Modeling the Effect of Temperature on Ginger and Turmeric Rhizome Sprouting
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Treatments
2.3. Data Collected
2.4. Temperature Modeling
2.5. Other Data Analyses
3. Results and Discussion
3.1. Model Calibration
3.2. Model Validation
3.3. Other Temperature Effects on Rhizome Growth and Development
Experiment | Sprouts per Plant (No.) | Average Sprout Height (mm) | Roots per Plant (No.) | Primary Root Length (mm) | Rooting Index (1 to 5) | Days to 1-cm Sprout | Days to 5-cm Sprout | Transplant Stage in Greenhouse (days) |
---|---|---|---|---|---|---|---|---|
Calibration | ||||||||
21 °C | 7.6 | 5.1 b z | 2.8 b | 7.6 c | 0.8 b | 26.4 a | 51.8 a | 18.3 a |
25 °C | 7.9 | 8.2 b | 10.1 a | 67.7 b | 4.5 a | 13.4 c | 32.5 c | 14.8 b |
27 °C | 7.7 | 10.0 a | 12.5 a | 69.2 b | 4.3 a | 13.6 c | 28.9 c | 12.9 b |
30 °C | 9.0 | 11.2 a | 14.1 a | 88.4 a | 4.0 a | 14.2 c | 31.7 c | 15.1 b |
32 °C | 8.0 | 6.6 b | 2.5 b | 16.0 c | 1.2 b | 19.6 b | 42.2 b | 19.6 a |
Treatment (T) | NS | ** | *** | *** | ** | *** | *** | ** |
Variety (V) | NS | NS | NS | NS | NS | NS | NS | NS |
T × V | NS | NS | NS | NS | NS | NS | NS | NS |
Validation | ||||||||
14 °C | - | - | - | - | - | 65.0 a | - | - |
20 °C | 5.0 bc | 3.2 b | 1.7 c | 3.2 b | 0.3 b | 27.7 b | 54.2 a | 17.2 |
25 °C | 6.5 b | 4.7 b | 7.2 b | 58.3 a | 3.5 a | 12.2 c | 33.8 b | 14.1 |
30 °C | 9.8 a | 8.8 a | 10.5 a | 71.6 a | 3.3 a | 16.1 c | 34.2 b | 16.7 |
35 °C | 3.9 c | 1.9 c | - | - | - | - | - | - |
40 °C | - | - | - | - | - | - | - | - |
T | *** | *** | *** | ** | *** | *** | *** | ** |
V | NS | NS | NS | NS | NS | NS | NS | NS |
T × V | NS | NS | NS | NS | NS | NS | NS | NS |
3.4. Rhizome Morphology and Sprouting
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nguyen, L.; Duong, L.T.; Mentreddy, R.S. The, U.S. import demand for spices and herbs by differentiated sources. J. Appl. Res. Med. Aromat. Plants 2019, 12, 13–20. [Google Scholar] [CrossRef]
- Tridge. Available online: https://www.tridge.com/intelligences/ginger (accessed on 2 July 2021).
- Tridge. Available online: https://www.tridge.com/intelligences/turmeric1 (accessed on 2 July 2021).
