Rotation, Mulch and Zero Tillage Reduce Weeds in a Long-Term Conservation Agriculture Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Long-Term Experiment
2.2. Weed Management in the Long-Term Experiment
2.3. Data Collection
2.4. Data Analysis
3. Results
3.1. Effects of Conservation Agriculture and Its Components on Weed Biomass and Density
3.2. Effects of Conservation Agriculture and Its Components on Weed Diversity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Govaerts, B.; François, I.; Verhulst, N. Conservation agriculture (CA) for sustainable intensification of maize and other cereal systems: The case of Latin America. In Conservation Agriculture for Sustainable Intensification of Maize and Other Cereal Systems; Burleigh Dodds Science Publishing: London, UK, 2017; pp. 81–105. [Google Scholar]
- Govaerts, B.; Sayre, K.D.; Goudeseune, B.; De Corte, P.; Lichter, K.; Dendooven, L.; Deckers, J. Conservation agriculture as a sustainable option for the central Mexican highlands. Soil Tillage Res. 2009, 103, 222–230. [Google Scholar] [CrossRef]
- Thierfelder, C.; Rusinamhodzi, L.; Ngwira, A.R.; Mupangwa, W.; Nyagumbo, I.; Kassie, G.T.; Cairns, J.E. Conservation agriculture in Southern Africa: Advances in knowledge. Renew. Agric. Food Syst. 2015, 30, 328–348. [Google Scholar] [CrossRef] [Green Version]
- Giller, K.E.; Andersson, J.A.; Corbeels, M.; Kirkegaard, J.; Mortensen, D.; Erenstein, O.; Vanlauwe, B. Beyond conservation agriculture. Front. Plant Sci. 2015, 6, 870. [Google Scholar] [CrossRef] [Green Version]
- Verhulst, N.; Nelissen, V.; Jespers, N.; Haven, H.; Sayre, K.D.; Raes, D.; Deckers, J.; Govaerts, B. Soil water content, maize yield and its stability as affected by tillage and crop residue management in rainfed semi-arid highlands. Plant Soil 2011, 344, 73–85. [Google Scholar] [CrossRef]
- Fuentes, M.; Govaerts, B.; De León, F.; Hidalgo, C.; Dendooven, L.; Sayre, K.D.; Etchevers, J. Fourteen years of applying zero and conventional tillage, crop rotation and residue management systems and its effect on physical and chemical soil quality. Eur. J. Agron. 2009, 30, 228–237. [Google Scholar] [CrossRef]
- Lee, N.; Thierfelder, C. Weed control under conservation agriculture in dryland smallholder farming systems of southern Africa. A review. Agron. Sustain. Dev. 2017, 37, 48. [Google Scholar] [CrossRef] [Green Version]
- Chauhan, B.S.; Mahajan, G. Role of integrated weed management strategies in sustaining conservation agriculture systems. Curr. Sci. 2012, 103, 135–136. [Google Scholar]
- Wall, P.C. Tailoring Conservation Agriculture to the Needs of Small Farmers in Developing Countries: An Analysis of Issues. J. Crop Improv. 2007, 19, 137–155. [Google Scholar] [CrossRef]
- Nichols, V.; Verhulst, N.; Cox, R.; Govaerts, B. Weed dynamics and conservation agriculture principles: A review. Field Crop. Res. 2015, 183, 56–68. [Google Scholar] [CrossRef] [Green Version]
- Chauhan, B.S.; Singh, R.G.; Mahajan, G. Ecology and management of weeds under conservation agriculture: A review. Crop Prot. 2012, 38, 57–65. [Google Scholar] [CrossRef]
- Buhler, D.D.; Hartzler, R.G.; Forcella, F. Implications of weed seedbank dynamics to weed management. Weed Sci. 1997, 45, 329–336. [Google Scholar] [CrossRef]
