Antifungal and Phytotoxic Activities of Essential Oils: In Vitro Assays and Their Potential Use in Crop Protection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Essential Oils
2.2. Determination of the EO Chemical Composition
2.3. Determination of the Retention Capacity of EO by HP-β-CD
2.4. Biological Activities of EO
2.4.1. EO Antifungal Activity
2.4.2. EO Phytotoxicity Assessment
2.5. Statistical Analysis
3. Results
3.1. Determination of the EO Chemical Composition
3.2. Determination of the Retention Capacity of EO by HP-β-CD
3.3. Biological Activities of EO
3.3.1. EO Antifungal Activity
3.3.2. EO Phytotoxicity Assessment
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hanif, M.A.; Nisar, S.; Khan, G.S.; Mushtaq, Z.; Zubair, M. Essential Oils. In Essential Oil Research; Springer: Cham, Switzerland, 2019; pp. 3–17. [Google Scholar]
- Mittal, R.P.; Rana, A.; Jaitak, V. Essential Oils: An Impending Substitute of Synthetic Antimicrobial Agents to Overcome Antimicrobial Resistance. Curr. Drug Targets 2019, 20, 605–624. [Google Scholar] [CrossRef] [PubMed]
- Raveau, R.; Fontaine, J.; Lounès-Hadj Sahraoui, A. Essential Oils as Potential Alternative Biocontrol Products against Plant Pathogens and Weeds: A Review. Foods 2020, 9, 365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, C.L.; Dai, D.H.; Hu, W.L. Antimicrobial and antioxidant activities of the essential oil from onion (Allium cepa L.). Food Control 2013, 30, 48–53. [Google Scholar] [CrossRef]
- da Cruz Cabral, L.; Pinto, V.F.; Patriarca, A. Application of plant derived compounds to control fungal spoilage and mycotoxin production in foods. Int. J. Food Microbiol. 2013, 166, 1–14. [Google Scholar] [CrossRef]
- Jallow, M.F.A.; Awadh, D.G.; Albaho, M.S.; Devi, V.Y.; Thomas, B.M. Science of the Total Environment Pesticide risk behaviors and factors in fl uencing pesticide use among farmers in Kuwait. Sci. Total Environ. 2017, 574, 490–498. [Google Scholar] [CrossRef]
- Lamichhane, J.R.; Dachbrodt-Saaydeh, S.; Kudsk, P.; Messéan, A. Toward a Reduced Reliance on Conventional Pesticides in European Agriculture. Plant Dis. 2016, 100, 10–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kordali, S.; Cakir, A.; Akcin, T.A.; Mete, E.; Akcin, A.; Aydin, T.; Kilic, H. Antifungal and herbicidal properties of essential oils and n-hexane extracts of Achillea gypsicola Hub-Mor. and Achillea biebersteinii Afan. (Asteraceae). Ind. Crops Prod. 2009, 29, 562–570. [Google Scholar] [CrossRef]
- Pavela, R.; Benelli, G. Essential Oils as Ecofriendly Biopesticides? Challenges and Constraints. Trends Plant Sci. 2016, 21, 1000–1007. [Google Scholar] [CrossRef]
- Kfoury, M.; Auezova, L.; Greige-Gerges, H.; Fourmentin, S. Promising applications of cyclodextrins in food: Improvement of essential oils retention, controlled release and antiradical activity. Carbohydr. Polym. 2015, 131, 264–272. [Google Scholar] [CrossRef] [PubMed]
- Fourmentin, S.; Ciobanu, A.; Landy, D.; Wenz, G. Space filling of β-cyclodextrin and β-cyclodextrin derivatives by volatile hydrophobic guests. Beilstein J. Org. Chem. 2013, 9, 1185–1191. [Google Scholar] [CrossRef]
- Kurkov, S.V.; Loftsson, T. Cyclodextrins. Int. J. Pharm. 2013, 453, 167–180. [Google Scholar] [CrossRef]
- Del Toro-Sánchez, C.L.; Ayala-Zavala, J.F.; Machi, L.; Santacruz, H.; Villegas-Ochoa, M.A.; Alvarez-Parrilla, E.; González-Aguilar, G.A. Controlled release of antifungal volatiles of thyme essential oil from β-cyclodextrin capsules. J. Incl. Phenom. Macrocycl. Chem. 2010, 67, 431–441. [Google Scholar] [CrossRef]
- Munhuweyi, K.; Caleb, O.J.; Lennox, C.L.; van Reenen, A.J.; Opara, U.L. In vitro and in vivo antifungal activity of chitosan-essential oils against pomegranate fruit pathogens. Postharvest Biol. Technol. 2017, 129, 9–22. [Google Scholar] [CrossRef]
- Estrada-cano, C.; Antonieta, M.; Castro, A.; Muñoz-castellanos, L.; García-triana, N.A.A. Antifungal Activity of Microcapsulated Clove (Eugenia caryophyllata) and Mexican Oregano (Lippia berlandieri) Essential Oils against Fusarium oxysporum. J. Microb. Biochem. Technol. 2017, 9, 567–571. [Google Scholar] [CrossRef] [Green Version]
- Munhuweyi, K.; Caleb, O.J.; van Reenen, A.J.; Opara, U.L. Physical and antifungal properties of β-cyclodextrin microcapsules and nanofibre films containing cinnamon and oregano essential oils. LWT Food Sci. Technol. 2018, 87, 413–422. [Google Scholar] [CrossRef]
