Contribution of Winter Wheat and Barley Cultivars to Climate Change via Soil Respiration in Continental Croatia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Treatments
- C—control, bare soil—black fallow
- BR—winter barley (Hordeum vulgare L.) Rex cultivar—medium late growing two-rowed cultivar with average yield of 10 t ha−1, low habitus (87–92 cm), plant density 6,440,000 plants ha−1
- BL—winter barley (Hordeum vulgare L.) Lord cultivar—medium late growing multi-rowed cultivar with average yield of 10 t ha−1, medium high habitus (95 cm), plant density 4,720,000 plants ha−1
- BB—winter barley (Hordeum vulgare L.) Barun cultivar—medium early growing two-rowed cultivar with average yield of 11 t ha−1, low habitus (80 cm), plant density 8,980,000 plants ha−1
- BP—winter barley (Hordeum vulgare L.) Panonac cultivar—medium late growing multi-rowed cultivar with average yield of 11 t ha−1, medium high habitus (92 cm), plant density 6,710,000 plants ha−1
- WS—winter wheat (Tritucum aestivum L.) Srpanjka cultivar—very early growing cultivar with average yield of 10 t ha−1, very low habitus (64 cm), plant density 9,110,000 plants ha−1
- WR—winter wheat (Tritucum aestivum L.) Renata cultivar—medium early growing cultivar with average yield of 11 t ha−1, low habitus (65 cm), plant density 11,170,000 plants ha−1
- WEN—winter wheat (Tritucum aestivum L.) El Nino cultivar—early growing cultivar ty with average yield of 11 t ha−1, high habitus (73 cm), plant density 10,670,000 plants ha−1
- WK—winter wheat (Tritucum aestivum L.) Kraljica cultivar—medium early growing cultivar with average yield of 11 t ha−1, high habitus (75 cm), plant density 12,320,000 plants ha−1
2.2. Soil Properties
2.3. Climate Conditions
2.4. Agrotechnical Measures
2.5. Measurement of Soil CO2 Concentrations and Climate Elements
2.6. Statistical Analysis, Quality Management and Quality Control
3. Results and Discussion
3.1. Climate Conditions
3.2. Yearly Soil Respiration Rates and Soil Microclimate Influenced by Cover and Cultivar Types
3.3. Monthly Soil Respiration Rates and Soil Microclimate Influenced by Cover and Cultivar Type
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ministry of Economy and Sustainable Development of the Republic of Croatia. National Inventory Report 2021—Croatian Greenhouse Gas Inventory Report for the Period 1990–2019; EKONERG Ltd.: Zagreb, Croatia, 2021; p. 476. Available online: https://unfccc.int/documents/271575 (accessed on 20 August 2021).
- Marinović, I.; Cindrić Kalin, K.; Guttler, I.; Pasarić, Z. Dry Spells in Croatia: Observed Climate Change and Climate Projections. J. Atmos. 2021, 12, 652. [Google Scholar] [CrossRef]
- Uprety, D.C.; Dhar, S.; Hongmin, D.; Kimball, B.A.; Garg, A.; Upadhyay, J. Technologies for Climate Change Mitigation—Agriculture Sector; TNA Guidebook Series; Technical University of Denmark (DTU): Lyngby, Denmark, 2012. [Google Scholar]