- Travlos, I.S.; Cheimona, N.; Roussis, I.; Bilalis, D.J. Weed-Species Abundance and Diversity Indices in Relation to Tillage Systems and Fertilization. Front. Environ. Sci. 2018, 6, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Liebman, M.; Gallandt, E.R. Many Little Hammers: Ecological Management of Crop-Weed Interactions. In Ecology in Agriculture; Jackson, L.E., Ed.; Academic Press: San Diego, CA, USA, 1997; pp. 291–343. [Google Scholar]
- Clements, D.R.; Benoit, D.L.; Murphy, S.D.; Swanton, C.J. Tillage Effects on Weed Seed Return and Seedbank Composition. Weed Sci. 1996, 44, 314–322. [Google Scholar] [CrossRef]
- Cromar, H.E.; Murphy, S.D.; Swanton, C.J. Influence of tillage and crop residue on postdispersal predation of weed seeds. Weed Sci. 1999, 47, 184–194. [Google Scholar] [CrossRef]
- Anderson, R.L. A multi-tactic approach to manage weed population dynamics in crop rotations. Agron. J. 2005, 97, 1579–1583. [Google Scholar] [CrossRef] [Green Version]
- El Keblawy, A. Impact of crop residues on seed germination of native desert plants grown as weeds. Afr. J. Biotechnol. 2012, 11, 7836–7842. [Google Scholar] [CrossRef]
- Teasdale, J.R.; Mohler, C.L. The quantitative relationship between weed emergence and the physical properties of mulches. Weed Sci. 2006, 48, 385–392. [Google Scholar] [CrossRef]
- Tuesca, D.; Puricelli, E.; Papa, J.C. A long-term study of weed flora shifts in different tillage systems. Weed Res. 2001, 41, 369–382. [Google Scholar] [CrossRef]
- Buhler, D.D.; Stoltenberg, D.E.; Becker, R.L.; Gunsolus, J.L. Perennial Weed Populations After 14 Years of Variable Tillage and Cropping Practices. Weed Sci. 1994, 42, 205–209. [Google Scholar] [CrossRef]
- Trichard, A.; Alignier, A.; Chauvel, B.; Petit, S. Identification of weed community traits response to conservation agriculture. Agric. Ecosyst. Environ. 2013, 179, 179–186. [Google Scholar] [CrossRef]
- Farooq, M.; Flower, K.C.C.; Jabran, K.; Wahid, A.; Siddique, K.H.M. Crop yield and weed management in rainfed conservation agriculture. Soil Tillage Res. 2011, 117, 172–183. [Google Scholar] [CrossRef]
- Clements, D.R.; Weise, S.F.; Swanton, C.J. Integrated weed management and weed species diversity. Phytoprotection 1994, 75, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Fonteyne, S.; Peñaloza, O.N.; Alcalá, L.O.; Rodríguez, C.S.; Villalcantara, J. Control de malezas en maíz en tres regiones de Oaxaca: Primeros resultados de diferentes manejos de malezas en labranza convencional, mínima y cero. In Red de Plataformas de Investigación MasAgro-Resultados PV2016 y OI 2016–17; Fonteyne, S., Verhulst, N., Eds.; CIMMYT: Texcoco, Mexico, 2017; pp. 146–151. [Google Scholar]
- Federer, W.T. Experimental Designs: Theory and Applications; Oxford and IBH Publishing Company: New Delhi, India, 1977; p. 591. [Google Scholar]
- Federer, W.T.; José Crossa, J. Screening experimental designs for quantitative trait loci, association mapping, genotype by environment interaction, and other investigations. Front. Physiol. 2012, 3, 156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fay, D.S.; Gerow, K. A Biologist’s Guide to Statistical Thinking and Analysis. WormBook: The Online Review of C. Elegans Biology. 2013. Available online: http://www.wormbook.org/chapters/www_statisticalanalysis/statisticalanalysis.html (accessed on 29 May 2020).
