Quantitative Trait Loci Mapping for Vigour and Survival Traits of Barley Seedlings after Germinating under Salinity Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Germplasm
2.2. Germination Assays
2.3. Seedling Survival and Vigour Evaluation
2.4. Phenotypic Data Analysis
2.5. DNA Extraction and Molecular Marker Selection
2.6. Genetic Linkage Map Construction and QTL Analysis
3. Results
3.1. Phenotypic Response to Salinity Stress
3.2. Correlation among Seedling Traits
3.3. Bi-Parent QTL Mapping for Seedling Survival Traits
3.4. Core QTLs Regions for Seedling Survival Traits under Salinity Stress Mapped on 3H and 1H
4. Discussion
4.1. The Dynamic Reaction of Barley Seedlings to Salinity Induced Stress
4.2. Major QTLs Locations and the Comparison of the Two Analysis Methods
5. Conclusions and Recommendations
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Angessa, T.; Chen, K.; Farleigh, D.; Bussanich, J.; McFawn, L.A.; Whitfield, K.; Weir, B.; Cosh, S.; Chimdi, A.; Gurmu, G.; et al. Exploring barley germplasm for yield improvement under sulphur-limiting environments. In Achieving Sustainable Cultivation of Barley; Burleigh Dodds Science Publishing: Cambridge, UK, 2020; pp. 1–25. [Google Scholar]
- Hill, C.B.; Angessa, T.T.; Zhang, X.Q.; Chen, K.; Zhou, G.; Tan, C.; Wang, P.; Westcott, S.; Li, C. A global barley panel revealing genomic signatures of breeding in modern cultivars. bioRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Mikołajczak, K.; Ogrodowicz, P.; Ćwiek-Kupczyńska, H.; Weigelt-Fischer, K.; Mothukuri, S.R.; Junker, A.; Altmann, T.; Krystkowiak, K.; Adamski, T.; Surma, M.; et al. Image Phenotyping of Spring Barley (Hordeum vulgare L.) RIL Population under Drought: Selection of Traits and Biological Interpretation. Front. Plant Sci. 2020, 11, 743. [Google Scholar] [CrossRef] [PubMed]
- Berger, B.; Parent, B.; Tester, M. High-throughput shoot imaging to study drought responses. J. Exp. Bot. 2010, 61, 3519–3528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Q.; Sun, G.; Ren, X.; Wang, J.; Du, B.; Li, C.; Sun, D. Detection of QTLs for seedling characteristics in barley (Hordeum vulgare L.) grown under hydroponic culture condition. BMC Genet. 2017, 18, 94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, W.; Yan, J.; Jiang, Y.; Zhan, Z.; Zhao, G.; Tondelli, A.; Luigi, C.; Cheng, J. Genetic dissection of winter barley seedling response to salt and osmotic stress. Mol. Breed. 2019, 39, 137. [Google Scholar] [CrossRef] [Green Version]
- Batool, N.; Ilyas, N.; Shahzad, A.; Hauser, B.A.; Arshad, M. Quantitative trait loci (QTLs) mapping for salt stress tolerance in wheat at germination stage. Pak. J. Agric. Sci. 2018, 55, 47–55. [Google Scholar]
- Sedzik, M.; Smolik, B.; Krupa-Malkiewicz, M. Effect of nicotinamide in alleviating stress caused by lead in spring barley seedling. J. Elementol. 2019, 24, 281–291. [Google Scholar]
- Angessa, T.T.; Zhang, X.Q.; Zhou, G.; Zhang, W.; Li, C.; Broughton, S. Early growth stages salinity stress tolerance in CM72 × Gairdner doubled haploid barley population. PLoS ONE 2017, 12, e0179715. [Google Scholar] [CrossRef] [Green Version]