- Lei, J.; Guo, X.; Zeng, Y.; Zhou, J.; Gao, Q.; Yang, Y. Temporal changes in global soil respiration since 1987. Nat. Commun. 2021, 12, 403. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.; Zhou, X.; Zhang, T.; Du, Z.; He, Y.; Wang, X.; Shao, J.; Cao, Y.; Xue, S.; Wang, H.; et al. Biochar increased soil respiration in temperate forests but had no effects in subtropical forests. For. Ecol. Manag. 2017, 405, 339–349. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Sarikhani, M.R.; Sinegani, A.A.S.; Ahmadi, A.; Keesstra, S. Estimating the soil respiration under different land uses using artificial neural network and linear regression models. Catena 2019, 174, 371–382. [Google Scholar] [CrossRef]
- Yang, C.; Liu, N.; Zhang, Y. Soil aggregates regulate the impact of soil bacterial and fungal communities on soil respiration. Geoderma 2019, 337, 444–452. [Google Scholar] [CrossRef]
- Spohn, M.; Schleuss, P.-M. Addition of inorganic phosphorus to soil leads to desorption of organic compounds and thus to increased soil respiration. Soil Biol. Biochem. 2019, 130, 220–226. [Google Scholar] [CrossRef]
- Shi, P.; Qin, Y.; Liu, Q.; Zhu, T.; Li, Z.; Li, P.; Ren, Z.; Liu, Y.; Wang, F. Soil respiration and response of carbon source changes to vegetation restoration in the Loess Plateau, China. Sci. Total Environ. 2020, 707, 135507. [Google Scholar] [CrossRef]
- Wu, X.; Xu, H.; Tuo, D.; Wang, C.; Fu, B.; Lv, Y.; Liu, G. Land use change and stand age regulate soil respiration by influencing soil substrate supply and microbial community. Geoderma 2020, 359, 113991. [Google Scholar] [CrossRef]
- Drury, C.F.; Yang, X.M.; Reynolds, W.D.; McLaughlin, N.B. Nitrous oxide and carbon dioxide emissions from monoculture and rotation cropping of corn, soybean and winter wheat. Can. J. Soil Sci. 2007, 88, 163–174. [Google Scholar] [CrossRef]
- Francioni, M.; Lai, R.; D’Ottavio, P.; Trozzo, L.; Kishimoto-Mo, A.W.; Budimir, K.; Baldoni, N.; Toderi, M. Soil respiration dynamics in forage-based and cereal-based cropping systems in central Italy. Soil Sci. Plant Nutr. 2020, 77. [Google Scholar] [CrossRef]
- Sosulski, T.; Szymańska, M.; Szara, E.; Sulewski, P. Soil Respiration under 90 Year-Old Rye Monoculture and Crop Rotation in the Climate Conditions of Central Poland. Agronomy 2021, 11, 21. [Google Scholar] [CrossRef]
- Feng, J.; Wang, J.; Song, Y.; Zhu, B. Patterns of soil respiration and its temperature sensitivity in grassland ecosystems across China. Biogeosciences 2018, 15, 5329–5341. [Google Scholar] [CrossRef] [Green Version]
- Galić, M.; Bilandžija, D.; Perčin, A.; Šestak, I.; Mesić, M.; Blažinkov, M.; Zgorelec, Ž. Effects of Agricultural Practices on Carbon Emission and Soil Health. JSDEWES 2019, 7, 539–552. [Google Scholar]
- Zhang, H.; Qian, Z.; Zhuang, S. Effects of Soil Temperature, Water Content, Species, and Fertilization on Soil Respiration in Bamboo Forest in Subtropical China. Forests 2020, 11, 99. [Google Scholar] [CrossRef] [Green Version]