- Ma, R.H.; Ni, Z.J.; Zhu, Y.Y.; Thakur, K.; Zhang, F.; Zhang, Y.Y.; Hu, F.; Zhang, J.G.; Wei, Z.J. A recent update on the multifaceted health benefits associated with ginger and its bioactive components. Food Funct. 2021, 12, 519–542. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Yuan, W.; Deng, G.; Wang, P.; Yang, P.; Aggarwal, B. Chemical composition and product quality control of turmeric (Curcuma longa L.). Pharm. Crops 2011, 2, 28–54. [Google Scholar] [CrossRef]
- Ali, B.H.; Blunden, G.; Tanira, M.O.; Nemmar, A. Some phytochemical, pharmacological and toxicological properties of ginger (Zingiber officinale Roscoe): A review of recent research. Food Chem. Toxicol. 2008, 46, 409–420. [Google Scholar] [CrossRef] [PubMed]
- El Kutry, M.S. Potential protection effect of using honey, ginger, and turmeric as a natural treatment against chemotherapy of intestinal toxicity. J. Biol. Act. Prod. Nat. 2020, 10, 86–99. [Google Scholar] [CrossRef]
- Nair, A.; Amalraj, A.; Jacob, J.; Kunnunmakkara, A.; Gopi, S. Non-Curcuminoids from Turmeric and Their Potential in Cancer Therapy and Anticancer Drug Delivery Formulations. Biomolecules 2019, 9, 13. [Google Scholar] [CrossRef] [Green Version]
- Ibáñez, M.D.; Blázquez, M.A. Ginger and turmeric essential oils for weed control and food crop protection. Plants 2019, 8, 59. [Google Scholar] [CrossRef] [Green Version]
- Shannon, D.A.; van Santen, E.; Salmasi, S.Z.; Murray, T.J.; Duong, L.T.; Greenfield, J.T.; Gonzales, T.; Foshee, W. Shade, establishment method, and varietal effects on rhizome yield and curcumin content in turmeric in Alabama. Crop Sci. 2019, 59, 2701–2710. [Google Scholar] [CrossRef]
- Govindasamy, R.; Nemana, A.; Puduri, V.; Pappas, K. Ethnic produce marketing in the Mid-Atlantic states: Consumer shopping patterns and willingness-to-pay analysis. Choices 2006, 21, 237–241. [Google Scholar]
- Sciarappa, W.J.; Simon, J.; Govindasamy, R.; Kelley, K.; Mangan, F.; Zhang, S.; Arumugam, S.; Nitzsche, P.; Van Vranken, R.; Komar, S.; et al. Asian crops overview: Consumer preference and cultivar growth on the east coast of the United States. HortScience 2016, 51, 1344–1350. [Google Scholar] [CrossRef] [Green Version]
- Flores, S.; Retana-Cordero, M.; Fisher, P.R.; Freyre, R.; Gómez, C. Effect of photoperiod, propagative material, and production period on greenhouse-grown ginger and turmeric plants. HortScience. in press.
- Abelenda, J.A.; Prat, S. Cytokinins: Determinants of sink storage ability. Curr. Biol. 2013, 23, 561–563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ravindran, P.N.; Nirmal Babu, K.; Shiva, K.N. Botany and Crop Improvement of Ginger. In Ginger: The Genus Zingiber, 1st ed.; Ravindran, P.N., Nirmal Babu, K., Eds.; CRC Press: Boca Raton, FL, USA, 2005; Volume 1, pp. 15–86. [Google Scholar]
- Ravindran, P.N.; Nirmal Babu, K.; Shiva, K.N. Botany and Crop Improvement of Turmeric. In Turmeric: The Genus Curcuma, 1st ed.; Ravindran, P.N., Nirmal Babu, K., Sivaraman, K., Eds.; CRC Press: Boca Raton, FL, USA, 2007; Volume 1, pp. 15–70. [Google Scholar]
- Padmadevi, K.; Jothi, L.J.; Ponnuswami, V.; Durgavathi, V.; Parveen, I.R. Effect of different grades of rhizomes on growth and yield of turmeric (Curcuma longa L.). Asian J. Hortic. 2012, 7, 465–467. [Google Scholar]
- Sharma, K.; Rok Lee, Y.; Park, S.W.; Nile, S.H. Importance of growth hormones and temperature for physiological regulation of dormancy and sprouting in onions. Food Rev. Int. 2016, 32, 233–255. [Google Scholar] [CrossRef]
- Aswathy, T.S.; Jessykutty, P.S. Effect of growth regulators and chemicals on sprouting of minisetts in Curcuma aromatica Salisb. Int. J. Appl. Pure Sci. Agr. 2016, 2, 8–11. [Google Scholar]
- Criley, R.A. Propagation of cut flowers: Strelitzia, Alpinia, and Heliconia. Acta Hortic. 1988, 226, 509–518. [Google Scholar] [CrossRef]
- Esashi, Y.; Leopold, A.C. Dormancy regulation in subterranean clover seeds by ethylene. Plant Physiol. 1969, 44, 1470–1472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thohirah, L.A.; Flora, C.L.S.; Kamalakshi, N. Breaking bud dormancy and different shade levels for production of pot and cut Curcuma alismatifolia. Am. J. Agr. Biol. Sci. 2010, 5, 385–388. [Google Scholar] [CrossRef] [Green Version]
