Bacterial Community Tolerance to Tetracycline Antibiotics in Cu Polluted Soils
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Soil Samples
2.3. Experimental Design
2.4. Data Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fernández-Calviño, D.; Soler-Rovira, P.; Polo, A.; Díaz-Raviña, M.; Arias-Estevez, M.; Plaza, C. Enzyme activities in vineyard soils long-term treated with copper-based fungicides. Soil Boil. Biochem. 2010, 42, 2119–2127. [Google Scholar] [CrossRef]
- Bååth, E. Measurement of heavy metal tolerance of soil bacteria using thymidine incorporation into bacteria extracted after homogenization-centrifugation. Soil Boil. Biochem. 1992, 24, 1167–1172. [Google Scholar] [CrossRef]
- Bruins, M.R.; Kapil, S.; Oehme, F.W. Microbial Resistance to Metals in the Environment. Ecotoxicol. Environ. Saf. 2000, 45, 198–207. [Google Scholar] [CrossRef]
- Bünemann, E.K.; Schwenke, G.; Van Zwieten, L. Impact of agricultural inputs on soil organisms—A review. Soil. Res. 2006, 44, 379–406. [Google Scholar] [CrossRef]
- Fernández-Calviño, D.; Bååth, E. Co-selection for antibiotic tolerance in Cu-polluted soil is detected at higher Cu-concentrations than increased Cu-tolerance. Soil Boil. Biochem. 2013, 57, 953–956. [Google Scholar] [CrossRef]
- European Commission. Commission Implementing Regulation (EU) 2018/1981 of 13 December 2018 Renewing the Approval of the Active Substances Copper Compounds, as Candidates for Substitution, in Accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council Concerning the Placing of Plant Protection Products on the Market, and Amending the Annex to Commission Implementing Regulation (EU) No 540/2011; European Commission: Brussels, Belgium, 2018. [Google Scholar]
- Blanck, H. A Critical Review of Procedures and Approaches Used for Assessing Pollution-Induced Community Tolerance (PICT) in Biotic Communities. Hum. Ecol. Risk Assess. Int. J. 2002, 8, 1003–1034. [Google Scholar] [CrossRef]
- Díaz-Raviña, M.; De Anta, R.C.; Bååth, E. Tolerance (PICT) of the Bacterial Communities to Copper in Vineyards Soils from Spain. J. Environ. Qual. 2007, 36, 1760–1764. [Google Scholar] [CrossRef]
- Wakelin, S.; Gerard, E.; Black, A.; Hamonts, K.; Condron, L.; Yuan, T.; Van Nostrand, J.D.; Zhou, J.; O’Callaghan, M. Mechanisms of pollution induced community tolerance in a soil microbial community exposed to Cu. Environ. Pollut. 2014, 190, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, B.; Zhang, X.; Gao, M.; Wang, J. Effects of Cu exposure on enzyme activities and selection for microbial tolerances during swine-manure composting. J. Hazard. Mater. 2015, 283, 512–518. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Calviño, D.; Bååth, E. Interaction between pH and Cu toxicity on fungal and bacterial performance in soil. Soil Boil. Biochem. 2016, 96, 20–29. [Google Scholar] [CrossRef]
- Berg, J.; Thorsen, M.K.; Holm, P.E.; Jensen, J.; Nybroe, O.; Brandt, K.K. Cu Exposure under Field Conditions Coselects for Antibiotic Resistance as Determined by a Novel Cultivation-Independent Bacterial Community Tolerance Assay. Environ. Sci. Technol. 2010, 44, 8724–8728. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Rensing, C.; Holm, P.E.; Virta, M.; Brandt, K.K. Comparison of Metals and Tetracycline as Selective Agents for Development of Tetracycline Resistant Bacterial Communities in Agricultural Soil. Environ. Sci. Technol. 2017, 51, 3040–3047. [Google Scholar] [CrossRef] [PubMed]
- Baker-Austin, C.; Wright, M.S.; Stepanauskas, R.; McArthur, J. Co-selection of antibiotic and metal resistance. Trends Microbiol. 2006, 14, 176–182. [Google Scholar] [CrossRef] [PubMed]
- Summers, A.O.; Wireman, J.; Vimy, M.J.; Lorscheider, F.L.; Marshall, B.; Levy, S.B.; Bennett, S.; Billard, L. Mercury released from dental “silver” fillings provokes an increase in mercury-and antibiotic-resistant bacteria in oral and intestinal floras of primates. Antimicrob. Agents Chemother. 1993, 37, 825–834. [Google Scholar] [CrossRef]
- Alonso, A.; Sánchez, P.; Martínez, J.L. Environmental selection of antibiotic resistance genes. Environ. Microbiol. 2001, 3, 1–9. [Google Scholar] [CrossRef]
- Cao, J.; Yang, G.; Mai, Q.; Zhuang, Z.; Zhuang, L. Co-selection of antibiotic-resistant bacteria in a paddy soil exposed to as (III) contamination with an emphasis on potential pathogens. Sci. Total Environ. 2020, 725, 138367. [Google Scholar] [CrossRef]
- Milenkovski, S.; Bååth, E.; Lindgren, P.-E.; Berglund, O. Toxicity of fungicides to natural bacterial communities in wetland water and sediment measured using leucine incorporation and potential denitrification. Ecotoxicology 2010, 19, 285–294. [Google Scholar] [CrossRef]
- Poole, K. At the Nexus of Antibiotics and Metals: The Impact of Cu and Zn on Antibiotic Activity and Resistance. Trends Microbiol. 2017, 25, 820–832. [Google Scholar] [CrossRef]
- Guo, T.; Lou, C.; Zhai, W.; Tang, X.; Hashmi, M.Z.; Murtaza, R.; Li, Y.; Liu, X.; Xu, J. Increased occurrence of heavy metals, antibiotics and resistance genes in surface soil after long-term application of manure. Sci. Total Environ. 2018, 635, 995–1003. [Google Scholar] [CrossRef]
- Liu, K.; Sun, M.; Ye, M.; Chao, H.; Zhao, Y.; Xia, B.; Jiao, W.; Feng, Y.; Zheng, X.; Liu, M.; et al. Coexistence and association between heavy metals, tetracycline and corresponding resistance genes in vermicomposts originating from different substrates. Environ. Pollut. 2019, 244, 28–37. [Google Scholar] [CrossRef]
- Liu, B.; Li, Y.; Gao, S.; Chen, X. Copper exposure to soil under single and repeated application: Selection for the microbial community tolerance and effects on the dissipation of antibiotics. J. Hazard. Mater. 2017, 325, 129–135. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency. European Medicines Agency. European surveillance of veterinary antimicrobial consumption. In Sales of Veterinary Antimicrobial Agents in 29 European Countries in 2014, (EMA/61769/2016); European Union: Hague, The Netherlands, 2016. [Google Scholar]
- Daghrir, R.; Drogui, P. Tetracycline antibiotics in the environment: A review. Environ. Chem. Lett. 2013, 11, 209–227. [Google Scholar] [CrossRef]
- Stackelberg, P.E.; Gibs, J.; Furlong, E.T.; Meyer, M.; Zaugg, S.D.; Lippincott, R.L. Efficiency of conventional drinking-water-treatment processes in removal of pharmaceuticals and other organic compounds. Sci. Total Environ. 2007, 377, 255–272. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Peñalver, J.J.; Pacheco, C.V.G.; Sánchez-Polo, M.; Utrilla, J.R. Degradation of tetracyclines in different water matrices by advanced oxidation/reduction processes based on gamma radiation. J. Chem. Technol. Biotechnol. 2012, 88, 1096–1108. [Google Scholar] [CrossRef]
- Arikan, O.A.; Rice, C.; Codling, E. Occurrence of antibiotics and hormones in a major agricultural watershed. Desalination 2008, 226, 121–133. [Google Scholar] [CrossRef]
- Conde-Cid, M.; Álvarez-Esmorís, C.; Paradelo, R.; Nóvoa-Muñoz, J.C.; Arias-Estevez, M.; Álvarez-Rodriguez, E.; Fernández-Sanjurjo, M.J.; Núñez-Delgado, A. Occurrence of tetracyclines and sulfonamides in manures, agricultural soils and crops from different areas in Galicia (NW Spain). J. Clean. Prod. 2018, 197, 491–500. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015. [Google Scholar]
- Sumner, M.E.; Miller, W.P. Cation exchange capacity and exchange coefficients. In Methods of Soil Analysis Part 3: Chemical Methods; Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E., Eds.; Soil Science Society of America, Inc.: Madison, WI, USA, 1996. [Google Scholar]
- Bertsch, P.M.; Bloom, P.R. Aluminium. In Methods of Soil Analysis Part 3: Chemical Methods; Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E., Eds.; Soil Science Society of America, Inc.: Madison, WI, USA, 1996. [Google Scholar]
- Olsen, S.R.; Sommers, L.E. Phosphorus. In Methods of Soil Analysis. Part 2. Chemical and Microbiological Propertie; Page, A.L., Miller, L.H., Keeney, D.R., Eds.; Soil Science Society of America, Inc.: Madison, WI, USA, 1996. [Google Scholar]
- Díaz-Raviña, M.; Bååth, E.; Frostegård, Å. Multiple Heavy Metal Tolerance of Soil Bacterial Communities and Its Measurement by a Thymidine Incorporation Technique. Appl. Environ. Microbiol. 1994, 60, 2238–2247. [Google Scholar] [CrossRef]
- Bååth, E. Thymidine and leucine incorporation in soil bacteria with different cell size. Microb. Ecol. 1994, 27, 267–278. [Google Scholar] [CrossRef]
- Bååth, E.; Pettersson, M.; Söderberg, K. Adaptation of a rapid and economical microcentrifugation method to measure thymidine and leucine incorporation by soil bacteria. Soil Boil. Biochem. 2001, 33, 1571–1574. [Google Scholar] [CrossRef]
- Rousk, K.; Elyaagubi, F.K.; Jones, D.L.; Godbold, D.L. Bacterial salt tolerance is unrelated to soil salinity across an arid agroecosystem salinity gradient. Soil Boil. Biochem. 2011, 43, 1881–1887. [Google Scholar] [CrossRef]
- Sebaugh, J.L. Guidelines for accurate EC50/IC50 estimation. Pharm. Stat. 2011, 10, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Rath, K.M.; Maheshwari, A.; Bengtson, P.; Rousk, K. Comparative Toxicities of Salts on Microbial Processes in Soil. Appl. Environ. Microbiol. 2016, 82, 2012–2020. [Google Scholar] [CrossRef] [PubMed]
- Kunito, T.; Senoo, K.; Saeki, K.; Oyaizu, H.; Matsumoto, S. Usefulness of the Sensitivity–Resistance Index to Estimate the Toxicity of Copper on Bacteria in Copper-Contaminated Soils. Ecotoxicol. Environ. Saf. 1999, 44, 182–189. [Google Scholar] [CrossRef] [PubMed]
- Witter, E.; Gong, P.; Bååth, E.; Marstorp, H. A study of the structure and metal tolerance of the soil microbial community six years after cessation of sewage sludge applications. Environ. Toxicol. Chem. 2000, 19, 1983–1991. [Google Scholar] [CrossRef]
- Niklińska, M.; Chodak, M.; Laskowski, R. Pollution-induced community tolerance of microorganisms from forest soil organic layers polluted with Zn or Cu. Appl. Soil Ecol. 2006, 32, 265–272. [Google Scholar] [CrossRef]
- Komárek, M.; Čadková, E.; Chrastný, V.; Bordas, F.; Bollinger, J.-C. Contamination of vineyard soils with fungicides: A review of environmental and toxicological aspects. Environ. Int. 2010, 36, 138–151. [Google Scholar] [CrossRef]
- Demoling, L.A.; Bååth, E. Use of pollution-induced community tolerance of the bacterial community to detect phenol toxicity in soil. Environ. Toxicol. Chem. 2008, 27, 334–340. [Google Scholar] [CrossRef]
- Spark, K.M.; Wells, J.D.; Johnson, B.B. Sorption of heavy metals by mineral-humic acid substrates. Soil Res. 1997, 35, 113. [Google Scholar] [CrossRef]
- Bradl, H.B. Adsorption of heavy metal ions on soils and soils constituents. J. Colloid Interface Sci. 2004, 277, 1–18. [Google Scholar] [CrossRef]
- Flores-Vélez, L.; Ducaroir, J.; Jaunet, A.; Robert, M. Study of the distribution of copper in an acid sandy vineyard soil by three different methods. Eur. J. Soil Sci. 1996, 47, 523–532. [Google Scholar] [CrossRef]
- Mirlean, N.; Roisenberg, A.; Chies, J.O. Metal contamination of vineyard soils in wet subtopics (southern Brazil). Environ. Pollut. 2007, 149, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Calviño, D.; Garrido-Rodríguez, B.; López-Periago, E.; Paradelo, M.; Arias-Estevez, M. Spatial distribution of copper fractions in a vineyard soil. Land Degrad. Dev. 2011, 24, 556–563. [Google Scholar] [CrossRef]
- Pietrzak, U.; McPhail, D. Copper accumulation, distribution and fractionation in vineyard soils of Victoria, Australia. Geoderma 2004, 122, 151–166. [Google Scholar] [CrossRef]
Soil | |||
---|---|---|---|
Parameter | 1 | 2 | 3 |
Sand (%) | 70.4 | 40.6 | 48.9 |
Silt (%) | 11.9 | 25.8 | 19.2 |
Clay (%) | 17.7 | 33.6 | 32.0 |
Texture | Sandy Loam | Clay Loam | Sandy clay loam |
pHw | 4.8 | 4.7 | 4.5 |
C (%) | 1.1 | 5.3 | 10.9 |
N (%) | 0.1 | 0.5 | 0.8 |
Cae (cmolc kg−1) | 1.5 | 5.9 | 5.9 |
Mge (cmolc kg−1) | 0.4 | 1.7 | 1.5 |
Nae (cmolc kg−1) | 0.3 | 0.6 | 0.4 |
Ke (cmolc kg−1) | 1.3 | 3.0 | 1.1 |
Ale (cmolc kg−1) | 0.6 | 0.5 | 2.7 |
eCEC (cmolc kg−1) | 4.1 | 11.6 | 11.6 |
Pavailable (mg kg−1) | 225.4 | 261.9 | 135.9 |
CrT (mg kg−1) | 5.9 | 11.5 | 11.7 |
CoT (mg kg−1) | <DL | 2.7 | 3.4 |
NiT (mg kg−1) | 14.7 | 18.6 | 14.0 |
CuT (mg kg−1) | 10.7 | 19.2 | 21.6 |
AsT (mg kg−1) | 4.9 | 10.3 | 12.7 |
CdT (mg kg−1) | <DL | <DL | <DL |
PbT (mg kg−1) | 13.1 | 13.7 | 15.1 |
NaT (mg kg−1) | 25.3 | 131.4 | 115.8 |
KT (mg kg−1) | 1132.1 | 1877.6 | 2044.7 |
CaT (mg kg−1) | 318.9 | 2038.3 | 1461.9 |
MgT (mg kg−1) | 470.4 | 860.0 | 764.4 |
AlT (mg kg−1) | 9142.3 | 16,234.9 | 21,963.8 |
MnT (mg kg−1) | 54.5 | 50.9 | 47.1 |
FeT (mg kg−1) | 4072.3 | 5236.8 | 6082.0 |
ZnT (mg kg−1) | 63.8 | 141.3 | 126.1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santás-Miguel, V.; Arias-Estévez, M.; Díaz-Raviña, M.; Fernández-Sanjurjo, M.J.; Álvarez-Rodríguez, E.; Núñez-Delgado, A.; Fernández-Calviño, D. Bacterial Community Tolerance to Tetracycline Antibiotics in Cu Polluted Soils. Agronomy 2020, 10, 1220. https://doi.org/10.3390/agronomy10091220
Santás-Miguel V, Arias-Estévez M, Díaz-Raviña M, Fernández-Sanjurjo MJ, Álvarez-Rodríguez E, Núñez-Delgado A, Fernández-Calviño D. Bacterial Community Tolerance to Tetracycline Antibiotics in Cu Polluted Soils. Agronomy. 2020; 10(9):1220. https://doi.org/10.3390/agronomy10091220
Chicago/Turabian StyleSantás-Miguel, Vanesa, Manuel Arias-Estévez, Montserrat Díaz-Raviña, María José Fernández-Sanjurjo, Esperanza Álvarez-Rodríguez, Avelino Núñez-Delgado, and David Fernández-Calviño. 2020. "Bacterial Community Tolerance to Tetracycline Antibiotics in Cu Polluted Soils" Agronomy 10, no. 9: 1220. https://doi.org/10.3390/agronomy10091220
APA StyleSantás-Miguel, V., Arias-Estévez, M., Díaz-Raviña, M., Fernández-Sanjurjo, M. J., Álvarez-Rodríguez, E., Núñez-Delgado, A., & Fernández-Calviño, D. (2020). Bacterial Community Tolerance to Tetracycline Antibiotics in Cu Polluted Soils. Agronomy, 10(9), 1220. https://doi.org/10.3390/agronomy10091220