- Liang, G.; Wu, X.; Cai, A.; Dai, H.; Zhou, L.; Cai, D.; Houssou, A.; Gao, L.; Wang, B.; Li, S.; et al. Correlations among soil biochemical parameters, crop yield, and soil respiration vary with growth stage and soil depth under fertilization. Agronomy 2021, 1–13. [Google Scholar] [CrossRef]
- Du, K.; Li, F.; Qiao, Y.; Leng, P.; Li, Z.; Ge, J.; Yang, G. Influence of no-tillage and precipitation pulse on continuous soil respiration of summer maize affected by soil water in the North China Plain. Sci. Total Environ. 2021, 766, 144384. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Bradford, M.A.; Carey, J.; Crowther, T.W.; Machmuller, M.B.; Mohan, J.E.; Todd-Brown, K. Temperature sensitivity of soil carbon. In Ecosystem Consequences of Soil Warming; Mohan, J.E., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 175–208. [Google Scholar] [CrossRef]
- Wiesmeier, M.; Mayer, S.; Burmeister, F.; Hübner, R.; Kögel-Knabner, I. Feasibility of the 4 per 1000 initiative in Bavaria: A reality check of agricultural soil management and carbon sequestration scenarios. Geoderma 2020, 369, 114333. [Google Scholar] [CrossRef]
- Bilandžija, D.; Zgorelec, Ž.; Kisić, I. Influence of Tillage Practices and Crop Type on Soil CO2 Emissions. Sustainability 2016, 8, 90. [Google Scholar] [CrossRef] [Green Version]
- Chahal, I.; Hooker, D.C.; Deen, B.; Janovicek, K.; Van Eerd, L.L. Long-term effects of crop rotation, tillage, and fertilizer nitrogen on soil health indicators and crop productivity in a temperate climate. Soil Tillage Res. 2021, 213, 105121. [Google Scholar] [CrossRef]
- McCarthy, N.; Lipper, L.; Zilberman, D. Economics of Climate Smart Agriculture: An Overview. In Climate Smart Agriculture—Building Resilience to Climate Change; Lipper, L., McCarthy, N., Zilberman, D., Asfaw, S., Branca, G., Eds.; Springer: Cham, Switzerland, 2018; pp. 31–49. [Google Scholar]
- Loboguerrero, A.M.; Campbell, B.M.; Cooper, P.J.M.; Hansen, J.W.; Rosenstock, T.; Wollenberg, E. Food and Earth Systems: Priorities for Climate Change Adaptation and Mitigation for Agriculture and Food Systems. Sustainability 2019, 11, 1372. [Google Scholar] [CrossRef] [Green Version]
- Shah, F.; Wu, W. Soil and Crop Management Strategies to Ensure Higher Crop Productivity within Sustainable Environments. Sustainability 2019, 11, 1485. [Google Scholar] [CrossRef] [Green Version]
- Sexton, S.; Zilberman, D. Agricultural biotechnology can help mitigate climate change. J. Agric. Resour. Econ. 2010, 14, 1–4. [Google Scholar]
- Pushpangadan, P.; Ijinu, T.P.; Dan, V.M.; Thomas, A.; Avinash, S.; George, V. Recent Advances of Agricultural Biotechnology in the Light of Climate Change. Proc. Natl. Acad. Sci. USA Sect. B Biol. Sci. 2012, 82, 381–386. [Google Scholar] [CrossRef]
- Agricultural Institute Osijek. Catalogue—Wheat and Barley Cultivars; AIO: Osijek, Croatia, 2016; p. 40. Available online: https://cdn.poljinos.hr/upload/documents/Agricultural%20institute%20Osijek%20wheat%20and%20barley%20catalogue%202016.pdf (accessed on 20 August 2021).
