: A Laboratory Study. Water. Air. Soil. Pollut. 2016, 227, 427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomadoni, B.; Salcedo, M.F.; Mansilla, A.Y.; Casalongué, C.A.; Alvarez, V.A. Macroporous alginate-based hydrogels to control soil substrate moisture: Effect on lettuce plants under drought stress. Eur. Polym. J. 2020, 137, 109–953. [Google Scholar] [CrossRef]
- Hassan, A.; El-Rehim, A. Characterization and possible agricultural application of polyacrylamide/sodium alginate crosslinked hydrogels prepared by ionizing radiation. J. Appl. Polym. Sci. 2006, 101, 3572–3580. [Google Scholar] [CrossRef]
- Asfia, S.; Ali, A.; Sadiq, Y.; Jaleel, H.; Ahmad, B.; Naeem, M.; Masroor, A.; Khan, A. Unraveling the Cumulative Effect of Soil-Applied Radiation-Processed Sodium Alginate and Polyacrylamide on Growth Attributes. Physiological Activities. and Alkaloids Production in Periwinkle [Catharanthus roseus (L.) G. Don]. In Catharanthus roseus; Springer: Cham, Switzerland, 2017; pp. 365–381. [Google Scholar] [CrossRef]
- Raineesh, S.; Bajpai, J.; Bajpai, A.K.; Acharya, S. Designing slow water-releasing alginate nanoreserviors for sustained irrigation in scanty rainfall areas. Carbohydr. Polym. 2014, 102, 513–520. [Google Scholar]
- Sreeram, K.J.; Shrivastava, H.Y.; Nair, B.U. Studies on the nature of interaction of iron (III) with alginates. Biochim. Et Biophys. Acta (BBA)-Gen. Subj. 2004, 1670, 121–125. [Google Scholar] [CrossRef] [PubMed]
- Hering, J.G.; Min, H.J. Arsenate sorption by Fe(III)-doped alginate gels. Water Res. 1998, 32, 1544–1552. [Google Scholar]
- Lv, X.; Jiang, G.; Xue, X.; Xu, X. Fe0 Fe3O4 nanocomposites embedded polyvinyl alcohol/sodium alginate beads for chromium (VI) removal. J. Hazard. Mater. 2013, 262, 748–758. [Google Scholar] [CrossRef]
- Yeon, K.H.; Park, H.; Lee, S.H.; Park, Y.M.; Lee, S.H.; Iwamoto, M. Zirconium mesostructure immobilized in calcium alginate for phosphate removel. Korean J. Chem. Eng. 2008, 25, 1040–1046. [Google Scholar] [CrossRef]
- Jiang, X.; An, Q.; Xiao, Z.-Y.; Zhai, S.-R.; Shi, Z. Versatile core/shell-like alginate@polyethylenimine composites for efficient removal of multiple heavy metal ions (Pb2+. Cu2+. CrO42−): Batch and fixed-bed studies. Mater. Res. Bull. 2019, 118, 110526. [Google Scholar] [CrossRef]
- Wang, B.; Wan, Y.; Zheng, Y.; Lee, X.; Liu, T.; Yu, Z.; Huang, J.; Ok, Y.S.; Chen, J.; Gao, B. Alginate-based composites for environmental applications: A critical review. Crit. Rev. Environ. Sci. Technol. 2018, 49, 318–356. [Google Scholar] [CrossRef]
- Siwek, H.; Pawelec, K. Competitive Interaction of Phosphate with Selected Toxic Metals Ions in the Adsorption from Effluent of Sewage Sludge by Iron/Alginate Beads. Water. Res. 2020, 25, 3962. [Google Scholar] [CrossRef] [PubMed]
- Malinowska, E.; Kalembasa, S. Wpływ dawek osadu ściekowego oraz wapnowania na zawartość Li, Ti, Ba, Sr I As w roślinach testowych. Inżynieria Ekol. 2011, 27, 110–119. [Google Scholar]
- Gorlach, E.; Curyło, T. Zmiany składu mineralnego runi łąkowej w warunkach wieloletniego zróżnicowanego nawożenia mineralnego. Rocz. Glebozn. 1985, XXXVI, 85–99. [Google Scholar]
- Janicki, W.; Brzóstowicz, A. Wpływ zwiększonego stężenia CO2 na wzrost siewek zbóż ozimych. Inż. Roln. 2005, 3, 211–216. [Google Scholar]
- Gibczyńska, M.; Hury, G.; Romanowski, M.; Brzostowska-Żelechowska, D.; Tarasewicz, D. Zmiany zawartości żelaza I manganu w podkładach wykonanych z osadów ściekowych, słomy pszennej I popiołów fliudalnych z węgla kamiennego w połączeniu z efektywnymi mikroorganizmami (EM-1) oraz w uprawianej na nich trawie Festulolium Braunii odmiany Felopa. Folia Pomer. In Folia Pomeranae Universitatis Technologiae Stetinensis Agricultura Alimentaria Piscaria et Zootechnica; Wydawnictwo Uczelniane Zachodniopomorskiego Uniwersytetu Technologicznego w Szczecinie: Szczecin, Poland, 2011; Volume 283, pp. 15–24. [Google Scholar]
- Mółka, J.; łapczynska-Kordon, B. Właściwości energetyczne wybranych gatunków biomasy. Inż. Roln. 2011, 6, 141–147. [Google Scholar]