- Fonteyne, S.; Gamiño, M.M.; Tejeda, A.S.; Verhulst, N. Conservation Agriculture Improves Long-term Yield and Soil Quality in Irrigated Maize-oats Rotation. Agronomy 2019, 9, 845. [Google Scholar] [CrossRef] [Green Version]
- Grahmann, K.; Verhulst, N.; Palomino, L.M.; Bischoff, W.A.; Govaerts, B.; Buerkert, A. Ion exchange resin samplers to estimate nitrate leaching from a furrow irrigated wheat-maize cropping system under different tillage-straw systems. Soil Tillage Res. 2018, 175, 91–100. [Google Scholar] [CrossRef]
- Govaerts, B.; Sayre, K.D.; Deckers, J. Stable high yields with zero tillage and permanent bed planting? Field. Crop. Res. 2005, 94, 33–42. [Google Scholar] [CrossRef]
- Fonteyne, S.; Verhulst, N. Celebrando más de 25 años del experimento a largo plazo ‘D5’ o la plataforma Texcoco, I., Estado de México. In Red de Plataformas de Investigación MasAgro-Resultados PV2016 y OI 2016–17; Fonteyne, S., Verhulst, N., Eds.; CIMMYT: Texcoco, Mexico, 2017; pp. 188–189. [Google Scholar]
- Malezas de México. Available online: http://www.conabio.gob.mx/malezasdemexico/2inicio/home-malezas-mexico.htm (accessed on 10 February 2020).
- Shannon, C.E.; Weaver, W. The Mathematical Theory of Communication; University of Illinois Press: Urbana, IL, USA, 1949; pp. 3–24. [Google Scholar]
- Verhulst, N.; Fonteyne, S.; Govaerts, B. Weed Biomass and Density in a Long-term Conservation Agriculture Experiment in Mexico. hdl:11529/10548424, CIMMYT Research Data & Software Repository Network. 2020. Available online: https://data.cimmyt.org/dataset.xhtml?persistentId=hdl:11529/10548424 (accessed on 11 May 2020).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: http://www.R-project.org/ (accessed on 29 May 2020).
- Trichard, A.; Ricci, B.; Ducourtieux, C.; Petit, S. The spatio-temporal distribution of weed seed predation differs between conservation agriculture and conventional tillage. Agric. Ecosyst. Environ. 2014, 188, 40–47. [Google Scholar] [CrossRef]
- Verhulst, N.; Govaerts, B.; Nelissen, V.; Sayre, K.D.; Crossa, J.; Raes, D.; Deckers, J. The effect of tillage, crop rotation and residue management on maize and wheat growth and development evaluated with an optical sensor. Field. Crop. Res. 2011, 120, 58–67. [Google Scholar] [CrossRef]
- Govaerts, B.; Sayre, K.D.; Deckers, J. A minimum data set for soil quality assessment of wheat and maize cropping in the highlands of Mexico. Soil Tillage Res. 2006, 87, 163–174. [Google Scholar] [CrossRef]
- Blackshaw, R.E. Rotation Affects Downy Brome (Bromus tectorum) in Winter Wheat (Triticum aestivum). Weed Technol. 1994, 8, 728–732. [Google Scholar] [CrossRef]