- Gajić-Čapka, M.; Zaninović, K. Climate. In Climate Atlas of Croatia 1961–1990. 1971–2000; Zaninović, K., Ed.; Meteorological and Hydrological Service: Zagreb, Croati, 2008; pp. 11–15. [Google Scholar]
- Bilandžija, D.; Martinčić, S. Agroclimatic conditions of the Osijek area during referent (1961–1990) and recent (1991–2018) climate periods. Hrvatski Meteorološki Časopis 2021, in press. [Google Scholar]
- Bilandžija, D.; Bilandžija, N.; Zgorelec, Ž. Sequestration potential of energy crop Miscanthus x giganteus cultivated in continental part of Croatia. J. Cent. Eur. Agric. 2021, 22, 188–200. [Google Scholar] [CrossRef]
- Rodenhouse, N.L.; Best, L.B.; O’Connor, R.J.; Bollinger, E.K. SAS 9.1.3 Help and Documentation; SAS Institute: Cary, NC, USA, 2004. [Google Scholar]
- Rastogi, M.; Singh, S.; Pathak, H. Emission of carbon dioxide from soil. Curr. Sci. 2002, 82, 510–517. [Google Scholar]
- Kessavalou, A.; Mosier, A.R.; Doran, J.W.; Drijber, R.A.; Lyon, D.J.; Heinemeyer, O. Fluxes of Carbon Dioxide, Nitrous Oxide, and Methane in Grass Sod and Winter Wheat-Fallow Tillage Management. J. Environ. Qual. 1998, 27, 1094–1104. [Google Scholar] [CrossRef]
- Malek, I.; Bouteldja, M.; Posta, K.; Fóti, S.; Pintér, K.; Nagy, Z.; Balogh, J. Responses of Soil Respiration to Biotic and Abiotic Drivers in a Temperate Cropland. J. Soil Sci. 2021, 54, 1038–1048. [Google Scholar] [CrossRef]
- Reis, I. Mjerenje Emisije Ugljikovog Dioksida iz tla u Vegetaciji Ozime Pšenice. Master Thesis, University of Zagreb Faculty of Agriculture, Zagreb, Croatia, 2014. [Google Scholar]
- Bilandžija, D.; Zgorelec, Ž.; Kisić, I. Soil carbon loss by soil respiration under different tillage treatments. Agric. Conspec. Sci. 2014, 79, 1–6. [Google Scholar]
- Wilson, H.M.; Al-Kaisi, M.M. Crop rotation and nitrogen fertilization effect on soil CO2 emissions in central Iowa. Appl. Soil Ecol. 2008, 39, 264–270. [Google Scholar] [CrossRef]
- Norberg, L.; Berglund, Ö.; Berglund, K. Seasonal CO2 emission under different cropping systems on Histosols in southern Sweden. Geoderma Reg. 2016, 7, 338–345. [Google Scholar] [CrossRef]
- Khan, M.I.; Hwang, H.Y.; Kim, G.W.; Kim, P.J.; Das, S. Microbial responses to temperature sensitivity of soil respiration in a dry fallow cover cropping and submerged rice mono-cropping system. Appl. Soil Ecol. 2018, 128, 98–108. [Google Scholar] [CrossRef]
- Jacinthe, P.A.; Lal, R.; Kimble, J.M. Carbon budget and seasonal carbon dioxide emission from a central Ohio Luvisol as influenced by wheat residue amendment. Soil Tillage Res. 2002, 67, 147–157. [Google Scholar] [CrossRef]
- Bauer, P.J.; Frederick, J.R.; Novak, J.M.; Hunt, P.G. Soil CO2 flux from a Norfolk loamy sand after 25 years of conventional and conservation tillage. Soil Tillage Res. 2006, 90, 205–211. [Google Scholar] [CrossRef]