- Furutani, S.C.; Villanueva, J.; Tanable, M.J. Effect of ethephon and heat on the growth and yield of edible ginger. HortScience 1985, 20, 392–393. [Google Scholar]
- Miedema, P. Bulb dormancy in onion. I. The effects of temperature and cultivar on sprouting and rooting. J. Hortic. Sci. 1994, 69, 29–39. [Google Scholar] [CrossRef]
- Senning, M.; Sonnewald, U.; Sonnewald, S. Deoxyuridine triphosphatase expression defines the transition from dormant to sprouting potato tuber buds. Mol. Breed. 2010, 26, 525–531. [Google Scholar] [CrossRef]
- Kaushal, M.; Gupta, A.; Vaidya, D.; Gupta, M. Postharvest management and value addition of ginger (Zingiber officinale Roscoe): A review. Int. J. Environ. Agric. Biotechnol. 2017, 2, 397–412. [Google Scholar] [CrossRef]
- Paull, R.E.; Chen, N.J.; Goo, T.T.C. Control of weight loss and sprouting of ginger rhizomes in stores. HortScience 1988, 23, 734–736. [Google Scholar]
- Lee, J.H.; Oh, M.W.; Jang, H.D.; Lee, Y.J.; Jeong, J.T.; Park, C.G. Growth characteristics of turmeric (Curcuma longa L.) germplasms and storage conditions of seed rhizomes. Korean J. Med. Crop Sci. 2020, 28, 47–55. [Google Scholar] [CrossRef]
- De Melo-Abreu, J.P.; Barranco, D.; Cordeiro, A.M.; Tous, J.; Rogado, B.M.; Villalobos, F.J. Modelling olive flowering date using chilling for dormancy release and thermal time. Agric. Meteorol. 2004, 125, 117–127. [Google Scholar] [CrossRef]
- Taab, A.; Andersson, L.; Boström, U. Modelling the sprouting capacity from underground buds of the perennial weed. Sonchus Arvensis Weed Res. 2018, 58, 348–356. [Google Scholar] [CrossRef]
- Blanchard, M.G.; Runkle, E.S.; Fisher, P.R. Modeling plant morphology and development of petunia in response to temperature and photosynthetic daily light integral. Sci. Hortic. 2011, 129, 313–320. [Google Scholar] [CrossRef]
- Norouzi, H.A.; Vazin, F. Modelling of the Faba bean (Vicia faba L.) Sprouting Reaction to Temperature in Farm Condition. Not. Bot. Horti Agrobot. Cluj-Napoca 2011, 39, 179–185. [Google Scholar] [CrossRef] [Green Version]
- Walters, K.J.; Lopez, R.G. Modeling growth and development of hydroponically grown dill, parsley, and watercress in response to photosynthetic daily light integral and mean daily temperature. PLoS ONE 2021, 16, e0248662. [Google Scholar] [CrossRef]
- Girma, H.; Kindie, T. The effects of seed rhizome size on the growth, yield and economic return of ginger (Zingiber officinale Rose.). Asian J. Plant Sci. 2008, 7, 213–217. [Google Scholar]
- Hossain, M. Effects of harvest time on shoot biomass and yield of turmeric (Curcuma longa L.) in Okinawa, Japan. Plant Prod. Sci. 2010, 13, 97–103. [Google Scholar] [CrossRef]
- Kadam, J.H.; Waghmode, R.S.; Kathmale, D.K.; Ranpise, S.A. Effect of seed rhizome cuttings on growth and yield of turmeric. In Advances in Planting Material Production Technology in Spices, Proceedings of National Seminar on Planting Material Production in Spices: Kozhikode, Kerala, India, 21–22 April 2016; Malhotra, S.K., Kandiannan, K., Mini Raj, K., Neema, V.P., Prasath, D., Srinivasan, V., Homey Cheriyan, F., Eds.; Directorate of Arecanut and Spices Development: Kozhikode, India, 2016; pp. 145–149. [Google Scholar]
- Nybe, E.V.; Raj, N.M. Ginger production in India and other South Asian countries. In Ginger: The Genus Zingiber, 1st ed.; Ravindran, P.N., Nirmal Babu, K., Eds.; CRC Press: Boca Raton, FL, USA, 2005; Volume 1, pp. 211–240. [Google Scholar]
- Brøndum, J.J.; Heins, R.D. Modeling temperature and photoperiod effects on growth and development of dahlia. J. Am. Soc. Hortic. Sci. 1993, 118, 36–42. [Google Scholar] [CrossRef] [Green Version]
- Landsberg, J.J. Some useful equations for biological studies. Expt. Agr. 1977, 13, 273–286. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019; Available online: https://www.R-project (accessed on 10 April 2021).
