Sequential Applications of Synthetic Auxins and Glufosinate for Escaped Palmer Amaranth Control
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Studies
2.2. Greenhouse Study
3. Results
3.1. Field Study: 2,4-D Choline-Based Programs
3.2. Field Study: Dicamba-Based Programs
3.3. Greenhouse Study
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Korres, N.E.; Norsworthy, J.K.; Mauromoustakos, A. Effects of Palmer Amaranth (Amaranthus palmeri) Establishment Time and Distance from the Crop Row on Biological and Phenological Characteristics of the Weed: Implications on Soybean Yield. Weed Sci. 2019, 67, 126–135. [Google Scholar] [CrossRef] [Green Version]
- Franssen, A.S.; Skinner, D.Z.; Al-Khatib, K.; Horak, M.J.; Kulakow, P.A. Interspecific hybridization and gene flow of ALS resistance in Amaranthus species. Weed Sci. 2011, 49, 598–606. [Google Scholar] [CrossRef]
- Ward, S.M.; Webster, T.M.; Steckel, L.E. Palmer Amaranth (Amaranthus palmeri): A Review. Weed Technol. 2013, 27, 12–27. [Google Scholar] [CrossRef] [Green Version]
- Smith, D.T.; Baker, R.V.; Steele, G.L. Palmer amaranth (Amaranthus palmeri) impacts on yield, harvesting, and ginning in dryland cotton (Gossypium hirsutum). Weed Technol. 2000, 14, 122–126. [Google Scholar] [CrossRef]
- MacRae, A.W.; Culpepper, A.S.; Webster, T.M.; Sosnoskie, L.M.; Kichler, J.M. Glyphosate-resistant Palmer amaranth competition with Roundup Ready® cotton. In Beltwide Cotton Conf.; National Cotton Council: Nashville, TN, USA, 2008; pp. 8–11. [Google Scholar]
- Morgan, G.D.; Baumann, P.A.; Chandler, J.M. Weed Science Society of America Competitive Impact of Palmer Amaranth (Amaranthus palmeri) on Cotton (Gossypium hirsutum) Development and Yield1. Weed Technol. 2001, 15, 408–412. [Google Scholar] [CrossRef]
- Horak, M.J.; Loughin, T.M. Growth analysis of fourAmaranthusspecies. Weed Sci. 2000, 48, 347–355. [Google Scholar] [CrossRef]
- Culpepper, A.S.; Webster, T.M.; Sosnoskie, L.M.; York, A.C.; Nandula, V.K. Glyphosate-resistant Palmer amaranth in the United States. In Glyphosate Resistance in Crops and Weeds: History, Development, and Management; John Wiley & Sons: Hoboken, NJ, USA, 2010; pp. 195–212. [Google Scholar]
- Sellers, B.A.; Smeda, R.J.; Johnson, W.G.; Kendig, J.A.; Ellersieck, M.R. Comparative growth of six Amaranthus species in Missouri. Weed Sci. 2003, 51, 329–333. [Google Scholar] [CrossRef]
- Klingaman, T.E.; Oliver, L.R. Palmer amaranth (Amaranthus palmeri) interference in soybeans (Glycine max). Weed Sci. 1994, 42, 523–527. [Google Scholar] [CrossRef]
- Rowland, M.W.; Murray, D.S.; Verhalen, L.M. Full-season Palmer amaranth (Amaranthus palmeri) interference with cotton (Gossypium hirsutum). Weed Sci. 1999, 47, 305–309. [Google Scholar] [CrossRef]
- Bensch, C.N.; Horak, M.J.; Peterson, D. Interference of redroot pigweed (Amaranthus retroflexus), Palmer amaranth (A. palmeri), and common waterhemp (A. rudis) in soybean. Weed Sci. 2003, 51, 37–43. [Google Scholar] [CrossRef]
- Norsworthy, J.K.; Griffith, G.; Griffin, T.; Bagavathiannan, M.; Gbur, E.E. In-Field Movement of Glyphosate-Resistant Palmer Amaranth (Amaranthus palmeri) and Its Impact on Cotton Lint Yield: Evidence Supporting a Zero-Threshold Strategy. Weed Sci. 2014, 62, 237–249. [Google Scholar] [CrossRef]
- Keeley, P.E.; Carter, C.H.; Thullen, R.J. Influence of Planting Date on Growth of Palmer Amaranth (Amaranthus palmeri). Weed Sci. 1987, 35, 199–204. [Google Scholar] [CrossRef]
- Heap, I. The International Survey of Herbicide Resistant Weeds. 2019. Available online: www.weedscience.org (accessed on 14 February 2020).