- Oorts, K.; Merckx, R.; Grehan, E.; Labreuche, J.; Nicolardot, B. Determinants of annual fluxes of CO2 and N2O in long-term no-tillage and conventional tillage systems in northern France. Soil Tillage Res. 2007, 95, 133–148. [Google Scholar] [CrossRef]
- Ussiri, D.A.N.; Lal, R. Long-term tillage effects on soil carbon storage and carbon dioxide emissions in continuous corn cropping system from an alfisol in Ohio. Soil Tillage Res. 2009, 104, 39–47. [Google Scholar] [CrossRef]
- Bilandžija, D.; Zgorelec, Ž.; Kisić, I. The Influence of Agroclimatic Factors on Soil CO2 Emissions. Coll. Antropol. 2014, 38 (Suppl. 1), 77–83. [Google Scholar]
- Buragiene, S.; Šaruskis, E.; Romaneckas, K.; Adamavičiene, A.; Kriaučiüniene, Z.; Zvižienyte, D.; Mazoras, V.; Naujokiene, V. Relationship between CO2 emissions and soil properties of differently tilled soils. Sci. Total Environ. 2019, 662, 786–795. [Google Scholar] [CrossRef] [PubMed]
- Bogužas, V.; Sinkevičienė, A.; Romaneckas, K.; Steponavičienė, V.; Skinulienė, L.; Butkevičienė, L.M. The impact of tillage intensity and meteorological conditions on soil temperature, moisture content and CO2 efflux in maize and spring barley cultivation. Zemdirbyste 2018, 105, 307–314. [Google Scholar] [CrossRef] [Green Version]
- Alluvione, F.; Hall, V.; Orson, A.D.; Del Grosso, S.J. Nitrogen, Tillage, and crop rotation effects on carbon dioxide and methane fluxes from irrigated cropping systems. J. Environ. Qual. 2009, 38, 2023–2033. [Google Scholar] [CrossRef] [PubMed]
- Feiziene, D.; Feiza, V.; Kadziene, G.; Vaideliene, A.; Povilaitis, V.; Deveikyte, I. CO2 fluxes and drivers as affected by soil type, tillage and fertilization. Acta Agric. Scand. B Soil Plant Sci. 2012, 62, 311–328. [Google Scholar]
Date | Field Operation | Application | Application |
---|---|---|---|
Winter Barley (Hordeum vulgare L.) | Winter Wheat (Triticum aestivum L.) | ||
October 2020 | Fertilization | Urea 46% (100 kg ha−1); NPK 7:20:30 (400 kg ha−1) | |
October 2020 | Primary tillage | Up to 15 cm depth | Up to 25 cm depth |
October 2020 | Secondary tillage | Up to 5 cm depth | Up to 10 cm depth |
October 2020 | Seeding | Rex (200 kg ha−1); Lord (160 kg ha−1), Barun (220 kg ha−1) i Panonac (200 kg ha−1) | Srpanjka (290 kg ha−1); Renata (kg ha−1); El Nino (250 kg ha−1); Kraljica (270 kg ha−1) |
November 2020 | Rodenticide application | Arvalin | |
February 2021 | Fertilization | KAN (100 kg ha−1) | |
March 2021 | Fertilization | - | KAN (150 kg ha−1) |
March 2021 | Herbicide application | Trimur WG (15 g ha−1) + Fluxir (0.5 l ha−1) | |
April 2021 | Fungicide application | Impact 25 SC (0.5 l ha−1) + Tebusha 25% EW (1 l ha−1) | |