- Williams, G.; Vanniarajan, C.; Vetriventhan, M.; Thiageshwari, S.; Anandhi, K.; Rajagopal, B. Genetic variability for seedling stage salinity tolerance in barnyard millet [Echinochloa frumentaceae (Roxb.) Link]. Electron. J. Plant Breed. 2019, 10, 552–558. [Google Scholar] [CrossRef]
- Priyadharshini, B.; Vignesh, M.; Prakash, M.; Anandan, R. Evaluation of black gram genotypes for saline tolerance at seedling stage. Indian J. Agric. Res. 2019, 53, 83–87. [Google Scholar]
- Thanh, N.V.; Bharali, B. Salinity stress on rice (Oryza sativa L.) crop and its amelioration. J. Pharmacogn. Phytochem. 2019, 8, 1435–1441. [Google Scholar]
- Aminifard, M.H.; Bayat, H. Evaluation of Seed Germination and Seedling Growth Characteristics of Sweet Pepper (Capsicum annuum) Under Salinity and Drought Treatment. Iran. J. Seed Res. 2020, 6, 137–149. [Google Scholar] [CrossRef]
- Rajabi Dehnavi, A.; Zahedi, M.; Ludwiczak, A.; Cardenas Perez, S.; Piernik, A. Effect of Salinity on Seed Germination and Seedling Development of Sorghum (Sorghum bicolor (L.) Moench) Genotypes. Agronomy 2020, 10, 859. [Google Scholar] [CrossRef]
- Kanbar, A. Effect of salinity stress on germination and seedling growth of barley (Hordeum vulgare L.) varieties. Adv. Environ. Biol. 2014, 1, 244–248. [Google Scholar]
- Ko, J.; Ng, C.T.; Jeong, S.; Kim, J.H.; Lee, B.; Kim, H.Y. Impacts of regional climate change on barley yield and its geographical variation in South Korea. Int. Agrophys. 2019, 33, 81–96. [Google Scholar] [CrossRef]
- Giraldo, P.; Benavente, E.; Manzano-Agugliaro, F.; Gimenez, E. Worldwide research trends on wheat and barley: A bibliometric comparative analysis. Agronomy 2019, 9, 352. [Google Scholar] [CrossRef] [Green Version]
- USDA (United States Department of Agriculture). World Agricultural Production, Foreign Agricultural Service; USDA: Washington, DC, USA, 2020.
- Hossain, M.S. Present scenario of global salt affected soils, its management and importance of salinity research. Int. Res. J. Biol. Sci. 2019, 1, 1–3. [Google Scholar]
- Hasanuzzaman, M.; Nahar, K.; Alam, M.; Bhowmik, P.C.; Hossain, M.; Rahman, M.M.; Prasad, M.N.V.; Ozturk, M.; Fujita, M. Potential use of halophytes to remediate saline soils. BioMed Res. Int. 2014, 2014, 589341. [Google Scholar] [CrossRef]
- El Goumi, Y.; Fakiri, M.; Lamsaouri, O.; Benchekroun, M. Salt stress effect on seed germination and some physiological traits in three Moroccan barley (Hordeum vulgare L.) cultivars. J. Mater. Environ. Sci. 2014, 5, 625–632. [Google Scholar]
- Ho, W.W.H.; Hill, C.B.; Doblin, M.S.; Shelden, M.C.; van de Meene, A.; Rupasinghe, T.; Roessner, U. Integrative Multi-Omics analyses of Barley Rootzones under salinity stress reveal two distinctive salt tolerance mechanisms. Plant Commun. 2020, 2020, 100031. [Google Scholar] [CrossRef]
- Witzel, K.; Weidner, A.; Surabhi, G.K.; Varshney, R.K.; Kunze, G.; Buck-Sorlin, G.H.; Mock, H.P. Comparative analysis of the grain proteome fraction in barley genotypes with contrasting salinity tolerance during germination. Plant Cell Environ. 2010, 33, 211–222. [Google Scholar] [CrossRef] [PubMed]
