A Standard Methodology for Evaluation of Mechanical Maize Seed Meters for Smallholder Farmers Comparing Devices from Latin America, Sub-Saharan Africa, and Asia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Seed Meter Systems
2.3. Characterization of Maize Seed Samples
2.4. Seed Meter Evaluations
2.4.1. Mechanical Seed Damage
2.4.2. Spatial Seed Distribution
2.4.3. Determination of Work Efficiencies
3. Results
3.1. Characterization of Maize Seed
3.2. Seed Meter Evaluations
3.2.1. Recommended Rotational Velocity
3.2.2. Mechanical Seed Damage
3.2.3. Spatial Seed Distribution
3.2.4. Determination of Work Efficiencies
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Finch-Savage, W.E.; Bassel, G.W. Seed vigour and crop establishment: Extending performance beyond adaptation. J. Exp. Bot. 2016, 67, 567–591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kepner, R.A.; Bainer, R.; Barger, E.L. Principles of Farm Machinery, 3rd ed.; AVI Publishing Company Inc.: Westport, CT, USA, 1978; p. 527. [Google Scholar]
- Srivastava, A.K.; Goering, C.E.; Rohrbach, R.P.; Buckmaster, D.R. Crop Planting. In Engineering Principles of Agricultural Machines, 2nd ed.; Srivastava, A.K., Goering, C.E., Rohrbach, R.P., Eds.; ASABE: St. Joseph, MI, USA, 2006; pp. 231–268. [Google Scholar]
- Wankhade, C.; Kotwal, M.R. A review paper on various seed sowing metering devices. Int. J. Pure Appl. Res. Eng. Technol. 2014, 2, 429–435. [Google Scholar]
- Murray, J.R.; Tullberg, J.N.; Basnet, B.B. Planters and their Components: Types, Attributes, Functional Requirements, Classification and Description; ACIAR Monograph 121; Australian Centre for International Agricultural Research: Canberra, Australia, 2006; Available online: https://ageconsearch.umn.edu/bitstream/114069/2/121.pdf (accessed on 26 March 2020).
- Mohammed, S.; Blaser, B.C.; Stewart, B.A. Planting Geometry and Plant Population Affect Dryland Maize Grain Yield and Harvest Index. J. Crop. Improv. 2012, 26, 130–139. [Google Scholar] [CrossRef]
- Timsina, J.; Jat, M.L.; Majumdar, K. Rice-maize systems of South Asia: Current status, future prospects and research priorities for nutrient management. Plant Soil 2010, 335, 65–82. [Google Scholar] [CrossRef]
- Timsina, J.; Buresh, R.J.; Dobermann, A.; Dixon, J. Rice-Maize Systems in Asia: Current Situation and Potential; CIMMYT. IRRI: Los Baños, Phillipines, 2011; p. 235. [Google Scholar]
- Jahan, M.A.H.S.; Sen, R.; Ishtiaque, S.; Choudhury, A.K.; Akhter, S.; Ahmed, F.; Biswas, J.C.; Manirruzaman, M.; Miah, M.M.; Rahman, M.M.; et al. Optimizing sowing window for wheat cultivation in Bangladesh using CERES-wheat crop simulation model. Agric. Ecosyst. Environ. 2018, 258, 23–29. [Google Scholar] [CrossRef]
- He, J.; Zhang, Z.Q.; Li, H.W.; Wang, Q.J. Development of small/medium size no-till and minimum-till seeders in Asia: A review. Int. J. Agric. Biol. Eng. 2014, 7, 1–12. [Google Scholar]
- Johansen, C.; Haque, M.E.; Bell, R.W.; Thierfelder, C.; Esdaile, R.J. Conservation agriculture for small holder rainfed farming: Opportunities and constraints of new mechanized seeding systems. Field Crop. Res. 2012, 132, 18–32. [Google Scholar] [CrossRef] [Green Version]
- Koller, A.; Wan, Y.; Miller, E.; Weckler, P.; Taylor, R.K. Test method for precision seed singulation systems. Trans. ASABE 2014, 57, 1283–1290. [Google Scholar] [CrossRef]
- Oduma, O.; Ede, J.E.; Igwe, J.E. Development and Performance Evaluation of a Manually Operated Cowpea Precision Planter. Int. J. Eng. Technol. 2014, 4, 693–699. [Google Scholar]
- Mahl, D.; Furlani, C.E.; Gamero, C.A. Efficiency of pneumatic and horizontal perforated disk meter mechanism in corn no-tillage seeders in soil with different mobilization reports. Engenharia Agrícola 2008, 28, 535–542. [Google Scholar] [CrossRef] [Green Version]
- Qi, B.; Zhang, D.; Liu, Q.; Yang, L.; Shi, S.; Cui, T. Design and experiment of cleaning performance in a centralized pneumatic metering device for maize. Trans. Chin. Soc. Agric. Eng. 2015, 31, 20–27. [Google Scholar]
- Haque, M.E.; Bell, R.W.; Islam, A.K.M.; Sayre, K.; Hossain, M.M. Versatile Multi-Crop Planter for Two-wheel Tractors: An Innovative Option for Smallholders. In Proceedings of the 5th World Congress of Conservation Agriculture incorporating 3rd Farming Systems Design Conference, Brisbane, Australia, 26–29 September 2011; Gilkes, R.J., Prakongkep, N., Eds.; pp. 102–103. [Google Scholar]
- Hossen, M.; Musabbir, A.; Hossain, M.; Hasan, M.; Islam, M. Improvement of the Seed Metering Device of Power Tiller Operated Zero Till Drill. Prog. Agric. 2013, 24, 203–210. [Google Scholar] [CrossRef] [Green Version]
- Krupnik, T.J.; Santos Valle, S.; Hossain, I.; Gathala, M.K.; Justice, S.E.; McDonald, A.J. Made in Bangladesh: Scale-Appropriate Machinery for Agricultural Resource Conservation; International Maize and Wheat Improvement Center: Mexico City, Mexico, 2013. [Google Scholar]
- Soyoye, B.O.; Ademosun, O.C.; Olu-Ojo, E.O. Development of a manually operated vertical seed-plate maize planter. Agric. Eng. Int. CIGR J. 2016, 18, 70–80. [Google Scholar]
- Yin, X.; Yang, L.; Zhang, D.; Cui, T.; Han, D.; Zhang, T.; Yu, Y. Design and experiment of balance and low-loss air allotter in air pressure maize precision planter. Trans. Chin. Soc. Agric. Eng. 2016, 32, 9–17. [Google Scholar]
- Lowder, S.K.; Skoet, J.; Raney, T. The Number, Size, and Distribution of Farms, Smallholder Farms, and Family Farms Worldwide. World Dev. 2016, 87, 16–29. [Google Scholar] [CrossRef] [Green Version]
- Almekinders, C.J.M.; Louwaars, N.P. The Importance of the Farmers’ Seed Systems in a Functional National Seed Sector. J. New Seeds 2002, 4, 15–33. [Google Scholar] [CrossRef]
- Babeir, A.S. Evaluation of the Seed Metering System of an Airseeder. Master’s Thesis, Iowa State University, Ames, IA, USA, 1982. [Google Scholar]
- Van Loon, J.; Speratti, A.; Gabarra, L.; Govaerts, B. Precision for Smallholder Farmers: A Small-Scale-Tailored Variable Rate Fertilizer Application Kit. Agriculture 2018, 8, 48. [Google Scholar] [CrossRef] [Green Version]
- International Rice Research Institute. Small Farm Equipment for Developing Countries. In Proceedings of the International Conference on Small Farm Equipment for Developing Countries: Past Experiences and Future Priorities, Los Baños, Philippines, 2–6 September 1986; International Rice Research Institute: Los Baños, Philippines, 1986. [Google Scholar]
- Liu, Q.; Cui, T.; Zhang, D.; Yang, L.; Wang, Y.; He, X.; Wang, M. Design and experimental study of seed precise delivery mechanism for high-speed maize planter. Int. J. Agric. Biol. Eng. 2018, 11, 61–66. [Google Scholar] [CrossRef]
- Miller, E.A.; Rascon, J.; Koller, A.; Porter, W.M.; Taylor, R.K.; Raun, W.R.; Kochenower, R. Evaluation of Corn Seed Vacuum Metering Systems. In Proceedings of the American Society of Agricultural and Biological Engineers Annual International Meeting 2012, Dallas, TX, USA, 29 July–1 August 2012; ASABE: St. Joseph, MI, USA, 2012; Volume 1, pp. 815–825. [Google Scholar]
- Kumar, D.; Tripathi, A. Development and performance evaluation of a manually operated cowpea thresher. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 2984–2996. [Google Scholar] [CrossRef]
- Kocher, M.F.; Coleman, J.M.; Smith, J.A.; Kachman, S.D. Corn Seed Spacing Uniformity as Affected by Seed Tube Condition. Appl. Eng. Agric. 2011, 27, 177–183. [Google Scholar] [CrossRef]
- López Gómez, J.A.; Van Loon, J. Agrotechnical evaluation of manual implements for corn planting. Rev. Mex. Cienc. Agric. 2018, 21, 4258–4269. [Google Scholar]
- Panning, J.W.; Kocher, M.F.; Smith, J.A.; Kachman, S.D. Laboratory and field testing of seed spacing uniformity for sugarbeet planters. Appl. Eng. Agric. 2000, 16, 7–13. [Google Scholar] [CrossRef]
- dos Reis, Â.V.; Forcellini, F.A. Functional analysis in the evaluation of four concepts of planters. Ciência Rural 2002, 32, 969–975. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Yan, B.; Yu, Y.; He, X.; Liu, Q.; Liang, Z.; Yin, X.; Cui, T.; Zhang, D. Global overview of research progress and development of precision maize planters. Int. J. Agric. Biol. Eng. 2016, 9, 9–26. [Google Scholar]
- Önal, O.; Önal, I. Development of a computerized measurement system for in-row seed spacing accuracy. Turk. J. Agric. For. 2009, 33, 99–109. [Google Scholar]
- He, X.; Ding, Y.; Zhang, D.; Yang, L.; Cui, T.; Wei, J.; Liu, Q.; Yan, B.; Zhao, D. Design and evaluation of PID electronic control system for seed meters for maize precision planting. Trans. Chin. Soc. Agric. Eng. 2017, 33, 28–33. [Google Scholar]
- Secretaría de Economía. Tractores, Implementos Agrícolas-Sembradoras Neumáticas De Precisión-Especificaciones y Método De Prueba; NMX-O-222-SCFI-2004; Secretaría de Economía: Ciudad de México, Mexico, 2004. [Google Scholar]
- Secretaría de Economía. Tractores, Implementos, Sembradoras Unitarias, Fertilizadoras Accionadas Mecánicamente, Con Dosificador De Semilla De Disco Y Métodos De Prueba En La Maquinaria Agrícola; NMX-0-168-SCFI-2009; Secretaría de Economía: Ciudad de México, Mexico, 2009. [Google Scholar]
- Abubakar, M.S.; Ahmad, D.; Akande, F.B. A Review of Farm Tractor Overturning Accidents and Safety. Pertanika J. Sci. Technol. 2010, 18, 377–385. [Google Scholar]
- Mohsenin, N.N. Physical Properties of Plant and Animal Materials, 2nd ed.; Gordon and Breach Science Publisher: New York, NY, USA, 1986; p. 891. [Google Scholar]
- Tarighi, J.; Mahmoudi, A.; Rad, M.K. Moisture-dependent engineering properties of sunflower (var. Armaviriski). Aust. J. Agric. Eng. 2011, 2, 40–44. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018; Available online: https://www.r-project.org (accessed on 12 March 2020).
- Smith, J.A.; Palm, K.L.; Yonts, C.D.; Wilson, R.G. Seed Spacing Accuracy of Sugarbeet Planters; No. 91-1551; ASAE: St. Joseph, MI, USA, 1991. [Google Scholar]
- Sowing Equipment—Test methods—Part I: Single Seed Drills (Precision Drills); 7256-1. International Organization for Standardizations: Geneva, Switzerland, 1984. Available online: https://www.iso.org/standard/13910.html (accessed on 18 February 2020).
- Anderson, W.K. Optimizing plant population, crop emergence and establishment. In Explore On-Farm: On-Farm Trials for Adapting and Adopting Good Agricultural Practices; Rawson, H.M., Rawson, A., Gabrielli, A., Eds.; FAO: Rome, Italy, 2003; p. 84. [Google Scholar]
- Shi, S.; Zhang, D.; Yang, L.; Cui, T.; Zhang, R.; Yin, X. Design and experiment of pneumatic maize precision seed-metering device with combined holes. Trans. Chin. Soc. Agric. Eng. 2014, 30, 10–18. [Google Scholar]
- Hunt, D.; Wilson, D. Seeding Machines. In Farm Power and Machinery Management, 11th ed.; Waveland Press, Inc.: Long Grove, IL, USA, 2016; pp. 113–124. [Google Scholar]
- Liu, J.; Cui, T.; Zhang, D.; Huang, S.; Shi, S. Experimental study on pressure of air-blowing precision seed-metering device. Trans. Chin. Soc. Agric. Eng. 2011, 27, 18–22. [Google Scholar]
- Yang, L.; Shi, S.; Cui, T.; Zhang, D.; Gao, N. Air-suction corn precision metering device with mechanical supporting plate to assist carrying seed. Trans. Chin. Soc. Agric. Mach. 2012, 43, 48–53. [Google Scholar]
- Nave, W.R.; Paulsen, M.R. Soybean seed quality as affected by planter meters. Trans. ASAE 1979, 22, 739–745. [Google Scholar] [CrossRef]
- Ibrahim, E.J.; Liao, Q.X.; Wang, L.; Liao, Y.T.; Yao, L. Design and experiment of multi-row pneumatic precision metering device for rapeseed. Int. J. Agric. Biol. Eng. 2018, 11, 116–123. [Google Scholar]
Seed Meter | RPM(S1) | Angle (°) | Seed Cells |
---|---|---|---|
NAT | 20 | 45 | 24 |
BARI-24 | 20 | 45 | 24 |
TIMS | 20 | 45 | 24 |
BARI-9 | 20 | 45 | 9 |
VMP-12 | 20 | 90 | 12 |
SRK | 30 | 90 | 12 |
FIT | 20 | 0 | 28 and 43 |
2BGF | 25 | N/A | 6 |
TER | 20 | N/A | 6 |
Parameter | Seed Type | ||
---|---|---|---|
1 (Medium Round) | 2 (Drop-Shaped) | 3 (Large Flat) | |
Average size (mm) | |||
Length | 9.14 | 7.78 | 11.86 |
Width | 7.55 | 6.90 | 8.98 |
Thickness | 6.59 | 5.11 | 4.59 |
Average shape | |||
Sphericity | 0.84 | 0.84 | 0.66 |
Average weight (g) | |||
1000 seeds | 165.7 | 288.7 | 364.7 |
Density (g cm−3) | |||
Bulk | 1.31 | 1.18 | 1.33 |
Seed Meter | Seed Type | χref (cm) | Depositions (%) | ||||
---|---|---|---|---|---|---|---|
Acceptable | Failed | Double | Triple | Multiple | |||
NAT | 1 | 10.9 | 77 | 9 | 14 | - | - |
2 | 69 | 6 | 19 | 4 | 2 | ||
3 | 50 | 37 | 12 | 1 | - | ||
BARI-24 | 1 | 10.1 | 58 | 3 | 25 | 10 | 4 |
2 | 32 | - | 10 | 17 | 41 | ||
3 | 67 | 4 | 19 | 7 | 3 | ||
TIMS | 1 | 10 | 66 | 4 | 18 | 7 | 5 |
2 | 61 | 13 | 14 | 7 | 5 | ||
3 | 71 | 7 | 14 | 6 | 2 | ||
BARI-9 | 1 | 15.5 | 74 | 9 | 11 | 2 | 4 |
2 | 51 | - | 29 | 13 | 7 | ||
3 | 57 | 37 | 6 | - | |||
VMP-12 | 1 | 11.5 | 71 | 7 | 18 | 3 | 1 |
2 | 74 | 1 | 22 | 3 | - | ||
3 | 79 | 8 | 10 | 3 | - | ||
SRK | 1 | 8.2 | 68 | - | 25 | 5 | 2 |
2 | 41 | - | 21 | 25 | 13 | ||
3 | 72 | 2 | 21 | 4 | 1 | ||
SDB | 1 | 11.2 | 73 | 4 | 12 | 7 | 4 |
2 | 73 | 2 | 18 | 7 | - | ||
3 | 79 | 12 | 9 | - | - | ||
FIT | 1 | 11.2 | 94 | 6 | - | - | - |
2 | 7.3 | 85 | 8 | 6 | 1 | - | |
3 | 11.2 | 73 | 8 | 14 | 3 | 2 | |
2BGF | 1 | 15.2 | 45 | - | 15 | 20 | 20 |
2 | 21 | - | 4 | 10 | 65 | ||
3 | 57 | - | 17 | 10 | 16 | ||
TER | 1 | 18.2 | 60 | 12 | 21 | 7 | - |
2 | 37 | 1 | 12 | 28 | 22 | ||
3 | 62 | 17 | 15 | 3 | 3 |
Seed Type | Treatment | Absolute Efficiency (Eabs) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
NAT | BARI-24 | TIMS | BARI-9 | VMP-12 | SRK | FIT | 2BGF | TER | ||
1 | S1I0V0 | 95.5 a | 119 a | 64.2 a | 88.2 a | 267.2 a | 133.1 a | 90.9 a | 373.9 a | 115.8 a |
S2I0V0 | 92.0 b | 116.5 a | 62.9 a | 92.5 a | 265.6 a | 134.6 a | 88.4 b | 371.6 a | 117.3 a | |
S3I0V0 | 94.4 a | 124.6 a | 50.2 b | 94.4 b | 260.9 a | 173.9 b | 95.0 c | 379.8 a | 115.6 a | |
S1I1V0 | 94.6 a | 119.9 a | 55.4 c | 94.9 a | 261.1 a | 135.1 a | 90.2 a | 367.8 a | 115.3 a | |
S1I0V1 | 73.07 c | 106.43 a | 45.86 d | 89.56 a | 155.67 b | 110.8 c | 89.8 a | 366.5 a | 123.7 b | |
Erel * | 89.9 | 117.3 | 55.7 | 91.9 | 242.1 | 137.5 | 90.9 | 371.9 | 117.6 | |
2 | S1I0V0 | 112.7 a | 231.01 a | 211.7 a | 208.5 a | 271.7 a | 238.6 a | 97.0 a | 374.3 a | 164.1 a |
S2I0V0 | 107.4 b | 207.6 a | 209.9 a | 181.1 b | 288.2 a | 227.7 a | 96.6 a | 376.4 a | 157.5 b | |
S3I0V0 | 109.4 c | 222.5 a | 212.9 a | 210.4 a | 194.4 b | 313.8 a | 96.5 a | 403.2 b | 168.1 a | |
S1I1V0 | 109.4 d | 205.5 a | 204.3 a | 201.1 a | 187.0 c | 163.2 b | 96.4 a | 391.6 c | 167.2 a | |
S1I0V1 | 128.5 e | 178.8 b | 152.1 b | 183.4 c | 67.9 d | 173.2 c | 97.2 a | 404.5 d | 163.4 a | |
Erel * | 113.5 | 209.1 | 198.2 | 196.9 | 201.8 | 223.3 | 96.7 | 390.0 | 164.1 | |
3 | S1I0V0 | 29.3 a | 96.9 a | 100.9 a | 29.9 a | 186.2 a | 120.6 a | 101.3 a | 267.1 a | 93.9 a |
S2I0V0 | 27.2 a | 92.0 a | 101.0 a | 22.0 b | 178.9 a | 126.0 a | 105.6 b | 256.4 b | 80.3 b | |
S3I0V0 | 32.7 b | 108.4 b | 98.2 b | 34.7 a | 211.6 b | 163.0 b | 111.0 c | 266.6 a | 90.1 c | |
S1I1V0 | 26.9 a | 100.9 a | 90.8 a | 37.7 a | 204.9 a | 129.6 c | 105.6 d | 256.8 c | 92.0 a | |
S1I0V1 | 46.3 c | 100.1 c | 65.3 c | 40.8 a | 121.9 c | 101.4 a | 102.8 e | 257.9 d | 99.4 a | |
Erel * | 32.5 | 99.7 | 91.3 | 33.0 | 180.7 | 128.1 | 105.3 | 261.0 | 91.1 | |
Eovl * | 78.6 | 142.0 | 115.1 | 107.3 | 208.2 | 163.0 | 97.6 | 340.9 | 124.3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Van Loon, J.; Krupnik, T.J.; López-Gómez, J.A.; Timsina, J.; Govaerts, B. A Standard Methodology for Evaluation of Mechanical Maize Seed Meters for Smallholder Farmers Comparing Devices from Latin America, Sub-Saharan Africa, and Asia. Agronomy 2020, 10, 1091. https://doi.org/10.3390/agronomy10081091
Van Loon J, Krupnik TJ, López-Gómez JA, Timsina J, Govaerts B. A Standard Methodology for Evaluation of Mechanical Maize Seed Meters for Smallholder Farmers Comparing Devices from Latin America, Sub-Saharan Africa, and Asia. Agronomy. 2020; 10(8):1091. https://doi.org/10.3390/agronomy10081091
Chicago/Turabian StyleVan Loon, Jelle, Timothy J. Krupnik, Jesús A. López-Gómez, Jagadish Timsina, and Bram Govaerts. 2020. "A Standard Methodology for Evaluation of Mechanical Maize Seed Meters for Smallholder Farmers Comparing Devices from Latin America, Sub-Saharan Africa, and Asia" Agronomy 10, no. 8: 1091. https://doi.org/10.3390/agronomy10081091
APA StyleVan Loon, J., Krupnik, T. J., López-Gómez, J. A., Timsina, J., & Govaerts, B. (2020). A Standard Methodology for Evaluation of Mechanical Maize Seed Meters for Smallholder Farmers Comparing Devices from Latin America, Sub-Saharan Africa, and Asia. Agronomy, 10(8), 1091. https://doi.org/10.3390/agronomy10081091