July 2021 | Harvest |
1991–2018 | |||||||||
---|---|---|---|---|---|---|---|---|---|
Nov. | Dec. | Jan. | Feb. | March | April | May | June | Season | |
p | 57.0 | 52.7 | 44.6 | 42.6 | 43.9 | 51.2 | 71.5 | 80.7 | 706.7 |
t | 6.5 | 1.3 | 0.8 | 2.2 | 6.8 | 12.3 | 17.3 | 20.7 | 11.7 |
SWR | 10.8 | 57.4 | 100.0 | 100.0 | 80.0 | 0.0 | 0.0 | 0.0 | 348.2 |
AE | 46.2 | 6.1 | 3.7 | 12.3 | 64.0 | 131.2 | 71.5 | 80.7 | 415.6 |
D | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 14.4 | 179.6 | 235.7 | 430 |
S | 0.0 | 0.0 | 40.8 | 30.3 | 0.0 | 0.0 | 0.0 | 0.0 | 71.1 |
2020/2021 | |||||||||
p | 18.0 | 61.4 | 77.5 | 36.3 | 34.4 | 60.7 | 58.9 | 18.4 | 650.4 |
t | 6.4 | 4.3 | 2.5 | 4.7 | 5.8 | 9.4 | 15.4 | 23.0 | 10.8 |
SWR | 86.7 | 100.0 | 100.0 | 100.0 | 88.4 | 78.6 | 27.4 | 0.0 | 581.2 |
AE | 31.3 | 22.4 | 17.6 | 33.8 | 46.0 | 70.5 | 110.1 | 45.8 | 377.5 |
D | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 98.3 | 98 |
S | 0.0 | 25.7 | 59.9 | 2.5 | 0.0 | 0.0 | 0.0 | 0.0 | 88.1 |
Source | DF | Sum of Squares | Mean Square | F Value | Pr > F | R2 | cv |
---|---|---|---|---|---|---|---|
C-CO2 | |||||||
Model | 2 | 2204.23 | 1102.12 | 92.12 | <0.0001 | 0.43 | 38.47 |
Error | 249 | 2978.89 | 11.96 | ||||
Corrected Total | 251 | 5183.12 | |||||
Soil temperature | |||||||
Model | 2 | 2.08 | 1.04 | 0.01 | 0.9897 | 0.0001 | 48.99 |
Error | 249 | 25,118.81 | 100.88 | ||||
Corrected Total | 251 | 25,120.89 | |||||
Soil moisture | |||||||
Model | 2 | 16.60 | 8.30 | 0.29 | 0.7492 | 0.0023 | 21.05 |
Error | 249 | 7146.68 | 28.70 | ||||
Corrected Total | 251 | 7163.28 |
Soil Respiration (kg C-CO2 ha−1 day−1) (LSD = 1.05) | Soil Moisture (%) (LSD = 1.63) | Soil Temperature (°C) (LSD = 3.05) | |
---|---|---|---|
W. BARLEY | 10.72 A | 25.08 A | 20.63 A |
W. WHEAT | 11.42 A | 25.60 A | 20.45 A |
CONTROL | 4.83 B | 25.65 A | 20.43 A |
Source | DF | Sum of Squares | Mean Square | F Value | Pr > F | R2 | cv |
---|---|---|---|---|---|---|---|
C-CO2 | |||||||
Model | 8 | 883.25 | 110.41 | 7.48 | <0.0001 | 0.25 | 37.01 |
Error | 180 | 2655.79 | 14751 | ||||
Corrected Total | 188 | 3539.04 | |||||
Soil temperature | |||||||
Model | 8 | 2.34 | 0.29 | 0 | 1.0000 | 0.0001 | 49.27 |
Error | 180 | 18,415.40 | 102.31 | ||||
Corrected Total | 188 | 18,417.74 | |||||
Soil moisture | |||||||
Model | 8 | 134.54 | 16.82 | 0.60 | 0.7766 | 0.03 | 20.85 |
Error | 180 | 5039.69 | 28.00 | ||||
Corrected Total | 188 | 5174.23 |
Soil C Content (kg ha−1) | Soil Respiration (kg C-CO2 ha−1 day−1) | Daily Soil C Loss (%) | Yearly Soil C Loss (%) | |
---|---|---|---|---|
REX | 51 708 | 11.65 | 0.0225 | 8.22 |
LORD | 11.14 | 0.0215 | 7.86 | |
BARUN | 9.85 | 0.0190 | 6.95 | |
PANONAC | 10.23 | 0.0198 | 7.22 | |
SRPANJKA | 11.75 | 0.0227 | 8.29 | |
RENATA | 9.78 | 0.0189 | 6.90 | |
EL NINO | 12.67 | 0.0245 | 8.94 | |
PANONAC | 11.5 | 0.0222 | 8.12 | |
CONTROL | 4.83 | 0.0093 | 3.41 |
Source | DF | Sum of Squares | Mean Square | F Value | Pr > F | R2 | cv |
---|---|---|---|---|---|---|---|
C-CO2—barley (LSD = 2.18) | |||||||
Model | 6 | 747.32 | 124.55 | 17.28 | <0.0001 | 0.57 | 25.04 |
Error | 77 | 554.85 | 7.21 | ||||
Corrected Total | 83 | 1302.17 | |||||
C-CO2—wheat (LSD = 2.61) | |||||||
Model | 6 | 632.21 | 105.37 | 10.23 | <0.0001 | 0.44 | 28.10 |
Error | 77 | 793.20 | 10.30 | ||||
Corrected Total | 83 | 1425.41 | |||||
C-CO2—control (LSD = 1.30) | |||||||
Model | 6 | 85.91 | 14.32 | 11.71 | <0.0001 | 0.67 | 24.30 |
Error | 35 | 42.81 | 1.22 | ||||
Corrected Total | 41 | 128.71 |
NOVEMBER (LSD = 1.79) | FEBRUARY (LSD = 1.64) | MARCH (LSD = 3.67) | APRIL (LSD = 2.86) | MAY (LSD = 1.61) | JUNE (LSD = 4.80) | JULY (LSD = 0.81) | |
---|---|---|---|---|---|---|---|
REX (LSD = 3.09) | 13.97 D a | 13.40 D a | 11.40 D a | 13.30 D a | 23.83 C a | 31.57 B a | 36.70 A d |
LORD (LSD = 2.98) | 13.87 D a | 13.67 D a | 11.40 D a | 13.27 D a | 24.53 C a | 31.33 B a | 36.67 A d |
BARUN (LSD = 2.84) | 13.83 D a | 13.87 D a | 11.40 D a | 12.90 D a | 24.90 C a | 30.77 B a | 36.77 A d |
PANONAC (LSD = 2.82) | 13.70 D a | 14.07 D a | 11.27 D a | 12.57 D a | 25.13 C a | 30.60 B a | 37.03 A cd |
SRPANJKA (LSD = 2.92) | 13.57 D a | 14.40 D a | 10.57 E a | 11.97 DE a | 24.93 C a | 30.40 B a | 37.97 A b |
RENATA (LSD = 2.92) | 13.50 D a | 14.47 D a | 10.17 E a | 11.87 DE a | 25.03 C a | 30.27 B a | 38.22 A ab |
EL NINO (LSD = 3.09) | 13.43 DE a | 14.67 D a | 9.83 F a | 11.47 EF a | 25.17 C a | 29.93 B a | 37.77 A bc |
KRALJICA (LSD = 2.94) | 13.30 DE a | 14.97 D a | 9.67 F a | 11.27 EF a | 25.13 C a | 29.70 B a | 38.87 A a |
CONTROL (LSD = 1.77) | 13.45 DE a | 14.77 D a | 10.25 F a | 11.72 EF a | 25.08 C a | 29.47 B a | 38.23 A ab |
NOVEMBER (LSD = 5.43) | FEBRUARY (LSD = 6.84) | MARCH (LSD = 3.82) | APRIL (LSD = 4.10) | MAY (LSD = 2.44) | JUNE (LSD = 5.32) | JULY (LSD = 5.14) | |
---|---|---|---|---|---|---|---|
REX (LSD = 5.03) | 29.21 AB bc | 32.20 A a | 31.11 A a | 22.26 CD ab | 31.03 A a | 18.42 D a | 24.52 BC a |
LORD (LSD = 4.49) | 34.39 A ab | 27.08 BC ab | 23.93 BC c | 23.24 C ab | 28.02 B bc | 17.21 D a | 17.93 D c |
BARUN (LSD = 5.91) | 29.69 A bc | 23.68 B b | 23.65 B c | 20.44 B b | 29.81 A ab | 20.79 B a | 23.77 B ab |
PANONAC (LSD = 4.10) | 29.09 A bc | 25.35 AB b | 27.28 AB bc | 23.93 B ab | 27.49 AB bcd | 18.10 C a | 18.68 C bc |
SRPANJKA (LSD = 5.14) | 28.60 AB c | 28.84 AB ab | 27.40 AB abc | 21.70 CD ab | 30.91 A a | 16.95 D a | 24.66 BC a |
RENATA (LSD = 4.74) | 28.68 AB c | 25.45 BC ab | 25.93 BC bc | 21.27 CD ab | 31.90 A a | 17.60 D a | 23.07 C abc |
EL NINO (LSD = 5.53) | 31.24 A abc | 24.87 B b | 28.99 AB ab | 25.25 B a | 26.95 AB cd | 18.83 C a | 27.55 A ba |
KRALJICA (LSD = 4.79) | 35.16 A a | 27.06 B ab | 28.83 B ab | 20.83 C b | 28.41 B bc | 21.77 C a | 18.19 C c |
CONTROL (LSD = 4.51) | 32.10 A abc | 26.57 B ab | 25.29 B bc | 23.88 BC ab | 25.45 B d | 19.89 C a | 24.56 B a |
CO2 | NOVEMBER (LSD = 2.68) | FEBRUARY (LSD = 3.13) | MARCH (LSD = 3.57) | APRIL (LSD = 5.89) | MAY (LSD = 4.88) | JUNE (LSD = 8.04) | JULY (LSD = 2.16) |
---|---|---|---|---|---|---|---|
REX (LSD = 5.85) | 6.07 C bcd | 8.61 BC ab | 10.55 BC a | 12.99 AB a | 13.75 AB a | 18.02 A ab | 11.57 BC a |
LORD (LSD = 3.44) | 7.59 D bc | 7.83 D b | 11.34 BC a | 12.99 B a | 13.75 AB a | 16.55 A ab | 7.96 CD bc |
BARUN (LSD = 5.59) | 6.07 BC bcd | 7.83 BC b | 9.77 ABC a | 11.42 AB ab | 13.75 A a | 14.34 A ab | 5.79 C d |
PANONAC (LSD = 4.43) | 7.59 C bc | 8.61 BC ab | 10.55 ABC a | 10.63 ABC ab | 12.26 AB a | 14.34 A ab | 7.59 C bcd |
SRPANJKA (LSD = 3.90) | 8.35 C b | 9.40 BC ab | 9.77 BC a | 11.42 BC ab | 12.26 B a | 20.23 A a | 10.85 BC a |
RENATA (LSD = 3.45) | 4.55 D d | 8.61 BC ab | 12.12 A a | 12.99 A a | 11.52 AB a | 12.14 A bc | 6.51 CD cd |
EL NINO (LSD = 6.82) | 11.38 AB a | 10.96 B a | 11.34 AB a | 13.78 AB a | 14.49 AB a | 18.02 A ab | 8.68 B b |
KRALJICA (LSD = 6.17) | 6.83 C bcd | 7.83 BC b | 11.34 ABC a | 12.99 ABC a | 13.75 AB a | 15.81 A ab | 11.93 ABC a |
CONTROL (LSD = 1.30) | 5.31 B cd | 2.74 C c | 3.13 C b | 6.69 A b | 5.57 AB b | 5.33 B c | 3.07 C e |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bilandžija, D.; Zgorelec, Ž.; Bilandžija, N.; Zdunić, Z.; Krička, T. Contribution of Winter Wheat and Barley Cultivars to Climate Change via Soil Respiration in Continental Croatia. Agronomy 2021, 11, 2127. https://doi.org/10.3390/agronomy11112127
Bilandžija D, Zgorelec Ž, Bilandžija N, Zdunić Z, Krička T. Contribution of Winter Wheat and Barley Cultivars to Climate Change via Soil Respiration in Continental Croatia. Agronomy. 2021; 11(11):2127. https://doi.org/10.3390/agronomy11112127
Chicago/Turabian StyleBilandžija, Darija, Željka Zgorelec, Nikola Bilandžija, Zvonimir Zdunić, and Tajana Krička. 2021. "Contribution of Winter Wheat and Barley Cultivars to Climate Change via Soil Respiration in Continental Croatia" Agronomy 11, no. 11: 2127. https://doi.org/10.3390/agronomy11112127
APA StyleBilandžija, D., Zgorelec, Ž., Bilandžija, N., Zdunić, Z., & Krička, T. (2021). Contribution of Winter Wheat and Barley Cultivars to Climate Change via Soil Respiration in Continental Croatia. Agronomy, 11(11), 2127. https://doi.org/10.3390/agronomy11112127