- Xue, W.; Yan, J.; Zhao, G.; Jiang, Y.; Cheng, J.; Cattivelli, L.; Tondelli, A. A major QTL on chromosome 7HS controls the response of barley seedling to salt stress in the Nure× Tremois population. BMC Genet. 2017, 18, 79. [Google Scholar] [CrossRef] [Green Version]
- Bálint, A.F.; Szira, F.; Börner, A.; Galiba, G. Segregation-and association based mapping of loci influencing osmotic tolerance in barley. Acta Biol. Szeged. 2008, 52, 101–102. [Google Scholar]
- Wójcik-Jagła, M.; Rapacz, M.; Tyrka, M.; Kościelniak, J.; Crissy, K.; Żmuda, K. Comparative QTL analysis of early short-time drought tolerance in Polish fodder and malting spring barleys. Theor. Appl. Genet. 2013, 126, 3021–3034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mwando, E.; Han, Y.; Angessa, T.T.; Zhou, G.; Hill, C.B.; Zhang, X.Q.; Li, C. Genome-wide association study of salinity tolerance during germination in barley (Hordeum vulgare L.). Front. Plant Sci. 2020, 11, 118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, D.; Huang, Y.; Zhang, X.; Wei, K.; Westcott, S.; Li, C.; Chen, M.; Zhang, G.; Lance, R. Identification of QTLs associated with salinity tolerance at late growth stage in barley. Euphytica 2009, 169, 187–196. [Google Scholar] [CrossRef]
- Adjel, F.; Kadi, Z.; Bouzerzour, H.; Benmahammed, A. Salt stress effects on seed germination and seedling growth of barley (Hordeum Vulgare L.) genotypes. J. Agric. Sustain. 2013, 3, 223–237. [Google Scholar]
- Han, Y.; Yin, S.; Huang, L.; Wu, X.; Zeng, J.; Liu, X.; Qiu, L.; Munns, R.; Chen, Z.H.; Zhang, G. A sodium transporter HvHKT1; 1 confers salt tolerance in barley via regulating tissue and cell ion homeostasis. Plant Cell Physiol. 2018, 59, 1976–1989. [Google Scholar] [CrossRef]
- Karunarathne, S.D.; Han, Y.; Zhang, X.Q.; Zhou, G.; Hill, C.B.; Chen, K.; Angessa, T.; Li, C. Genome-wide association study and identification of candidate genes for nitrogen use efficiency in barley (Hordeum vulgare L.). Front. Plant Sci. 2020, 11, 1361. [Google Scholar] [CrossRef]
- Zhao, X.; Joo, J.C.; Kim, D.; Lee, J.; Kim, J.Y. Estimation of the seedling vigor index of sunflowers treated with various heavy metals. J. Bioremediat. Biodegrad. 2016, 7, 353. [Google Scholar] [CrossRef]
- Abdul-Baki, A.A.; Anderson, J.D. Vigor determination in soybean seed by multiple criteria. Crop Sci. 1973, 13, 630–633. [Google Scholar] [CrossRef]
- Sagar, A.; Tajkia, J.E.; Haque, M.E.; Fakir, M.S.A.; Hossain, A.K.M.Z. Screening of sorghum genotypes for salt-tolerance based on seed germination and seedling stage. Fundam. Appl. Agric. 2019, 4, 735–743. [Google Scholar] [CrossRef]
- Podder, S.; Ray, J.; Das, D.; Sarker, B.C. Effect of salinity (NaCl) on germination and seedling growth of mungbean (Vigna radiata L.). J. Biosci. Agric. Res. 2020, 24, 2012–2019. [Google Scholar] [CrossRef]
- IBM Corporation. IBM SPSS Statistics for Windows; Version 25.0; IBM Corp.: Armonk, NY, USA, 2017. [Google Scholar]
- Stein, N.; Herren, G.; Keller, B. A new DNA extraction method for high-throughput marker analysis in a large-genome species such as Triticum aestivum. Plant Breed. 2001, 120, 354–356. [Google Scholar] [CrossRef]