- Anonymous. Liberty ® 280 SL Herbicide Label. Bayer CropScience, Research Triangle Park, North Carolina. 2016. Available online: http://www.cdms.net/ldat/ldUA5013.pdf (accessed on 14 February 2020).
- Tehranchian, P.; Norsworthy, J.K.; Powles, S.B.; Bararpour, M.T.; Bagavathiannan, M.V.; Barber, T.; Scott, R.C. Recurrent Sublethal-Dose Selection for Reduced Susceptibility of Palmer Amaranth (Amaranthus palmeri) to Dicamba. Weed Sci. 2017, 65, 206–212. [Google Scholar] [CrossRef]
- Inman, M.D.; Jordan, D.; York, A.C.; Jennings, K.M.; Monks, D.W.; Everman, W.J.; Bollman, S.L.; Fowler, J.T.; Cole, R.M.; Soteres, J.K. Long-Term Management of Palmer Amaranth (Amaranthus palmeri) in Dicamba-Tolerant Cotton. Weed Sci. 2016, 64, 161–169. [Google Scholar] [CrossRef]
- Merchant, R.M.; Culpepper, A.S.; Eure, P.M.; Richburg, J.S.; Braxton, L.B. Salvage Palmer Amaranth Programs Can Be Effective in Cotton Resistant to Glyphosate, 2,4-D, and Glufosinate. Weed Technol. 2014, 28, 316–322. [Google Scholar] [CrossRef]
- Lawrence, B.H.; Bond, J.A.; Eubank, T.W.; Golden, B.R.; Cook, D.R.; Mangialardi, J.P. Evaluation of 2,4-D–based Herbicide Mixtures for Control of Glyphosate-Resistant Palmer Amaranth (Amaranthus palmeri). Weed Technol. 2018, 33, 263–271. [Google Scholar] [CrossRef]
- Vann, R.A.; York, A.C.; Cahoon, C.W.; Buck, T.B.; Askew, M.C.; Seagroves, R.W. Effect of delayed dicamba plus glufosinate application on Palmer amaranth (Amaranthus palmeri) control and Xtendflex™ cotton yield. Weed Technol. 2017, 31, 633–640. [Google Scholar] [CrossRef]
- Barnett, K.A.; Culpepper, A.S.; York, A.C.; Steckel, L.E. Palmer Amaranth (Amaranthus palmeri) Control by Glufosinate plus Fluometuron Applied Postemergence to WideStrike®Cotton. Weed Technol. 2013, 27, 291–297. [Google Scholar] [CrossRef]
- Corbett, J.L.; Askew, S.D.; Thomas, W.E.; Wilcut, J.W. Weed Efficacy Evaluations for Bromoxynil, Glufosinate, Glyphosate, Pyrithiobac, and Sulfosate. Weed Technol. 2004, 18, 443–453. [Google Scholar] [CrossRef]
- Merchant, R.M.; Sosnoskie, L.M.; Culpepper, A.S.; Steckel, L.E.; York, A.C.; Braxton, L.B.; Ford, J.C. Weed response to 2, 4-D, 2, 4-DB, and dicamba applied alone or with glufosinate. J. Cotton Sci. 2013, 17, 212–218. [Google Scholar]
- Craigmyle, B.D.; Ellis, J.M.; Bradley, K. Influence of Weed Height and Glufosinate plus 2,4-D Combinations on Weed Control in Soybean with Resistance to 2,4-D. Weed Technol. 2013, 27, 271–280. [Google Scholar] [CrossRef]
- Vann, R.A.; York, A.C.; Cahoon, C.W.; Buck, T.B.; Askew, M.C.; Seagroves, R.W. Glufosinate plus dicamba for rescue palmer amaranth control in XtendFlex TM cotton. Weed Technol. 2017, 31, 666–674. [Google Scholar] [CrossRef]
- Coetzer, E.; Al-Khatib, K.; Peterson, D.E. Glufosinate Efficacy on Amaranthus Species in Glufosinate-Resistant Soybean (Glycine max)1. Weed Technol. 2002, 16, 326–331. [Google Scholar] [CrossRef]
- Anonymous. Xtendimax® with VaporGrip® Technology Label; Monsanto Co.: St. Louis, MO, USA, 2018; Available online: http://www.cdms.net/ldat/ldDF9006.pdf (accessed on 14 February 2020).
- Anonymous. Engenia® Herbicide Label; BASF Corporation: Triangle Park, NC, USA, 2018; Available online: http://www.cdms.net/ldat/ldDG8028.pdf (accessed on 14 February 2020).
- Anonymous. Tavium® Plus VaporGrip® Technology Label; Syngenta Crop Protection, LLC: Greensboro, NC, USA, 2019; Available online: http://www.cdms.net/ldat/ldFSO000.pdf (accessed on 18 March 2020).
- Randell, T.M.; Hand, L.C.; Vance, J.C.; Culpepper, A.S. Interval between sequential glufosinate applications influences weed control in cotton. Weed Technol. 2020, 34, 528–533. [Google Scholar] [CrossRef]
- Walker, E.R.; Oliver, L.R. Weed Seed Production as Influenced by Glyphosate Applications at Flowering Across a Weed Complex. Weed Technol. 2008, 22, 318–325. [Google Scholar] [CrossRef]
- Meyer, C.J.; Norsworthy, J.K. Influence of weed size on herbicide interactions for Enlist™ and Roundup Ready® Xtend® technologies. Weed Technol. 2019, 33, 569–577. [Google Scholar] [CrossRef] [Green Version]
- Cuvaca, I.; Currie, R.; Roozeboom, K.; Fry, J.; Jugulam, M. Increased Absorption and Translocation Contribute to Improved Efficacy of Dicamba to Control Early Growth Stage Palmer amaranth (Amaranthus palmeri). Weed Sci. 2019, 68, 1–25. [Google Scholar] [CrossRef]
- Shaner, D.L. Herbicide Handbook of the Weed Science Society of America; Weed Science Society of America: Champaign, IL, USA, 2014; pp. 22–232. [Google Scholar]
- ArrayExpress—A Database of Functional Genomics Experiments. Available online: http://www.ebi.ac.uk/arrayexpress/ (accessed on 12 November 2012).
- York, A.C. Weed management in cotton. In 2017 Cotton Information; North Carolina Cooperative Extension Service Publ. AG-417: Raleigh, NC, USA, 2017; pp. 66–112. Available online: https://content.ces.ncsu.edu/cotton-information/weed-management-in-cotton (accessed on 2 February 2020).
- Everman, W.J.; Burke, I.C.; Allen, J.R.; Collins, J.; Wilcut, J.W. Weed Control and Yield with Glufosinate-Resistant Cotton Weed Management Systems. Weed Technol. 2007, 21, 695–701. [Google Scholar] [CrossRef]
- Oosterhuis, D.M.; Hampton, R.E.; Wullschleger, S.D. Water deficits effects on the cotton leaf cuticle and the efficacy of defoliants. J. Prod. Agric. 1991, 4, 260–265. [Google Scholar] [CrossRef]
- Kirkwood, R. Recent developments in our understanding of the plant cuticle as a barrier to the foliar uptake of pesticides. Pest Manag. Sci. 1999, 55, 69–77. [Google Scholar] [CrossRef]
- Lemoine, R.; La Camera, S.; Atanassova, R.; Dédaldéchamp, F.; Allario, T.; Pourtau, N.; Bonnemain, J.-L.; Laloi, M.; Coutos-Thévenot, P.; Maurousset, L.; et al. Source-to-sink transport of sugar and regulation by environmental factors. Front. Plant Sci. 2013, 4. [Google Scholar] [CrossRef] [Green Version]
- Maschhoff, J.R.; Hart, S.E.; Baldwin, J.L. Effect of ammonium sulfate on the efficacy, absorption, and translocation of glufosinate. Weed Sci. 2000, 48, 2–6. [Google Scholar] [CrossRef]
- Pratt, D.; Kells, J.J.; Penner, D. Substitutes for Ammonium Sulfate as Additives with Glyphosate and Glufosinate1. Weed Technol. 2003, 17, 576–581. [Google Scholar] [CrossRef]
- Coetzer, E.; Al-Khatib, K. Photosynthetic inhibition and ammonium accumulation in Palmer amaranth after glufosinate application. Weed Sci. 2001, 49, 454–459. [Google Scholar] [CrossRef]
- Coetzer, E.; Al-Khatib, K.; Loughin, T.M. Glufosinate efficacy, absorption, and translocation in amaranth as affected by relative humidity and temperature. Weed Sci. 2001, 49, 8–13. [Google Scholar] [CrossRef]
- Culpepper, A.S.; Vance, J.C. Palmer Amaranth Control in Georgia Cotton during 2019. University of Georgia Extension. Circular 952. June 2019. Available online: https://extension.uga.edu/content/dam/extension-county-offices/irwin-county/anr/vol13.1-anr-newsletter-may2019.pdf (accessed on 18 March 2019).
# | POST-1 | POST-2 | POST-2 Timing (DAIT) D,E |
---|---|---|---|
1 | 2,4-D + glyphosate | glufosinate | 3 |
2 | 2,4-D + glyphosate | glufosinate | 7 |
3 | 2,4-D + glufosinate | glufosinate | 7 |
4 | 2,4-D + glufosinate | 2,4-D + glufosinate | 7 |
5 | 2,4-D + glufosinate | 2,4-D + glyphosate | 7 |
6 | Glufosinate | 2,4-D + glyphosate | 7 |
7 | Dicamba + glyphosate | glufosinate | 3 |
8 | Dicamba + glyphosate | glufosinate | 7 |
9 | Dicamba + glyphosate | dicamba + glyphosate | 7 |
10 | Glufosinate | dicamba + glyphosate | 7 |
11 | Glufosinate | glufosinate | 7 |
Treatments A,B | Control D,E (%) | |||||||
---|---|---|---|---|---|---|---|---|
POST-1 | POST-2 | POST-2 Timing (DAIT) C | 14 DAIT F | 28 DAIT G | ||||
2018 | 2019 | 2018–2019 | ||||||
2,4-D + glyphosate | glufosinate | 3 | 94 | ab | 94 | a | 93 | a |
2,4-D + glyphosate | glufosinate | 7 | 97 | a | 74 | b | 86 | ab |
2,4-D + glufosinate | glufosinate | 7 | 100 | a | 95 | a | 84 | ab |
2,4-D + glufosinate | 2,4-D + glufosinate | 7 | 96 | a | 96 | a | 93 | a |
2,4-D + glufosinate | 2,4-D + glyphosate | 7 | 84 | bc | 93 | a | 80 | abc |
Glufosinate | 2,4-D + glyphosate | 7 | 74 | c | 96 | a | 76 | bc |
Glufosinate | glufosinate | 7 | 91 | ab | 97 | a | 68 | c |
Treatments A,B | Height (cm) C,D,E | Biomass (kg ha−1) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
POST-1 | POST-2 | POST-2 Timing (DAIT) F | 2018 | 2019 | 2018 | 2019 | ||||
2,4-D + glyphosate | glufosinate | 3 | 27 | bc | 34 | b | 1294 | b | 2136 | c |
2,4-D + glyphosate | glufosinate | 7 | 14 | bc | 41 | b | 284 | b | 6195 | b |
2,4-D + glufosinate | glufosinate | 7 | 0 | c | 45 | b | 0 | b | 1587 | c |
2,4-D + glufosinate | 2,4-D + glufosinate | 7 | 12 | bc | 37 | b | 122 | b | 1251 | c |
2,4-D + glufosinate | 2,4-D + glyphosate | 7 | 22 | bc | 45 | b | 507 | b | 1678 | c |
Glufosinate | 2,4-D + glyphosate | 7 | 39 | b | 46 | b | 2972 | b | 3143 | bc |
Glufosinate | glufosinate | 7 | 21 | bc | 52 | b | 903 | b | 3387 | bc |
Nontreated control | - | - | 133 | a | 135 | a | 13,569 | a | 10,175 | a |
Treatments A | Control (%) B,C | |||||||
---|---|---|---|---|---|---|---|---|
POST-1 | POST-2 | POST-2 Timing (DAIT) F | 14 DAIT D | 28 DAIT E | ||||
2018–2019 | 2018 | 2019 | ||||||
Dicamba + glyphosate | glufosinate | 3 | 93 | a | 85 | ab | 89 | a |
Dicamba + glyphosate | glufosinate | 7 | 87 | ab | 100 | a | 79 | ab |
Dicamba + glyphosate | dicamba + glyphosate | 7 | 79 | ab | 85 | ab | 91 | a |
Glufosinate | dicamba + glyphosate | 7 | 77 | b | 70 | b | 76 | ab |
Glufosinate | glufosinate | 7 | 94 | a | 78 | b | 57 | b |
Treatments A,B | Height (cm) C,D | Biomass (kg ha−1) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
POST-1 | POST-2 | POST-2 Timing (DAIT) E | 2018 | 2019 | 2018 | 2019 | ||||
Dicamba + glyphosate | glufosinate | 3 | 27 | b | 35 | c | 403 | b | 3784 | b |
Dicamba + glyphosate | glufosinate | 7 | 0 | d | 40 | bc | 0 | b | 5920 | ab |
Dicamba + glyphosate | dicamba + glyphosate | 7 | 18 | c | 34 | c | 803 | b | 5675 | ab |
Glufosinate | dicamba + glyphosate | 7 | 24 | bc | 51 | b | 3305 | b | 3265 | b |
Glufosinate | glufosinate | 7 | 21 | bc | 52 | b | 903 | b | 3387 | b |
Nontreated control | - | - | 133 | a | 135 | a | 13,569 | a | 10,175 | a |
Measurement Timings (DAIT) E | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Treatment A,B,C,D | 1 | 3 | 6 | 8 | 11 | 13 | 35 | |||||||
Mid-day photosynthesis (µmol CO2 m−2 s−1) | ||||||||||||||
Dicamba + glufosinate +glyphosate | 1.84 | c | 8.92 | c | 9.18 | c | 20.23 | a | 27.38 | ab | 30.94 | a | 24.54 | a |
Dicamba + glyphosate fb glufosinate 7 DAIT | 29.31 | b | 36.02 | ab | 25.33 | ab | 4.16 | b | 11.92 | c | 31.36 | a | 23.29 | a |
Glufosinate fb dicamba + glyphosate 7 DAIT | 3.76 | c | 18.62 | bc | 13.21 | bc | 11.33 | ab | 21.59 | bc | 27.29 | a | 21.07 | a |
Nontreated control | 37.70 | a | 44.58 | a | 33.57 | a | 26.09 | a | 36.48 | a | 27.14 | a | 23.39 | a |
Stomatal conductance (mmol H2O m−2 s−1) | ||||||||||||||
Dicamba + glufosinate +glyphosate | 0.16 | bc | 0.14 | a | 0.38 | a | 0.27 | a | 0.29 | a | 0.26 | a | 0.16 | a |
Dicamba + glyphosate fb glufosinate 7 DAIT | 0.25 | b | 0.25 | a | 0.29 | ab | 0.15 | a | 0.21 | a | 0.27 | a | 0.16 | a |
Glufosinate fb dicamba + glyphosate 7 DAIT | 0.05 | c | 0.19 | a | 0.16 | ab | 0.13 | a | 0.18 | a | 0.19 | a | 0.13 | a |
Nontreated control | 0.47 | a | 0.29 | a | 0.26 | b | 0.21 | a | 0.30 | a | 0.18 | a | 0.17 | a |
Respiration (µmol CO2 m−2 s−1) | ||||||||||||||
Dicamba + glufosinate +glyphosate | −2.66 | c | −3.21 | b | −3.68 | b | −1.50 | ab | −1.41 | a | −1.49 | b | - | - |
Dicamba + glyphosate fb glufosinate 7 DAIT | −1.24 | a | −1.70 | a | −1.76 | a | −1.68 | ab | −1.34 | a | −1.34 | b | - | - |
Glufosinate fb dicamba + glyphosate 7 DAIT | −2.34 | bc | −2.30 | ab | −1.91 | a | −2.11 | b | −1.67 | a | −0.72 | a | - | - |
Nontreated control | −2.00 | b | −1.99 | a | −1.99 | a | −1.23 | a | −1.42 | a | −0.98 | ab | - | - |
PSII Quantum Yield | ||||||||||||||
Dicamba + glufosinate +glyphosate | 0.41 | b | 0.63 | b | 0.64 | ab | 0.63 | ab | 0.77 | a | 0.77 | a | - | - |
Dicamba + glyphosate fb glufosinate 7 DAIT | 0.77 | a | 0.77 | a | 0.77 | a | 0.46 | b | 0.63 | b | 0.71 | a | - | - |
Glufosinate fb dicamba + glyphosate 7 DAIT | 0.41 | b | 0.62 | b | 0.47 | b | 0.54 | b | 0.75 | a | 0.75 | a | - | - |
Nontreated control | 0.77 | a | 0.76 | a | 0.79 | a | 0.79 | a | 0.77 | a | 0.77 | a | - | - |
Treatment A,B,C,D | Leaf Area (cm2) | Fresh Leaf Biomass (g) | ||||
---|---|---|---|---|---|---|
14 DAIT | 35 DAIT | |||||
Dicamba + glufosinate +glyphosate | 157.70 | b | 6.50 | b | 12.42 | a |
Dicamba + glyphosate fb glufosinate 7 DAIT | 228.09 | b | 8.91 | b | 6.12 | b |
Glufosinate fb dicamba + glyphosate 7 DAIT | 192.78 | b | 7.43 | b | 9.68 | ab |
Nontreated control | 569.66 | a | 14.96 | b | 11.68 | a |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Browne, F.B.; Li, X.; Price, K.J.; Langemeier, R.; Jauregui, A.S.-S.d.; McElroy, J.S.; Feng, Y.; Price, A. Sequential Applications of Synthetic Auxins and Glufosinate for Escaped Palmer Amaranth Control. Agronomy 2020, 10, 1425. https://doi.org/10.3390/agronomy10091425
Browne FB, Li X, Price KJ, Langemeier R, Jauregui AS-Sd, McElroy JS, Feng Y, Price A. Sequential Applications of Synthetic Auxins and Glufosinate for Escaped Palmer Amaranth Control. Agronomy. 2020; 10(9):1425. https://doi.org/10.3390/agronomy10091425
Chicago/Turabian StyleBrowne, Frances B., Xiao Li, Katilyn J. Price, Ryan Langemeier, Alvaro Sanz-Saez de Jauregui, J. Scott McElroy, Yucheng Feng, and Andrew Price. 2020. "Sequential Applications of Synthetic Auxins and Glufosinate for Escaped Palmer Amaranth Control" Agronomy 10, no. 9: 1425. https://doi.org/10.3390/agronomy10091425
APA StyleBrowne, F. B., Li, X., Price, K. J., Langemeier, R., Jauregui, A. S.-S. d., McElroy, J. S., Feng, Y., & Price, A. (2020). Sequential Applications of Synthetic Auxins and Glufosinate for Escaped Palmer Amaranth Control. Agronomy, 10(9), 1425. https://doi.org/10.3390/agronomy10091425