- Storkey, J.; Neve, P. What good is weed diversity? Weed Res. 2018, 58, 239–243. [Google Scholar] [CrossRef] [PubMed]
- Fischer, R.; Santiveri, F.; Vidal, I. Crop rotation, tillage and crop residue management for wheat and maize in the sub-humid tropical highlands. Field Crop. Res. 2002, 79, 123–137. [Google Scholar] [CrossRef]
- Norsworthy, J.K. Effect of tillage intensity and herbicide programs on changes in weed species density and composition in the southeastern coastal plains of the United States. Crop Prot. 2008, 27, 151–160. [Google Scholar] [CrossRef]
- Murphy, S.D.; Clements, D.R.; Belaoussoff, S.; Kevan, P.G.; Swanton, C.J. Promotion of weed species diversity and reduction of weed seedbanks with conservation tillage and crop rotation. Weed Sci. 2006, 54, 69–77. [Google Scholar] [CrossRef]
Trt. | Abbreviation | Crop | Rotation | Tillage Practice | Straw Management |
---|---|---|---|---|---|
1 | M-Mon-CT-R | Maize | Monoculture | Conventional tillage | Remove all residue |
2 | M-Mon-CT-K | Maize | Monoculture | Conventional tillage | Keep all residue |
3 | M-Rot-CT-R | Maize | Rotation | Conventional tillage | Remove all residue |
4 | M-Rot-CT-K | Maize | Rotation | Conventional tillage | Keep all residue |
5 | M-Mon-ZT-R | Maize | Monoculture | Zero tillage | Remove all residue |
6 | M-Mon-ZT-K | Maize | Monoculture | Zero tillage | Keep all residue |
7 | M-Rot-ZT-R | Maize | Rotation | Zero tillage | Remove all residue |
8 | M-Rot-ZT-K | Maize | Rotation | Zero tillage | Keep all residue |
9 | W-Mon-CT-R | Wheat | Monoculture | Conventional tillage | Remove all residue |
10 | W-Mon-CT-K | Wheat | Monoculture | Conventional tillage | Keep all residue |
11 | W-Rot-CT-R | Wheat | Rotation | Conventional tillage | Remove all residue |
12 | W-Rot-CT-K | Wheat | Rotation | Conventional tillage | Keep all residue |
13 | W-Mon-ZT-R | Wheat | Monoculture | Zero tillage | Remove all residue |
14 | W-Mon-ZT-K | Wheat | Monoculture | Zero tillage | Keep all residue |
15 | W-Rot-ZT-R | Wheat | Rotation | Zero tillage | Remove all residue |
16 | W-Rot-ZT-K | Wheat | Rotation | Zero tillage | Keep all residue |
Crop | Tillage | Year | Preplant | Preemergence | Postemergence | After Crop Maturity | ||
---|---|---|---|---|---|---|---|---|
Application 1 | Application 2 | Application 3 | ||||||
Maize | CT | 2004 | Glyphosate | Glyphosate | Bromoxynil + Halosulfuron | Fluroxypyr | ||
2005 | Glyphosate | Atrazine + S-Metolachlor | Glyphosate | |||||
2013 | Atrazine + S-Metolachlor | Topramezone + Atrazine + S-Metolachlor | Fluroxypyr | |||||