- Wang, D.; Shi, J.; Carlson, S.R.; Cregan, P.B.; Ward, R.W.; Diers, B.W. A low-cost, high-throughput polyacrylamide gel electrophoresis system for genotyping with microsatellite DNA markers. Crop Sci. 2003, 43, 1828–1832. [Google Scholar] [CrossRef] [Green Version]
- Ooijen, V. MapQTL5.0, Software for the Mapping of Quantitative Trait Loci in Experimental Populations; Kyazma BV: Wageningen, The Netherlands, 2004. [Google Scholar]
- Voorrips, R.E. MapChart: Software for the graphical presentation of linkage maps and QTLs. J. Hered. 2002, 93, 77–78. [Google Scholar] [CrossRef] [Green Version]
- Sayed, M.A.; Hamada, A.; Lèon, J.; Naz, A.A. Genetic mapping reveals novel exotic QTL alleles for seminal root architecture in barley advanced backcross double haploid population. Euphytica 2017, 213, 2. [Google Scholar] [CrossRef]
- Qu, X.X.; Huang, Z.Y.; Baskin, J.M.; Baskin, C.C. Effect of temperature, light and salinity on seed germination and radicle growth of the geographically widespread halophyte shrub Halocnemum strobilaceum. Ann. Bot. 2008, 101, 293–299. [Google Scholar] [CrossRef] [Green Version]
- Debez, A.; Ben Slimen, I.D.; Bousselmi, S.; Atia, A.; Farhat, N.; El Kahoui, S.; Abdelly, C. Comparative analysis of salt impact on sea barley from semi-arid habitats in Tunisia and cultivated barley with special emphasis on reserve mobilization and stress recovery aptitude. Plant Biosyst. Int. J. Deal. Asp. Plant Biol. 2019, 17, 1–9. [Google Scholar] [CrossRef]
- Kilic, S.; Kahraman, A. The Mitigation Effects of Exogenous Hydrogen Peroxide when Alleviating Seed Germination and Seedling Growth Inhibition on Salinity-Induced Stress in Barley. Pol. J. Environ. Stud. 2016, 25, 1053–1059. [Google Scholar] [CrossRef]
- Wang, H.; Chen, G.; Zhang, H.; Liu, B.; Yang, Y.; Qin, L.; Chen, E.; Guan, Y. Identification of QTLs for salt tolerance at germination and seedling stage of Sorghum bicolor L. Moench. Euphytica 2014, 196, 117–127. [Google Scholar] [CrossRef]
- Cui, D.; Wu, D.; Somarathna, Y.; Xu, C.; Li, S.; Li, P.; Zhang, H.; Chen, H.; Zhao, L. QTL mapping for salt tolerance based on snp markers at the seedling stage in maize (Zea mays L.). Euphytica 2015, 203, 273–283. [Google Scholar] [CrossRef]
- Nonogaki, H.; Bassel, G.W.; Bewley, J.D. Germination—Still a mystery. Plant Sci. 2010, 179, 574–581. [Google Scholar] [CrossRef]
- Alam, M.Z.; Stuchbury, T.; Naylor, R.E.L. Effect of NaCl and PEG induced osmotic potentials on germination and early seedling growth or rice cultivars differing in salt tolerance. Pak. J. Biol. Sci. 2002, 5, 1207–1210. [Google Scholar] [CrossRef]
- Tokarz, B.; Wójtowicz, T.; Makowski, W.; Jędrzejczyk, R.J.; Tokarz, K.M. What is the Difference between the Response of Grass Pea (Lathyrus sativus L.) to Salinity and Drought Stress?—A Physiological Study. Agronomy 2020, 10, 833. [Google Scholar] [CrossRef]
- Kataria, S.; Verma, S.K. Salinity stress responses and adaptive mechanisms in major glycophytic crops: The story so far. In Salinity Responses and Tolerance in Plants; Springer: Cham, Switzerland, 2018; Volume 1, pp. 1–39. [Google Scholar]