- Gondek, K.; Filipek-Mazur, B. Ocena efektywności nawożenia osadami ściekowymi ma podstawie plonowania roślin i wykorzystania składników pokarmowych. Acta Sci. Pol. Form. Circumiectus 2006, 5, 39–50. [Google Scholar]
- Mudlaff, K.; Staniszewska, K.; Ordon, L. Analysis of salinity. pH and catalase activity in soil Ojcowski National Park in conditions of diversified tourism. Analit 2016, 1, 32–41. [Google Scholar]
- Ostrowska, A.; Gawliński, S.; Szczubiałka, Z. Metody Analizy i Oceny Właściwości Gleb i Roślin; Instytut Ochrony Środowiska: Warszawa, Poland, 1991; pp. 231–232. [Google Scholar]
- Dobrzański, B.; Uziak, S. Rozpoznawanie I Analiza Gleb. (Recognition and Analysis of Soil); Polish Scientific Publishers PWN: Warszawa, Poland, 1972. [Google Scholar]
- Forero, R.G. Standard Operating Procedure for Soil Available Phosphorus Mehlich I Method; Food Organization of the United Nations: Rome, Italy, 2021; pp. 1–17. [Google Scholar]
- Cao, N.; Chen, X.; Cui, Z.; Zhang, F. Change in soil available phosphorus in relationto the phosphorus budget in China. Nutr. Cycl. Agroecosyst. 2012, 94, 161–170. [Google Scholar] [CrossRef]
- Bezak-Mazur, E.; Stoińska, R. The importance of phosphorus in the environment—Review article. Arch. Waste Manag. Environ. Prot. 2013, 15, 33–42. [Google Scholar]
- Polski Komitet Normalizacyjny. Chemical and Agricultural Analysis of Soil Determination of Available Iron Content; PN-R-04021:1994; Polski Komitet Normalizacyjny: Warszawa, Poland, 1994. [Google Scholar]
- Darch, T.; Dunn, R.M.; Guy, A.; Hawkins, J.M.B.; Ash, M.; Frimpong, K.A.; Blackwell, M.S.A. Fertilizer produced from abattoir waste can contribute to phosphorus sustainability, and biofortify crops with minerals. PLoS ONE 2019, 14, e0221647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wyłupek, T. Some microelements content in papilionaceous plants and in sward of soft-grass and rye-grass meadows. Bull. Plant Breed. Acclim. Inst. 2003, 225, 81–89. [Google Scholar]
- Grzegorczyk, S.; Alberski, J. Contents of some micronutrients in selected species of meadow-pasture herbs. Zesz. Probl. Postępów Nauk. Rol. 2000, 471, 705–710. [Google Scholar]
- Lane, E.A.; Canty, M.J.; More, S.J. Cadmium exposure and consequence for the health and productivity of farmed ruminants. Res. Vet. Sci. 2015, 101, 132–139. [Google Scholar] [CrossRef] [PubMed]
- Chiban, M.; Soudani, A.; Sinan, F.; Persin, M. Wastewater treatment by batch adsorption method onto micro-particles of dried Withania frutescens plant as a new adsorbent. J. Environ. Manag. 2012, 95, 61–65. [Google Scholar] [CrossRef] [PubMed]
- Karagündüz, A.; Unal, D. New method for evaluation of heavy metal binding to alginate beads using pH and conductivity data. Adsorption 2006, 12, 175–184. [Google Scholar] [CrossRef]
- Idota, Y.; Kogure, Y.; Kato, T.; Yano, K.; Arakawa, H.; Miyajima, C.; Kasahara, F.; Ogihara, T. Relationship between Physical Parameters of Various Metal Ions and Binding Affinity for Alginate. Boil. Pharm. Bull. 2016, 39, 1893–1896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, X.; Guo, C.; Hao, J.; Zhao, Z.; Long, H.; Li, M. Adsorption of heavy metal ions by sodium alginate based adsorbent-a review and new perspectives. Int. J. Biol. Macromol. 2020, 164, 4423–4434. [Google Scholar] [CrossRef]
- Gadd, G.M. Biosorption: Critical Review of Scientific Rationale, Environmental Importance and Significance for Pollution Treatment. J. Chem. Technol. Biotechnol. 2008, 84, 13–28. [Google Scholar] [CrossRef]
- Regulation (EU) 2019/1009 of the European Parliament and of the Council of 5 June 2019 Laying down Rules on the Making Available on the Market of EU Fertilising Products and Amending Regulations (EC) No 1069/2009 and (EC) No 1107/2009 and Repealing Regulation (EC) No 2003/2003. Official Journal of the European Union. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32019R1009 (accessed on 9 August 2021).