2014 | Fluroxypyr | |||||||
2015 | Glyphosate | Atrazine + S-Metolachlor | Glyphosate | |||||
ZT | 2004 | Glyphosate | Glyphosate | Bromoxynil + Halosulfuron | ||||
2005 | Glyphosate | Atrazine + S-Metolachlor | Glyphosate | |||||
2013 | Atrazine + S-Metolachlor | Topramezone + atrazine | Fluroxypyr | Glyphosate | ||||
2014 | Glyphosate | Fluroxypyr | ||||||
2015 | Glyphosate | Atrazine + S-Metolachlor | Glyphosate | |||||
Wheat | CT | 2004 | Glyphosate | Glyphosate | Bromoxynil + Halosulfuron | Clodinafop | Fluroxypyr | |
2005 | Glyphosate | Fenoxaprop | Halosulfuron | Fluroxypyr | Glyphosate | |||
2013 | Fenoxaprop | Bromoxynil + Halosulfuron | Fluroxypyr | |||||
2014 | Bromoxynil + Halosulfuron | Glyphosate | ||||||
2015 | Glyphosate | Bromoxynil + Halosulfuron | Fenoxaprop | Glyphosate | ||||
ZT | 2004 | Glyphosate | Glyphosate | Bromoxynil + Halosulfuron | Clodinafop | |||
2005 | Glyphosate | Fenoxaprop | Halosulfuron | Fluroxypyr | Glyphosate | |||
2013 | Fenoxaprop | Bromoxynil + Halosulfuron | Fluroxypyr | Glyphosate | ||||
2014 | Glyphosate | Bromoxynil + Halosulfuron | Fenoxaprop | Glyphosate | ||||
2015 | Glyphosate | Bromoxynil + Halosulfuron | Fenoxaprop | Glyphosate |
Measurement | 2004 | 2005 | 2013 | 2014 | 2015 |
---|---|---|---|---|---|
Weed density | 54–56 | NA | 68–79 | 57–70 | 57–64 |
Weed biomass | NA | 73 | 68–79 | 57–70 | 57–64 |
Weed Management | Crop | Factor | Degrees of Freedom | Sum of Squares | Mean Square Error | F-Value | p |
---|---|---|---|---|---|---|---|
With herbicides | Wheat | Residue | 1 | 4691 | 4691 | 1.578 | 0.2143 |
Rotation | 1 | 17,948 | 17,948 | 6.036 | 0.0171 * | ||
Tillage | 1 | 15,712 | 15,712 | 5.284 | 0.0253 * | ||
Residue × Rotation | 1 | 2221 | 2221 | 0.747 | 0.3911 | ||
Residue × Tillage | 1 | 2854 | 2854 | 0.96 | 0.3314 | ||
Rotation × Tillage | 1 | 1863 | 1863 | 0.627 | 0.4319 | ||
Residue × Rotation × Tillage | 1 | 6713 | 6713 | 2.258 | 0.1386 | ||
Residuals | 56 | 166,518 | 2974 | ||||
Maize | Residue | 1 | 1054 | 1054 | 0.872 | 0.35614 | |
Rotation | 1 | 8861 | 8861 | 7.33 | 0.00993 * | ||
Tillage | 1 | 1 | 1 | 0.001 | 0.97348 | ||
Residue × Rotation | 1 | 938 | 938 | 0.776 | 0.38357 | ||
Residue × Tillage | 1 | 1486 | 1486 | 1.23 | 0.27412 | ||
Rotation × Tillage | 1 | 5 | 5 | 0.004 | 0.94823 | ||
Residue × Rotation × Tillage | 1 | 2028 | 2028 | 1.678 | 0.20264 | ||
Residuals | 40 | 48,358 | 1209 | ||||
Without herbicides | Wheat | Residue | 1 | 15,127 | 15,127 | 0.63 | 0.43066 |
Rotation | 1 | 51,403 | 51,403 | 2.141 | 0.14898 | ||
Tillage | 1 | 172,400 | 172,400 | 7.181 | 0.00966 * | ||