- Wen, D.; Hou, H.; Meng, A.; Meng, J.; Xie, L.; Zhang, C. Rapid evaluation of seed vigor by the absolute content of protein in seed within the same crop. Sci. Rep. 2018, 8, 5569. [Google Scholar] [CrossRef]
- Lu, X.L.; Niu, A.L.; Cai, H.Y.; Zhao, Y.; Liu, J.W.; Zhu, Y.G.; Zhang, Z.H. Genetic dissection of seedling and early vigor in a recombinant inbred line population of rice. Plant Sci. 2007, 172, 212–220. [Google Scholar] [CrossRef]
- Capo-chich, L.; Eldridge, S.; Elakhdar, A.; Kumamaru, T.; Anyia, A. Major QTLs for seedling traits in barley using a DArT-based linkage map. bioRxiv 2019. [Google Scholar] [CrossRef]
- Zhu, C.; Gore, M.; Buckler, E.S.; Yu, J. Status and Prospects of Association Mapping in Plants. Plant Genome J. 2008, 1, 5. [Google Scholar] [CrossRef]
- Zhou, G.; Johnson, P.; Ryan, P.R.; Delhaize, E.; Zhou, M. Quantitative trait loci for salinity tolerance in barley (Hordeum vulgare L.). Mol. Breed. 2012, 29, 427–436. [Google Scholar] [CrossRef]
- Mano, Y.; Takeda, K. Mapping quantitative trait loci for salt tolerance at germination and the seedling stage in barley (Hordeum vulgare L.). Euphytica 1997, 94, 263–272. [Google Scholar] [CrossRef]
- Siahsar, B.A.; Narouei, M. Mapping QTLs of physiological traits associated with salt tolerance in ‘Steptoe’ × ‘Morex’ doubled haploid lines of barley at seedling stage. J. Food Agric. Environ. 2010, 8, 751–759. [Google Scholar]
- Xu, R.; Wang, J.; Li, C.; Johnson, P.; Lu, C.; Zhou, M. A single locus is responsible for salinity tolerance in a Chinese landrace barley (Hordeum vulgare L.). PLoS ONE 2012, 7, e43079. [Google Scholar] [CrossRef] [PubMed]
- Aminfar, Z.; Dadmehr, M.; Korouzhdehi, B.; Siasar, B.; Heidari, M. Determination of chromosomes that control physiological traits associated with salt tolerance in barley at the seedling stage. Afr. J. Biotechnol. 2011, 10, 8794–8799. [Google Scholar]
- Fan, Y.; Zhou, G.; Shabala, S.; Chen, Z.H.; Cai, S.; Li, C.; Zhou, M. Genome-wide association study reveals a new QTL for salinity tolerance in barley (Hordeum vulgare L.). Front. Plant Sci. 2016, 7, 946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hazzouri, K.M.; Khraiwesh, B.; Amiri, K.; Pauli, D.; Blake, T.; Shahid, M.; Nelson, D.; Mansour, A.L.; Salehi-Ashtiani, K.; Purugganan, M.; et al. Mapping of HKT1; 5 gene in barley using GWAS approach and its implication in salt tolerance mechanism. Front. Plant Sci. 2018, 9, 156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohamed, N.E.M.; Said, A.A.; Mustafa, A.A.; Léon, J. Association Mapping for Salinity Tolerance Related Traits in a Structured Barley Population. Egypt. J. Agron. 2015, 37, 11–33. [Google Scholar]
- Mascher, M.; Gundlach, H.; Himmelbach, A.; Beier, S.; Twardziok, S.-O.; Wicker, T.; Radchuk, V.; Dockter, C.; Hedley, P.E.; Russell, J.; et al. A chromosome conformation capture ordered sequence of the barley genome. Nature 2017, 544, 427–448. [Google Scholar] [CrossRef] [Green Version]
- Kosová, K.; Vítámvás, P.; Prášil, I.T. Wheat and barley dehydrins under cold, drought, and salinity—What can LEA-II proteins tell us about plant stress response? Front. Plant Sci. 2014, 5, 343. [Google Scholar] [CrossRef] [Green Version]