- de Mendiburu, F. Agricolae: Statistical Procedures for Agricultural Research. R Package Version 1.3-3. 2020. Available online: https://CRAN.R-project:package=agricolae (accessed on 12 April 2021).
- Policegoudra, R.S.; Aradhya, S.M.; Singh, L. Mango ginger (Curcuma amada Roxb.)—A promising spice for phytochemicals and biological activities. J. Biosci. 2011, 36, 739–748. [Google Scholar] [CrossRef]
- Ishimine, Y.; Hossain, M.A.; Motomura, K.; Akamine, H.; Hirayama, T. Effects of planting date on emergence, growth and yield of turmeric (Curcuma longa L.) in Okinawa Prefecture, Southern Japan. Jpn. J. Trop. Agric. 2004, 48, 10–16. [Google Scholar] [CrossRef]
- Chen, W.; Li, R.; Tsai, Z.; Hsiao, C. Study on improving sprout forcing methods for early ginger (Zingiber officinale) production. J. Taiwan Soc. Hortic. Sci. 2014, 60, 253–264. [Google Scholar]
- Dourado, C.; Pinto, C.; Barba, F.J.; Lorenzo, J.M.; Delgadillo, I.; Saraiva, J.A. Innovative non-thermal technologies affecting potato tuber and fried potato quality. Trends Food Sci. Technol. 2019, 88, 274–289. [Google Scholar] [CrossRef]
- Grevsen, K.; Sorensen, J.N. Sprouting and yield in bulb onions (Allium cepa L.) as influenced by cultivar, plant establishment methods, maturity at harvest and storage conditions. J. Hortic. Sci. Biotechnol. 2004, 79, 877–884. [Google Scholar] [CrossRef]
- Sonnewald, S.; Sonnewald, U. Regulation of potato tuber sprouting. Planta 2014, 239, 27–38. [Google Scholar] [CrossRef] [Green Version]
- Beale, A.J.; Ramírez, M.; Díaz, M.; Muñoz, A.; Flores, C. Effect of seed sett weight of ginger (Zingiber officinale) on yield. In Food Safety and Value Added Production and Marketing in Tropical Crops, Proceedings of the Caribbean Food Crops Society 42th Annual Meeting, Carolina, Puerto Rico, 9–15 July 2006; Santiago, H.L., Lugo, W.I., Eds.; Caribbean Food Crops Society: Carolina, Puerto Rico, 2006; pp. 407–411. [Google Scholar] [CrossRef]
- Hossain, A.; Ishimine, Y.; Akamine, H.; Motomura, K. Effects of seed rhizome size on growth and yield of turmeric (Curcuma longa L.). Plant Prod. Sci. 2005, 8, 86–94. [Google Scholar] [CrossRef]
Asymptotic 95% Confidence Interval | |||||
Species | Parameter z | Estimate | SE | Lower | Upper |
Ginger | Tₘᵢₙ | 17.1 | 0.535 | 16.0 | 18.1 |
Tₒₚₜ | 27.5 | 0.385 | 26.7 | 28.3 | |
Tₘₐₓ | 35.2 | 1.387 | 32.5 | 38.0 | |
Rₘₐₓ | 0.0342 | 0.000535 | 0.0331 | 0.0353 | |
Turmeric | Tₘᵢₙ | 17.2 | 0.826 | 15.5 | 18.8 |
Tₒₚₜ | 30.1 | 0.636 | 28.8 | 31.4 | |
Tₘₐₓ | 32.8 | 0.676 | 31.5 | 34.2 | |
Rₘₐₓ | 0.0318 | 0.00134 | 0.0291 | 0.0344 |
Experiment | Sprouts per Plant (No.) | Average Sprout Height (mm) | Roots per Plant (No.) | Primary Root Length (mm) | Rooting Index (1 to 5) | Days to 1-cm Sprout | Days to 5-cm Sprout | Transplant Stage in Greenhouse (days) |