Residue × Rotation | 1 | 8171 | 8171 | 0.34 | 0.56198 | ||
Residue × Tillage | 1 | 25,150 | 25,150 | 1.048 | 0.31046 | ||
Rotation × Tillage | 1 | 14,150 | 14,150 | 0.589 | 0.44588 | ||
Residue × Rotation × Tillage | 1 | 7116 | 7116 | 0.296 | 0.58831 | ||
Residuals | 56 | 1,344,403 | 24,007 | ||||
Maize | Residue | 1 | 99 | 99 | 0.003 | 0.9543 | |
Rotation | 1 | 22,000 | 22,000 | 0.738 | 0.3954 | ||
Tillage | 1 | 25,688 | 25,688 | 0.862 | 0.3588 | ||
Residue × Rotation | 1 | 7 | 7 | 0 | 0.9879 | ||
Residue × Tillage | 1 | 26,923 | 26,923 | 0.903 | 0.3477 | ||
Rotation × Tillage | 1 | 30,882 | 30,882 | 1.036 | 0.3149 | ||
Residue × Rotation × Tillage | 1 | 145,681 | 145,681 | 4.887 | 0.0328 * | ||
Residuals | 40 | 1,192,513 | 29813 |
Weed Management | Crop | Factor | Degrees of Freedom | Sum of Squares | Mean Square Error | F-Value | p |
---|---|---|---|---|---|---|---|
With herbicides | Wheat | Residue | 1 | 2254 | 2254 | 0.064 | 0.8007 |
Rotation | 1 | 113,761 | 113,761 | 3.247 | 0.0769 | ||
Tillage | 1 | 717 | 717 | 0.02 | 0.8868 | ||
Residue × Rotation | 1 | 1973 | 1973 | 0.056 | 0.8133 | ||
Residue × Tillage | 1 | 27,193 | 27,193 | 0.776 | 0.3821 | ||
Rotation × Tillage | 1 | 601 | 601 | 0.017 | 0.8963 | ||
Residue × Rotation × Tillage | 1 | 55,486 | 55,486 | 1.584 | 0.2134 | ||
Residuals | 56 | 1,961,852 | 35,033 | ||||
Maize | Residue | 1 | 79,990 | 79,990 | 0.798 | 0.377 | |
Rotation | 1 | 218,179 | 218,179 | 2.176 | 0.148 | ||
Tillage | 1 | 179,039 | 179,039 | 1.786 | 0.189 | ||
Residue × Rotation | 1 | 5437 | 5437 | 0.054 | 0.817 | ||
Residue × Tillage | 1 | 35,279 | 35,279 | 0.352 | 0.556 | ||
Rotation × Tillage | 1 | 10,246 | 10,246 | 0.102 | 0.751 | ||
Residue × Rotation × Tillage | 1 | 4587 | 4587 | 0.046 | 0.832 | ||
Residuals | 40 | 4,010,438 | 100,261 | ||||
Without herbicides | Wheat | Residue | 1 | 66080 | 66,080 | 0.852 | 0.3615 |
Rotation | 1 | 267319 | 267,319 | 3.447 | 0.0708 | ||
Tillage | 1 | 122911 | 122,911 | 1.585 | 0.2154 | ||
Residue × Rotation | 1 | 41101 | 41,101 | 0.53 | 0.4709 | ||
Residue × Tillage | 1 | 7 | 7 | 0 | 0.9926 | ||
Rotation × Tillage | 1 | 211278 | 211,278 | 2.724 | 0.1067 | ||
Residue × Rotation × Tillage | 1 | 72346 | 72,346 | 0.933 | 0.3399 | ||
Residuals | 40 | 3102247 | 77,556 | ||||
Maize | Residue | 1 | 5802 | 5802 | 0.356 | 0.5564 | |
Rotation | 1 | 41,744 | 41,744 | 2.561 | 0.1226 | ||
Tillage | 1 | 62,953 | 62,953 | 3.862 | 0.0611 | ||
Residue × Rotation | 1 | 14,897 | 14,897 | 0.914 | 0.3486 | ||
Residue × Tillage | 1 | 5612 | 5612 | 0.344 | 0.5629 | ||