- Passricha, N.; Saifi, S.K.; Kharb, P.; Tuteja, N. Rice lectin receptor-like kinase provides salinity tolerance by ion homeostasis. Biotechnol. Bioeng. 2020, 117, 498–510. [Google Scholar] [CrossRef]
- Mwando, E.; Angessa, T.T.; Han, Y.; Li, C. Salinity tolerance in barley during germination—Homologs and potential genes. J. Zhejiang Univ. Sci. B 2020, 21, 93–121. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Westcott, S.; He, T.; McFawn, L.A.; Angessa, T.; Hill, C.; Tan, C.; Zhang, X.; Zhou, G.; Li, C. Genome-wide association studies reveal QTL hotspots for grain brightness and black point traits in barley. Crop J. 2020. [Google Scholar] [CrossRef]
Germplasm Set | Variable | Mean | Max | Min | Standard Deviation | Coefficient of Variations | Standard Error | between Genotypes |
---|---|---|---|---|---|---|---|---|
DH population | GTI | 81.3 | 97.0 | 47.4 | 16.3 | 0.2 | 4.1 | ** |
SLI | 35.5 | 62.5 | 23.3 | 9.2 | 0.3 | 2.3 | ** | |
RLI | 72.7 | 91.8 | 59.8 | 10.0 | 0.1 | 2.5 | ** | |
R/SLI | 21.5 | 37.2 | 11.6 | 5.6 | 0.3 | 0.1 | ** | |
SDWI | 60.6 | 78.8 | 40.0 | 12.6 | 0.2 | 3.1 | ** | |
RDWI | 72.9 | 100.8 | 51.0 | 15.2 | 0.2 | 3.8 | ** | |
R/SDWI | 12.4 | 20.0 | 6.5 | 3.1 | 0.2 | 0.1 | ** | |
trSL (cm) | 74.4 | 93.3 | 40.0 | 15.0 | 0.2 | 3.7 | ** | |
trRL (cm) | 159.1 | 186.7 | 112.5 | 19.3 | 0.1 | 4.8 | ** | |
trR/SL | 2.2 | 3.3 | 1.7 | 0.4 | 0.2 | 0.1 | ** | |
trSDW (mg) | 17.0 | 26.0 | 11.0 | 4.1 | 0.2 | 1.1 | ** | |
trRDW (mg) | 40.2 | 53.3 | 20.4 | 8.2 | 0.2 | 2.4 | ** | |
trR/SDW | 2.3 | 3.0 | 1.9 | 0.3 | 0.1 | 0.1 | ** | |
trSVIL | 91.7 | 131.6 | 46.3 | 23.9 | 0.3 | 6.0 | ** | |
RSVIL | 44.0 | 80.3 | 26.1 | 11.2 | 0.2 | 2.8 | ** | |
trSVIDW | 1.0 | 1.9 | 0.5 | 0.3 | 0.3 | 0.1 | ** | |
RSVIDW | 25.6 | 76.7 | 15.1 | 9.7 | 0.4 | 2.4 | ** | |
Diversity panel | GTI | 83.7 | 97.0 | 42.4 | 12.2 | 0.2 | 1.5 | ** |
SLI | 42.8 | 90.0 | 11.4 | 13.7 | 0.5 | 2.4 | ** | |
RLI | 71.3 | 101.7 | 57.2 | 13.3 | 0.4 | 3.4 | ** | |
R/SLI | 14.9 | 62.1 | 9.5 | 7.2 | 0.6 | 0.1 | ** | |
SDWI | 43.8 | 96.6 | 13.4 | 13.1 | 0.5 | 2.3 | ** | |
RDWI | 64.8 | 100.0 | 44.2 | 12.1 | 0.5 | 3.2 | ** | |
R/SDWI | 13.4 | 47.7 | 8.6 | 5.7 | 0.6 | 0.1 | ** | |
trSL (cm) | 59.1 | 120.0 | 13.3 | 22.3 | 0.5 | 3.5 | ** | |
trRL (cm) | 78.0 | 125.0 | 30.0 | 19.1 | 0.5 | 3.9 | ** | |
trR/SL | 1.2 | 7.3 | 0.7 | 0.9 | 0.8 | 0.1 | ** | |
trSDW (mg) | 16.9 | 27.4 | 7.9 | 3.8 | 0.5 | 1.4 | ** | |
trRDW (mg) | 19.2 | 39.5 | 5.7 | 6.8 | 0.5 | 1.2 | ** | |
trR/SDW | 0.7 | 3.3 | 0.4 | 0.4 | 0.7 | 0.1 | ** | |
trSVIL | 60.2 | 118.4 | 23.0 | 18.4 | 0.5 | 3.4 | ** | |
RSVIL | 47.9 | 88.3 | 25.4 | 13.3 | 0.5 | 2.7 | ** | |
trSVIDW | 1.5 | 3.3 | 0.8 | 0.5 | 0.5 | 0.1 | ** | |
RSVIDW | 44.6 | 84.8 | 22.0 | 11.7 | 0.5 | 2.5 | ** |
GTI | trSL | trRL | trR/SL | trSDW | trRDW | trR/SDW | trSVIL | RSVIL | trSVIDW | RSVIDW | |
---|---|---|---|---|---|---|---|---|---|---|---|
GTI | 1 | 0.002 | 0.529 ** | 0.189 | 0.002 | 0.281 ** | 0.14 | 0.471 ** | 0.461 ** | 0.390 ** | 0.462 ** |
trSL | 0.043 | 1 | 0.401 ** | −0.698 ** | 0.831 ** | 0.350 ** | −0.678 ** | 0.747 ** | 0.694 ** | 0.639 ** | 0.549 ** |
trRL | 0.588 ** | 0.689 ** | 1 | 0.07 | 0.291** | 0.653 ** | 0.036 | 0.799 ** | 0.729 ** | 0.542 ** | 0.502 ** |