- Connor, G.A.; Sarkar, D.; Brinton, S.R.; Elliott, H.A.; Martin, F.G. Phytoavailability of biosolids phosphorus. J. Environ. Qual. 2004, 33, 703–712. [Google Scholar] [CrossRef]
- Kahiluoto, H.; Kuisma, M.; Ketoja, E.; Salo, T.; Heikkinen, J. Phosphorus in Manure and Sewage Sludge More Recyclable than in Soluble Inorganic Fertilizer. Environ. Sci. Technol. 2015, 49, 2115–2122. [Google Scholar] [CrossRef] [Green Version]
- Jama-Rodzeńska, A.; Białowiec, A.; Koziel, J.; Sowiński, J. Waste to phosphorus: A transdisciplinary solution to P recovery from wastewater based on the TRIZ approach. J. Environ. Manag. 2021, 287, 112235. [Google Scholar] [CrossRef] [PubMed]
- Muo, I.; Azeez, A. Green Entrepreneurship: Literature Review and Agenda for Future Research. Int. J. Entrep. Knowl. 2019, 7, 17–29. [Google Scholar] [CrossRef]
- Grzebisz, W.; Diatta, G.B.; Cynan, K. Fosfor a środowisko w: Pierwiastki w środowisku. Fosfor. J. Elementol. 2003, 8, 109–128. [Google Scholar]
Alginate | Fe | P | Cu | Pb | Zn | Cd |
---|---|---|---|---|---|---|
17.96 | 4.04 | 2.37 | 0.214 | 1.122 | 1.947 | 0.0822 |
Cut | Dose kgP /ha | Leaf Length (cm) | Leaf Width (mm) | Stem Length (cm) | |||
---|---|---|---|---|---|---|---|
MF | AFP | MF | AFP | MF | AFP | ||
30 | 32.54 a,X | 33.17 a,X | 7.56 a,X | 7.59 a,X | 6.31 a,X | 6.30 a,X | |
I | 60 | 35.67 b,X | 37.26 b,X | 7.57 a,X | 7.67 b,X | 6.49 a,X | 7.18 b,Y |
90 | 33.08 a,X | 34.82 a,X | 7.51 a,X | 7.14 c,X | 6.89 b,X | 7.31 a,X | |
30 | 26.35 d,X | 33.65 d,Y | 5.79 d,X | 6.37 d,Y | 3.94 d,X | 4.10 d,X | |
II | 60 | 34.57 e,X | 36.20 e,X | 6.57 e,X | 6.61 d,X | 4.72 e,X | 4.18 d,Y |
90 | 32.49 f,X | 32.31 d,X | 6.14 f,X | 6.41 d,Y | 4.61 e,X | 4.81 e,X | |
30 | 17.11 g,X | 19.60 g,Y | 3.74 g,X | 4.53 g,Y | 2.47 g,X | 2.46 g,X | |
III | 60 | 20.47 h.X | 17.84 h,Y | 4.69 h,X | 4.22 h,Y | 2.91 h,X | 2.90 h,X |
90 | 19.45 i,X | 19.47 g,X | 4.41 i,X | 4.56 g,Y | 3.01 h,X | 3.01 i,X |
Cut | Dose kgP/ha | Metal (mg/kgDM) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Fe | Pb | Cu | Cd | Zn | |||||||
MF | AFP | MF | AFP | MF | AFP | MF | AFP | MF | AFP | ||
30 | 430 a,X | 611 a,Y | 5.2 a,X | 4.8 a,X | 16.9 a,X | 18.2 a,Y | 2.7 a,X | 3.2 a,Y | 188 a,X | 258 a,Y | |
I | 60 | 366 b,X | 470 b,Y | 3.2 b,X | 2.6 b,Y | 17.7 b,X | 19.3 b,Y | 3.5 b,X | 3.13 b,Y | 234 b,X | 221 b,X |
90 | 468 c,X | 634 a,Y | 4.9 a,X | 4.7 a,X | 17.2 a,X | 19.5 c,Y | 3.6 c,X | 3.03 c,Y | 221 c,X | 207 c,X | |
30 | 423 d,X | 456 d,Y | 6.6 d,X | 3.4 d,Y | 11.0 d,X | 12.0 d,Y | 2.2 d,X | 2.7 d,Y | 106 d,X | 119 d,Y | |