Rotation × Tillage | 1 | 1275 | 1275 | 0.078 | 0.7821 | ||
Residue × Rotation × Tillage | 1 | 14,065 | 14,065 | 0.863 | 0.3622 | ||
Residuals | 24 | 391,234 | 16,301 |
2013 | 2014 | 2015 | Average | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Trt. | Abbreviation | H’ | J’ | S | H’ | J’ | S | H’ | J’ | S | H’ | J’ | S |
M-Mon-CT-R | 1.0 | 0.5 | 8.5 | - | - | - | 1.4 | 0.8 | 6 | 1.2 | 0.6 | 7.3 | |
M-Mon-CT-K | 1.3 | 0.6 | 8.0 | - | - | - | 1.5 | 0.8 | 6.5 | 1.4 | 0.7 | 7.3 | |
M-Rot-CT-R | 0.0 | 0.0 | 2.5 | - | - | - | 1.0 | 0.6 | 5 | 0.5 | 0.3 | 3.8 | |
M-Rot-CT-K | 1.1 | 0.4 | 11.0 | - | - | - | 1.1 | 0.5 | 9 | 1.1 | 0.5 | 10.0 | |
M-Mon-ZT-R | 1.7 | 0.7 | 10.5 | - | - | - | 1.3 | 0.6 | 7.5 | 1.5 | 0.7 | 9.0 | |
M-Mon-ZT-K | 1.4 | 0.6 | 9.5 | - | - | - | 1.7 | 0.8 | 9.5 | 1.6 | 0.7 | 9.5 | |
M-Rot-ZT-R | 0.6 | 0.3 | 5.0 | - | - | - | 1.2 | 0.6 | 7.5 | 0.9 | 0.5 | 6.3 | |
M-Rot-ZT-K | 0.3 | 0.1 | 10.5 | - | - | - | 1.8 | 0.9 | 8 | 1.1 | 0.5 | 9.3 | |
W-Mon-CT-R | 0.5 | 0.2 | 8.0 | 0.9 | 0.5 | 6.0 | 1.0 | 0.7 | 4.5 | 0.8 | 0.5 | 6.2 | |
W-Mon-CT-K | 0.6 | 0.3 | 7.5 | 0.7 | 0.5 | 4.0 | 0.9 | 0.4 | 8.5 | 0.8 | 0.4 | 6.7 | |
W-Rot-CT-R | 1.3 | 0.6 | 8.0 | 1.1 | 0.5 | 7.5 | 1.3 | 0.6 | 8 | 1.2 | 0.6 | 7.8 | |
W-Rot-CT-K | 1.5 | 0.7 | 8.0 | 0.8 | 0.4 | 9.0 | 1.5 | 0.8 | 7.5 | 1.3 | 0.6 | 8.2 | |
W-Mon-ZT-R | 0.9 | 0.6 | 5.0 | 0.8 | 0.7 | 3.0 | 0.1 | 0.1 | 5.5 | 0.6 | 0.4 | 4.5 | |
W-Mon-ZT-K | 1.5 | 0.8 | 6.0 | 0.9 | 0.5 | 5.5 | 0.7 | 0.4 | 5.5 | 1.0 | 0.6 | 5.7 | |
W-Rot-ZT-R | 1.3 | 0.6 | 8.5 | 1.0 | 0.5 | 6.5 | 0.3 | 0.2 | 4 | 0.9 | 0.5 | 6.3 | |
W-Rot-ZT-K | 2.1 | 1.0 | 8.5 | 0.8 | 0.4 | 7.5 | 0.5 | 0.3 | 7 | 1.1 | 0.5 | 7.7 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fonteyne, S.; Singh, R.G.; Govaerts, B.; Verhulst, N. Rotation, Mulch and Zero Tillage Reduce Weeds in a Long-Term Conservation Agriculture Trial. Agronomy 2020, 10, 962. https://doi.org/10.3390/agronomy10070962
Fonteyne S, Singh RG, Govaerts B, Verhulst N. Rotation, Mulch and Zero Tillage Reduce Weeds in a Long-Term Conservation Agriculture Trial. Agronomy. 2020; 10(7):962. https://doi.org/10.3390/agronomy10070962
Chicago/Turabian StyleFonteyne, Simon, Ravi Gopal Singh, Bram Govaerts, and Nele Verhulst. 2020. "Rotation, Mulch and Zero Tillage Reduce Weeds in a Long-Term Conservation Agriculture Trial" Agronomy 10, no. 7: 962. https://doi.org/10.3390/agronomy10070962
APA StyleFonteyne, S., Singh, R. G., Govaerts, B., & Verhulst, N. (2020). Rotation, Mulch and Zero Tillage Reduce Weeds in a Long-Term Conservation Agriculture Trial. Agronomy, 10(7), 962. https://doi.org/10.3390/agronomy10070962