- Herrera, A.; Rodríguez, F.J.; Bruna, J.E.; Abarca, R.L.; Galotto, M.J.; Guarda, A.; Mascayano, C.; Sandoval-yáñez, C.; Padula, M.; Ramos, F.; et al. Antifungal and physicochemical properties of inclusion complexes based on β -cyclodextrin and essential oil derivatives. Food Res. Int. 2019, 121, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Synowiec, A.; Smęda, A.; Adamiec, J.; Kalemba, D. The effect of microencapsulated essential oils on the initial growth of maize (Zea mays) and common weeds (Echinochloa crus-galli and Chenopodium album). Prog. Plant Prot. 2016, 56, 372–378. [Google Scholar] [CrossRef] [Green Version]
- Matny, O.N. Fusarium head blight and crown rot on wheat & barley: Losses and health risks. Adv. Plants Agric. Res. 2015, 2, 2–7. [Google Scholar]
- Wilson, W.; Dahl, B.; Nganje, W. Economic costs of fusarium head blight, scab and deoxynivalenol. World Mycotoxin J. 2018, 11, 291–302. [Google Scholar] [CrossRef]
- Ji, F.; He, D.; Olaniran, A.O.; Mokoena, M.P.; Xu, J.; Shi, J. Occurrence, toxicity, production and detection of Fusarium mycotoxin: A review. Food Prod Process Nutr. 2019, 1, 6. [Google Scholar] [CrossRef]
- Wagacha, J.M.; Muthomi, J.W. Fusarium culmorum: Infection process, mechanisms of mycotoxin production and their role in pathogenesis in wheat. Crop Prot. 2007, 26, 877–885. [Google Scholar] [CrossRef]
- Rai, A.; Das, M.; Tripathi, A. Occurrence and toxicity of a fusarium mycotoxin, zearalenone. Crit. Rev. Food Sci. Nutr. 2019, 1–20. [Google Scholar] [CrossRef]
- Goni, P.; Lopez, P.; Sanchez, C.; Gomez-Lus, R.; Becerril, R.; Nerin, C. Antimicrobial activity in the vapour phase of a combination of cinnamon and clove essential oils. Food Chem. 2009, 116, 982–989. [Google Scholar] [CrossRef]
- Nedorostova, L.; Kloucek, P.; Kokoska, L.; Stolcova, M.; Pulkrabek, J. Antimicrobial properties of selected essential oils in vapour phase against foodborne bacteria. Food Control 2009, 20, 157–160. [Google Scholar] [CrossRef]
- Suhr, K.; Nielsen, P.V. Antifungal activity of essential oils evaluated by two different application techniques against rye bread spoilage fungi. J. Appl. Microbiol. 2003, 94, 665–674. [Google Scholar] [CrossRef] [PubMed]
- Griffin, S.G.; Markham, J.L.; Leach, D.N. An agar dilution method for the determination of the minimum inhibitory concentration of essential oils. J. Essent. Oil Res. 2000, 12, 249–255. [Google Scholar] [CrossRef]
- Mnayer, D.; Fabiano-Tixier, A.-S.; Petitcolas, E.; Hamieh, T.; Nehme, N.; Ferrant, C.; Fernandez, X.; Chemat, F. Chemical Composition, Antibacterial and Antioxidant Activities of Six Essentials Oils from the Alliaceae Family. Molecules 2014, 19, 20034–20053. [Google Scholar] [CrossRef] [Green Version]
- Smith, J.P.J. Economically Important Plants Arranged Systematically. Available online: http://digitalcommons.humboldt.edu/botany_jps/48 (accessed on 18 March 2020).
- Hendawy, S.F.; Hussein, M.S.; El-Gohary, A.E.; Soliman, W.S. Chemical Constituents of Essential Oil in Chervil (Anthriscus cerefolium L. Hoffm.) Cultivated in Different Locations. J. Essent. Oil Bear. Plants 2019, 22, 264–272. [Google Scholar] [CrossRef]
- FerrantPHE. Available online: https://www.ferrantphe.com (accessed on 18 March 2020).
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing, Carol Stream: Illinois, IL, USA, 2007. [Google Scholar]
- Huang, Y.; Zhao, J.; Zhou, L.; Wang, J.; Gong, Y.; Chen, X.; Guo, Z.; Wang, Q.; Jiang, W. Antifungal activity of the essential oil of illicium verum fruit and its main component trans-anethole. Molecules 2010, 15, 7558–7569. [Google Scholar] [CrossRef]
- Quiroga, E.N.; Sampietro, A.R.; Vattuone, M.A. No TitleScreening antifungal activities of selected medicinal plants. J. Ethnopharmacol. 2001, 74, 89–96. [Google Scholar] [CrossRef]
- Abarca, R.L.; Rodríguez, F.J.; Guarda, A.; Galotto, M.J.; Bruna, J.E. Characterization of beta-cyclodextrin inclusion complexes containing an essential oil component. Food Chem. 2016, 196, 968–975. [Google Scholar] [CrossRef] [PubMed]
- Judd, L.; Jackson, B.; Fonteno, W. Advancements in Root Growth Measurement Technologies and Observation Capabilities for Container-Grown Plants. Plants 2015, 4, 369–392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lyu, J.; Park, J.; Kumar Pandey, L.; Choi, S.; Lee, H.; De Saeger, J.; Depuydt, S.; Han, T. Testing the toxicity of metals, phenol, effluents, and receiving waters by root elongation in Lactuca sativa L. