Can the Application the Silicon Improve the Productivity and Nutritional Value of Grass–Clover Sward in Conditions of Rainfall Shortage in Organic Management?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Evaluation of Plant Productivity
2.3. Determination of the Relative Content of Flavonols and Chlorophyll
2.4. Nutritive Value Analyses
2.5. Statistical Analysis
3. Results
3.1. Weather Conditions
3.2. Botanical Composition and Plant Productivity
3.3. Relative Content of Flavones and Chlorophyll
3.4. Nutrient Content
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Vicca, S.; Gilgen, A.K.; Serrano, M.C.; Dreesen, F.E.; Dukes, J.S.; Estiarte, M.; Gray, S.B.; Guidolotti, G.; Hoeppner, S.; Leakey, A.D.B.; et al. Urgent need for a common metric to make precipitation manipulation experiments comparable. New Phytol. 2012, 195, 518–522. [Google Scholar] [CrossRef] [PubMed]
- Thumm, U.; Tonn, B. Effect of precipitation on dry matter production of a meadow with varied cutting frequency. Grassl. Sci. Eur. 2010, 15, 90–92. [Google Scholar]
- Trnka, M.; Eitzinger, J.; Gruszczynski, G.; Buchgraber, K.; Resch, R.; Schaumberger, A. A simple statistical model for predicting herbage production from permanent grassland. Grass Forage Sci. 2006, 61, 253–271. [Google Scholar] [CrossRef]
- Vogel, A.; Scherer-Lorenzen, M.; Weigelt, A. Grassland resistance and resilience after drought depends on management intensity and species richness. PLOS ONE 2012, 7. [Google Scholar] [CrossRef]
- Lüscher, A.; Mueller-Harvey, I.; Soussana, J.F.; Rees, R.M.; Peyraud, J.L. Potential of legume-based grassland—livestock systems in Europe: A review. Grass Forage Sci. 2014, 69, 206–228. [Google Scholar] [CrossRef]
- Hofer, D.; Suter, M.; Haughey, E.; Finn, J.A.; Hoekstra, N.J.; Buchmann, N.; Lüscher, A. Yield of temperate forage grassland species is either largely resistant or resilient to experimental summer drought. J. Appl. Ecol. 2016, 53, 1023–1034. [Google Scholar] [CrossRef] [Green Version]
- Wilkinson, J.M.; Lee, M.R.F.; Rivero, M.J.; Chamberlain, A.T. Some challenges and opportunities for grazing dairy cows on temperate pastures. Grass Forage Sci. 2020, 75, 1–17. [Google Scholar] [CrossRef]
- Gaweł, E. The protein yield in organic cultivated papilionaceous-grass mixtures. J. Res. Appl. Agric. Eng. 2010, 55, 80–85. [Google Scholar]
- Jankowska-Huflejt, H.; Domański, P.J. Present and possible directions of grassland use in Poland. Woda Środowisko Obszary Wiejskie 2008, 8, 31–49. [Google Scholar]
- Gaweł, E. Nutritive value of legume-grass mixtures cultivated in organic farms. J. Res. Appl. Agric. Eng. 2012, 57, 91–97. [Google Scholar]
- Artyszak, A. Effect of silicon fertilization on crop yield quantity and quality—a literature review in Europe. Plants 2018, 7, 54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Artyszak, A.; Gozdowski, D.; Kucińska, K. The effect of foliar fertilization with marine calcite in sugar beet. Plant. Soil Environ. 2014, 60, 413–417. [Google Scholar] [CrossRef] [Green Version]
- Jarosz, Z. The effect of silicon application and type of substrate on yield and chemical composition of leaves of cucumber. J. Elementol. 2013, 18, 403–414. [Google Scholar] [CrossRef]
- Górecki, R.S.; Danielski-Busch, W. Effect of silicate fertilizers on yielding of greenhouse cucumber (Cucumis sativus L.) in container cultivation. J. Elementol. 2009, 14, 71–78. [Google Scholar]
- Hogendorp, B.K. Effect on Silicon-Based Fertilizer Application on the Development and Reproduction of Insect Pests Associated with Greenhouse-Grown Crops. Ph.D. Thesis, University of Illinois, Urbana, IL, USA, 2008. [Google Scholar]
- Sacała, E. Role of silicon in plant resistance to water stress. J. Elem. 2009, 14, 619–630. [Google Scholar] [CrossRef]
- Gunes, A.; Inal, A.; Bagei, E.G.; Coban, S.; Pilbeam, D.J. Silicon mediates changes to some physiological and enzymatic parameters symptomatic for oxidative stress in spinach (Spinatia oleraces L.) grown under B toxicity. Sci. Hort. 2007, 113, 113–119. [Google Scholar] [CrossRef]
- Mateos-Naranjo, E.; Andrades-Moreno, L.; Davy, A.J. Silicon alleviates deleterious effects of high salinity in the halophytic grass Spartina densiflora. Plant. Physiol. Biochem. 2013, 63, 115–121. [Google Scholar] [CrossRef]
- Rubinowska, K.; Pogroszewska, E.; Laskowska, H.; Szot, P.; Zdybel, A.; Stasiak, A.; Kozak, D. The subsequent effect of silicon on physiological and biochemical parameters of Polygonatum multiflorum (L.) All. ‘Variegatum’ cut shoots. Acta Sci. Pol-Hortoru 2014, 13, 167–178. [Google Scholar]
- Kaya, C.; Tuna, L.; Higgs, D. Effect of silicon on plant growth and mineral nutrition of maize grown under water-stress conditions. J. Plant. Nutr. 2006, 29, 1469–1480. [Google Scholar] [CrossRef]
- Ma, J.F.; Takahashi, E. Soil, Fertilizer, and Plant Silicon Research in Japan; Elsevier: Amsterdam, The Netherlands, 2002; pp. 1–292. [Google Scholar]
- Ahmad, S.T.; Haddad, R. Study of silicon effects on antioxidant enzyme activities and osmotic adjustment of wheat under drought stress. Czech. J. Genet. Plant. Breed. 2011, 47, 17–27. [Google Scholar] [CrossRef] [Green Version]
- Matichenkov, V.V.; Bocharnikova, E.A.; Ammosova, J.M. The influence of silicon fertilizers on the plants and soils. Agrochemistry 2001, 12, 30–37. [Google Scholar]
- Hattori, T.; Inanaga, S.; Tanimoto, E.; Lux, A.; Luxová, M.; Sugimoto, Y. Silicon-induced changes in viscoelastic properties of sorghum root cell walls. Plant. Cell Physiol. 2003, 44, 743–749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sahebi, M.; Hanafi, M.M.; Akmar, A.S.; Rafii, M.Y.; Azizi, P.; Tengoua, F.F.; Azwa, J.N.M.; Shabanimofrad, M. Importance of Silicon and mechanisms of Biosilica Formation in Plants. BioMed Res. Int. 2015, 2015, 1–16. [Google Scholar] [CrossRef] [PubMed]
- FAO. World Reference Base for Soil Resources (WRBSR) 2014. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Report; FAO: Rome, Italy, 2015. [Google Scholar]
- Goss, M. Root distribution, growth and turnover. In Sward Measurement Handbook, 2nd ed.; Davies, A., Baker, R.D., Grant, S.A., Laidlaw, A.S., Eds.; British Grassland Society: Reading, UK, 1993; pp. 157–182. [Google Scholar]
- Vinczeffy, J. The effect of some ecological factors on grass yield. In Proceedings of the 10th General Meeting of European Grassland Federation, Ås, Norway, 26–30 June 1984; European Grassland Federation: Ås, Norway, 1984; pp. 76–79. [Google Scholar]
- Bristiel, P.; Roumet, C.; Violle, C.; Volaire, F. Coping with drought: root trait variability within the perennial grass Dactylis glomerata captures a trade-off between dehydration avoidance and dehydration tolerance. Plant. Soil 2019, 434, 327–342. [Google Scholar] [CrossRef]
- Karsten, H.D.; MacAdam, J.W. Effect of drought on growth, carbohydrates, and soil water use by perennial ryegrass, tall fescue, and white clover. Crop. Sci. 2001, 41, 156–166. [Google Scholar] [CrossRef]
- Sanna, C.; Franca, A.; Porqueddu, C.; Piluzza, G.; Re, G.A.; Sulas, L.; Bullitta, S. Characterization of native perennial ryegrasses for persistence in mediterranean rainfed conditions. Span. J. Agric. Res. 2014, 12, 1110–1123. [Google Scholar] [CrossRef] [Green Version]
- Lelièvre, F.; Volaire, F. Current and potential development of perennial grasses in rainfed Mediterranean farming systems. Crop. Sci. 2009, 49, 2371–2378. [Google Scholar] [CrossRef]
- Radkowski, A.; Sosin-Bzducha, E.; Radkowska, I. Effects of silicon foliar fertilization of meadow plants on nutritional value of silage fed to dairy cows. J. Elem. 2017, 22, 1311–1322. [Google Scholar]
- Klaus, V.H.; Kleinebecker, T.; Prati, D.; Gossner, M.M.; Alt, F.; Boch, S.; Gockel, S.; Hemp, A.; Lange, M.; Müller, J.; et al. Does organic grassland farming benefit plant and arthropod diversity at the expense of yield and soil fertility? Agric. Ecosyst. Environ. 2013, 177, 1–9. [Google Scholar] [CrossRef]
- Guo, Q.; Hu, Z.M.; Li, S.G.; Li, X.R.; Sun, X.M.; Yu, G.R. Spatial variations in aboveground net primary productivity along a climate gradient in Eurasian temperate grassland: effects of mean annual precipitation and its seasonal distribution. Glob. Chang. Biol. 2012, 18, 3624–33631. [Google Scholar] [CrossRef]
- Nippert, J.B.; Knapp, A.K.; Briggs, J.M. Intra-annual rainfall variability and grassland productivity: Can the past predict the future? Plant. Ecol. 2006, 184, 65–74. [Google Scholar] [CrossRef]
- Radkowski, A.; Radkowska, I. Effects of silicate fertilizer on seed yield In timothy-grass (Phleum pratense L.). Ecol. Chem. Eng. S 2018, 25, 169–180. [Google Scholar] [CrossRef] [Green Version]
- Siam, H.S.; Abd El-Moez, M.R.; Holah, S.S.; AbouZeid, S.T. Effect of silicon addition to different fertilizer on yield of rice (Oryza sativa L.) plants. I-Macro nutrients by different rice parts. Middle East. J. Appl. Sci. 2018, 8, 177–190. [Google Scholar]
- Skinner, R.H.; Comas, L.H. Root distribution of temperate forage species subjected to water and nitrogen stress. Crop Sci. 2010, 50, 2178–2185. [Google Scholar] [CrossRef]
- Hoekstra, N.J.; Suter, M.; Finn, J.A.; Husse, S.; Lüscher, A. Do belowground vertical niche differences between deep—And shallow rooted species enhance resource uptake and drought resistance in grassland mixtures? Plant. Soil 2015, 394, 21–34. [Google Scholar] [CrossRef]
- Ma, J.F. Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Sci. Plant. Nutr. 2004, 50, 11–18. [Google Scholar] [CrossRef]
- Jarvis, S.C. The uptake and transport of silicon by perennial ryegrass and wheat. Plant. Soil 1987, 97, 429–438. [Google Scholar] [CrossRef]
- Liang, Y.; Si, J.; Römheld, V. Silicon uptake and transport is an active process in Cucumis sativus. New Phytol. 2005, 167, 797–804. [Google Scholar] [CrossRef]
- Reddy, A.R.; Chiatanya, K.V.; Vivekanandan, M. Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J. Plant. Physiol. 2004, 161, 1189–1202. [Google Scholar] [CrossRef]
- Mierziak, J.; Kostyn, K.; Kulma, A. Flavonoids as important molecules of plant interactions with the environment. Molecules 2014, 19, 16240–16265. [Google Scholar] [CrossRef]
- Rangaraj, S.; Gopalu, K.; Rathinam, Y.; Periasamy, P.; Venkatachalam, R.; Narayanasamy, K. Effect of silica nanoparticles on microbial biomass and silica availability in maize rhizosphere. Biotechnol. Appl. Biochem. 2014, 61, 668–675. [Google Scholar] [CrossRef] [PubMed]
- Greger, M.; Landberg, T.; Vaculík, M. Silicon influences soil availability and accumulation of mineral nutrients in various plant species. Plants 2018, 7, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurdali, F.; Al-Chammaa, M.; Mouasess, A. Growth and nitrogen fixation in silicon and/or potassium fed chickpeas grown under drought and well-watered conditions. J. Stress Physiol. Biochem. 2013, 9, 386–406. [Google Scholar]
Year | pHKCl | P | K | Mg |
mg/100 g soil | ||||
2012 | 5.6 | 3.2 | 14.9 | 10.7 |
2017 | 5.8 | 13.1 | 6.1 | 12.1 |
Mowing dates | ||||
1st | 2nd | 3rd | ||
2015 | 27 May | 20 July | 7 Oct | |
2016 | 25 May | 17 July | 28 Sep | |
2017 | 2 June | 17 July | 26 Sep |
Treatment | Year/Regrowth | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2015 | 2016 | 2017 | Annual (Year × Treatment) | 2015–2017 | |||||||||
1st | 2nd | 3rd | 1st | 2nd | 3rd | 1st | 2nd | 3rd | 2015 | 2016 | 2017 | Mean | |
Control | 4.71a | 1.69a | 0.33a | 3.63a | 0.63a | 2.46a | 3.06a | 3.34a | 1.83a | 6.74a | 6.72a | 8.23b | 7.23a |
Herbagreen | 5.11a | 2.46a | 0.41a | 4.04a | 0.99b | 3.18b | 4.29b | 3.38a | 1.90a | 7.98b | 8.22b | 9.58c | 8.59c |
Optysil | 5.20a | 2.36a | 0.56a | 3.84a | 0.68a | 2.53a | 3.91b | 3.62a | 1.93a | 8.13b | 7.05a | 9.46c | 8.21b |
Mean | 7.79A | 7.45A | 9.26B | ||||||||||
% share | 65.0 | 29.0 | 6.0 | 52.0 | 11.0 | 37.0 | 42.0 | 37.0 | 21.0 |
Year | 2015 | 2016 | 2017 | ||||||
Treatment/Layer (cm) | 0–10 | 10–20 | 20–30 | 0–10 | 10–20 | 20–30 | 0–10 | 10–20 | 20–30 |
Control | 1.33a | 0.19a | 0.08a | 1.20a | 0.17a | 0.15a | 1.20a | 0.17a | 0.06a |
Herbagreen | 1.74b | 0.24a | 0.13a | 1.51b | 0.19a | 0.13a | 1.42b | 0.14a | 0.09a |
Optysil | 1.69b | 0.40b | 0.18a | 1.93c | 0.20a | 0.14a | 1.30ab | 0.34b | 0.07a |
Year | Mean 2015–2017 | 2015 | 2016 | 2017 | Mean 2015–2017 | ||||
Treatment/Layer (cm) | 0–10 | 10–20 | 20–30 | 0–30 | 0–30 | ||||
Control | 1.24a | 0.18a | 0.10a | 1.60a | 1.53a | 1.42a | 1.52a | ||
Herbagreen | 1.56b | 0.19a | 0.12a | 2.11ab | 1.83a | 1.65a | 1.86b | ||
Optysil | 1.64b | 0.31b | 0.13a | 2.28b | 2.27b | 1.71a | 2.09c | ||
Mean | 2.07B | 1.95B | 1.63A |
Treatment | 2015 | 2016 | 2017 | Mean | 2015 | 2016 | 2017 | Mean |
---|---|---|---|---|---|---|---|---|
HI | LAI | |||||||