trR/SL | 0.299 ** | −0.859 ** | −0.251 ** | 1 | −0.584 ** | −0.064 | 0.872 ** | −0.319 ** | −0.305 ** | −0.334 ** | −0.297 ** |
trSDW | 0.390 ** | 0.470 ** | 0.614 ** | −0.211** | 1 | 0.392 ** | −0.726 ** | 0.626 ** | 0.569 ** | 0.803 ** | 0.618 ** |
trRDW | 0.177 | 0.676 ** | 0.770 ** | −0.383 ** | 0.815 ** | 1 | 0.064 | 0.588 ** | 0.524 ** | 0.709 ** | 0.499 ** |
trR/SDW | 0.365 ** | 0.278 ** | 0.162 | −0.277 ** | −0.392 ** | 0.202 | 1 | −0.335 ** | −0.316 ** | −0.413 ** | −0.374 ** |
trSVIL | 0.809 ** | 0.188 | 0.486 ** | −0.01 | 0.031 | 0.337 ** | 0.463 ** | 1 | 0.932 ** | 0.848 ** | 0.760 ** |
RSVIL | 0.831 ** | −0.172 | 0.042 | 0.216 ** | −0.427 ** | −0.155 | 0.439 ** | 0.744 ** | 1 | 0.779 ** | 0.837 ** |
trSVIDW | 0.442 ** | 0.612 ** | 0.631 ** | −0.403 ** | 0.483 ** | 0.684 ** | 0.234** | 0.314 ** | 0.251 ** | 1 | 0.799 ** |
RSVIDW | 0.339 ** | 0.443 ** | 0.306 ** | −0.346 ** | −0.119 | 0.144 | 0.414 ** | 0.203 | 0.496 ** | 0.719 ** | 1 |
|
Trait | Marker | Chr | Position cM | LOD | Variance | % Explained | Additive effect | Tolerance Source | H2 |
---|---|---|---|---|---|---|---|---|---|
trRL | bPb-9624 | 3 | 173.172 | 7.67 | 27.117 | 29.00 | 3.507 | CM72 | 0.71 |
bPb-1278 | 4 | 78.006 | 3.55 | 24.200 | 7.60 | −1.792 | Gairdner | ||
trSVL | bPb-3623 | 3 | 190.268 | 5.14 | 86.774 | 20.50 | 4.972 | CM72 | 0.82 |
bPb-5666 | 3 | 189.664 | 4.95 | 87.511 | 19.90 | 4.899 | CM72 | ||
trSVDW | bPb-6383 | 3 | 190.981 | 3.45 | 0.051 | 10.50 | 0.086 | CM72 | 0.77 |
trSVIL | bPb-4576 | 3 | 184.281 | 4.10 | 0.056 | 17.40 | 0.113 | CM72 | 0.79 |
bPb-9624 | 3 | 173.172 | 4.06 | 0.056 | 17.20 | 0.110 | CM72 | ||
bPb-9820 | 4 | 244.943 | 3.01 | 0.050 | 10.10 | −0.081 | Gairdner | ||
trSVIDW | bPb-4616 | 3 | 142.225 | 3.40 | 0.089 | 15.80 | 0.140 | CM72 | 0.68 |
Bmac0032 | 1 | 28.004 | 3.21 | 0.077 | 8.60 | 0.100 | CM72 | ||
bPb-9418 | 1 | 40.875 | 3.17 | 0.077 | 8.40 | 0.100 | CM72 | ||
bPb-4741 | 1 | 25.075 | 3.09 | 0.077 | 8.10 | 0.098 | CM72 | ||
bPb-9624 | 3 | 173.172 | 5.36 | 0.031 | 21.80 | 0.105 | CM72 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mwando, E.; Angessa, T.T.; Han, Y.; Zhou, G.; Li, C. Quantitative Trait Loci Mapping for Vigour and Survival Traits of Barley Seedlings after Germinating under Salinity Stress. Agronomy 2021, 11, 103. https://doi.org/10.3390/agronomy11010103
Mwando E, Angessa TT, Han Y, Zhou G, Li C. Quantitative Trait Loci Mapping for Vigour and Survival Traits of Barley Seedlings after Germinating under Salinity Stress. Agronomy. 2021; 11(1):103. https://doi.org/10.3390/agronomy11010103
Chicago/Turabian StyleMwando, Edward, Tefera Tolera Angessa, Yong Han, Gaofeng Zhou, and Chengdao Li. 2021. "Quantitative Trait Loci Mapping for Vigour and Survival Traits of Barley Seedlings after Germinating under Salinity Stress" Agronomy 11, no. 1: 103. https://doi.org/10.3390/agronomy11010103
APA StyleMwando, E., Angessa, T. T., Han, Y., Zhou, G., & Li, C. (2021). Quantitative Trait Loci Mapping for Vigour and Survival Traits of Barley Seedlings after Germinating under Salinity Stress. Agronomy, 11(1), 103. https://doi.org/10.3390/agronomy11010103