---|---|---|---|---|---|---|---|---|
Calibration | ||||||||
21 °C | 5.1 | 3.1 c z | - | - | - | 57.9 a | 81.9 a | 29.2 a |
25 °C | 6.0 | 4.4 b | 3.0 ab | 19.8 c | 2.1 a | 32.7 b | 51.6 c | 23.4 b |
27 °C | 5.3 | 5.8 a | 4.5 a | 28.1 b | 3.2 a | 20.3 c | 31.2 c | 18.2 b |
30 °C | 4.8 | 6.7 a | 4.6 a | 37.9 a | 2.9 a | 21.0 c | 32.3 c | 20.5 b |
32 °C | 5.5 | 5.2 a | 2.7 b | 31.3 a | 1.4 b | 24.3 c | 38.1 b | 32.7 a |
Treatment (T) | NS | *** | *** | *** | ** | *** | *** | ** |
Variety (V) | NS | NS | NS | NS | NS | NS | NS | NS |
T × V | NS | NS | NS | NS | NS | NS | NS | NS |
Validation | ||||||||
14 °C | 0.3 c | 0.1 c | - | - | - | - | - | - |
20 °C | 4.6 a | 2.2 b | - | - | - | 62.2 a | 87.0 a | 24.6 a |
25 °C | 5.5 a | 3.8 a | 6.5 a | 27.7 a | 2.3 a | 35.3 b | 52.0 b | 22.7 a |
30 °C | 4.0 a | 3.7 a | 5.9 a | 30.9 a | 2.8 a | 22.6 c | 34.5 c | 19.2 b |
35 °C | 3.3 b | 2.6 b | 0.3 b | 4.4 b | 0.5 b | 30.1 b | 55.4 b | - |
40 °C | - | - | - | - | - | - | - | - |
T | ** | *** | *** | ** | *** | *** | *** | ** |
V | NS | NS | NS | NS | NS | NS | NS | NS |
T × V | NS | NS | NS | NS | NS | NS | NS | NS |
Parameter | Weight | Length | Width | Thickness |
---|---|---|---|---|
Ginger | ||||
Weight | 1 | |||
Length | 0.44 *** | 1 | ||
Width | 0.65 *** | 0.19 * | 1 | |
Thickness | 0.32 ** | 0.04 | 0.19 * | 1 |
Turmeric | ||||
Weight | 1 | |||
Length | 0.76 *** | 1 | ||
Width | 0.62 *** | 0.42 *** | 1 | |
Thickness | 0.08 | 0.04 | 0.07 | 1 |
p-Value | Reg. Coef. | |
---|---|---|
Ginger | ||
Model | <0.0001 | |
Treatment | ||
Temperature | <0.0001 | |
Covariates | ||
Weight | 0.5018 | −0.09 |
Length | 0.2410 | 0.08 |
Width | 0.6085 | −0.04 |
Thickness | 0.2029 | −0.003 |
Turmeric | ||
Model | <0.0001 | |
Treatment | ||
Temperature | <0.0001 | |
Covariates | ||
Weight | 0.4151 | −0.1 |
Length | 0.2744 | 0.09 |
Width | 0.6642 | −0.02 |
Thickness | 0.4427 | −0.004 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Retana-Cordero, M.; Fisher, P.R.; Gómez, C. Modeling the Effect of Temperature on Ginger and Turmeric Rhizome Sprouting. Agronomy 2021, 11, 1931. https://doi.org/10.3390/agronomy11101931
Retana-Cordero M, Fisher PR, Gómez C. Modeling the Effect of Temperature on Ginger and Turmeric Rhizome Sprouting. Agronomy. 2021; 11(10):1931. https://doi.org/10.3390/agronomy11101931
Chicago/Turabian StyleRetana-Cordero, Marlon, Paul R. Fisher, and Celina Gómez. 2021. "Modeling the Effect of Temperature on Ginger and Turmeric Rhizome Sprouting" Agronomy 11, no. 10: 1931. https://doi.org/10.3390/agronomy11101931
APA StyleRetana-Cordero, M., Fisher, P. R., & Gómez, C. (2021). Modeling the Effect of Temperature on Ginger and Turmeric Rhizome Sprouting. Agronomy, 11(10), 1931. https://doi.org/10.3390/agronomy11101931