Control | 0.25a | 0.22b | 0.27a | 0.25b | 1.37a | 1.79a | 1.99a | 1.72a |
Herbagreen | 0.24a | 0.22b | 0.29a | 0.25b | 1.94b | 1.93a | 2.80b | 2.22b |
Optysil | 0.23a | 0.18a | 0.27a | 0.23a | 1.92b | 1.82a | 2.68b | 2.14b |
Mean | 0.24B | 0.20A | 0.28C | 1.82A | 1.86A | 2.59B | ||
Lolium perenne | Trifolium pratense | |||||||
Chl | ||||||||
Control | 28.9a | 29.9a | 23.1a | 27.3a | 42.7a | 41.3a | 35.7a | 39.9a |
Herbagreen | 34.8b | 35.2c | 29.4b | 33.1b | 46.7b | 42.3a | 38.1b | 42.4b |
Optysil | 33.6b | 33.5b | 29.8b | 32.3b | 45.6b | 42.7a | 39.5b | 42.6b |
Mean | 33.2B | 33.5B | 28.3A | 45.5C | 42.3B | 38.1A | ||
FLV | ||||||||
Control | 1.86b | 1.78b | 1.69b | 1.77b | 3.21a | 3.10b | 2.80a | 3.03b |
Herbagreen | 1.76a | 1.48a | 1.41a | 1.55a | 3.12a | 2.83a | 2.70a | 2.89a |
Optysil | 1.77a | 1.44a | 1.40a | 1.54a | 3.17a | 2.81a | 2.84a | 2.94ab |
Mean | 1.78C | 1.52B | 1.46A | 3.16C | 2.88B | 2.78A |
Analyzed Component | 2016 | 2017 | 2016 | 2017 | ||||
---|---|---|---|---|---|---|---|---|
Control | Herbagreen | Optysil | Control | Herbagreen | Optysil | |||
Crude protein (g/kg DM) | 137.7a | 150.6b | 140.3a | 172.8a | 185.8b | 172.2a | 142.9A | 176.9B |
Crude Fiber (g/kg DM) | 243.8b | 228.0a | 230.2a | 236.0ab | 231.0a | 237.2b | 234.0A | 234.7A |
Digestibility organic matter (%) | 54.32a | 57.73b | 56.74b | 58.38ab | 59.41b | 57.42a | 56.65A | 58.41B |
K (g/kg DM) | 15.57a | 18.29c | 16.97b | 16.89a | 19.45b | 18.75ab | 17.22A | 18.66B |
P (g/kg DM) | 2.90a | 3.20b | 3.24b | 1.17a | 1.41b | 1.27ab | 3.16B | 1.31A |
Mg (g/kg DM) | 2.20a | 2.17a | 2.18a | 2.74a | 2.61a | 2.57a | 2.18A | 2.62B |
Ca (g/kg DM) | 8.46a | 9.48b | 9.68b | 11.18a | 9.17a | 10.38a | 9.36A | 10.06A |
Na (g/kg DM) | 0.57a | 0.67b | 0.54a | 0.60a | 0.70b | 0.53a | 0.60A | 0.61A |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mastalerczuk, G.; Borawska-Jarmułowicz, B.; Dąbrowski, P.; Szara, E.; Perzanowska, A.; Wróbel, B. Can the Application the Silicon Improve the Productivity and Nutritional Value of Grass–Clover Sward in Conditions of Rainfall Shortage in Organic Management? Agronomy 2020, 10, 1007. https://doi.org/10.3390/agronomy10071007
Mastalerczuk G, Borawska-Jarmułowicz B, Dąbrowski P, Szara E, Perzanowska A, Wróbel B. Can the Application the Silicon Improve the Productivity and Nutritional Value of Grass–Clover Sward in Conditions of Rainfall Shortage in Organic Management? Agronomy. 2020; 10(7):1007. https://doi.org/10.3390/agronomy10071007
Chicago/Turabian StyleMastalerczuk, Grażyna, Barbara Borawska-Jarmułowicz, Piotr Dąbrowski, Ewa Szara, Aneta Perzanowska, and Barbara Wróbel. 2020. "Can the Application the Silicon Improve the Productivity and Nutritional Value of Grass–Clover Sward in Conditions of Rainfall Shortage in Organic Management?" Agronomy 10, no. 7: 1007. https://doi.org/10.3390/agronomy10071007
APA StyleMastalerczuk, G., Borawska-Jarmułowicz, B., Dąbrowski, P., Szara, E., Perzanowska, A., & Wróbel, B. (2020). Can the Application the Silicon Improve the Productivity and Nutritional Value of Grass–Clover Sward in Conditions of Rainfall Shortage in Organic Management? Agronomy, 10(7), 1007. https://doi.org/10.3390/agronomy10071007