II | 60 | 327 e,X | 414 d,Y | 5.7 e,X | 3.2 d,Y | 11.3 e,X | 13.1 e,Y | 2.4 e,X | 2.3 e,X | 109 d,X | 115 e,X |
90 | 468 d,X | 379 e,Y | 7.3 d,X | 4.2 e,Y | 10.5 d,X | 11.4 f,Y | 2.5 f,X | 2.2 f,Y | 115 e,X | 109 f,Y | |
30 | 833 g,X | 716 g,Y | 5.7 g,X | 4.0 g,Y | 7.9 g,X | 6.9 g,Y | 3.7 g,X | 3.3 g,X | 136 g,X | 142 g,X | |
III | 60 | 766 h,X | 447 h,Y | 4.3 h,X | 2.6 h,Y | 7.0 h,X | 7.8 h,Y | 3.3 g,X | 3.2 g,X | 121 h,X | 131 g,Y |
90 | 745 h,X | 649 i,Y | 3.8 i,X | 3.1 i,X | 6.6 i,X | 7.7 i,Y | 3.3 g,X | 3.3 h,X | 123 h,X | 117 h,Y |
Fertilizer | Dose (kgP/ha) | P Content (mg/kgDM) | Microelements Content (mg/kgDM) | SC | |||||
---|---|---|---|---|---|---|---|---|---|
TP | AP | Fe | Pb | Cu | Cd | Zn | (μS/cm) | ||
Non | 0 | 213.0 | 8.5 | 270.0 | 31.0 | 19.0 | 2.02 | 385.0 | 252 |
MF | 30 | 350.0 a,X | 11.5 a,X | 260.4 a,X | 30.2 a,X | 18.4 a,X | 1.46 a,X | 301.9 a,X | 198 |
60 | 356.3 a,X | 13.1 b,X | 255.4 b,X | 29.1 a,X | 16.3 b,X | 0.99 b,X | 281.9 a,X | 218 | |
90 | 346.9 a,X | 12.9 b,X | 250.3 b,X | 28.3 a,X | 17.9 c,X | 1.24 c,X | 290.7 a,X | 185 | |
AFP | 30 | 370.3 d,Y | 12.1 d,Y | 254.2 d,Y | 28.1 d,Y | 17.4 d,Y | 1.21 d,Y | 284.0 d,Y | 187 |
60 | 356.0 e,Y | 11.8 e,Y | 257.4 e,Y | 26.2 e,Y | 18.2 d,Y | 1.08 e,Y | 279.5 e,X | 188 | |
90 | 357.4 e,X | 11.3 f,Y | 259.1 f,Y | 30.2 f,X | 17.7 d,X | 1.42 f,Y | 283.1 f,X | 195 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pawelec, K.; Siwek, H.; Kitczak, T.; Włodarczyk, M. Fertilization with Municipal Wastewater Phosphorus Adsorbed to Alginate Beads: Results from a Pot Experiment with Italian Ryegrass. Agronomy 2021, 11, 2142. https://doi.org/10.3390/agronomy11112142
Pawelec K, Siwek H, Kitczak T, Włodarczyk M. Fertilization with Municipal Wastewater Phosphorus Adsorbed to Alginate Beads: Results from a Pot Experiment with Italian Ryegrass. Agronomy. 2021; 11(11):2142. https://doi.org/10.3390/agronomy11112142
Chicago/Turabian StylePawelec, Krzysztof, Hanna Siwek, Teodor Kitczak, and Małgorzata Włodarczyk. 2021. "Fertilization with Municipal Wastewater Phosphorus Adsorbed to Alginate Beads: Results from a Pot Experiment with Italian Ryegrass" Agronomy 11, no. 11: 2142. https://doi.org/10.3390/agronomy11112142
APA StylePawelec, K., Siwek, H., Kitczak, T., & Włodarczyk, M. (2021). Fertilization with Municipal Wastewater Phosphorus Adsorbed to Alginate Beads: Results from a Pot Experiment with Italian Ryegrass. Agronomy, 11(11), 2142. https://doi.org/10.3390/agronomy11112142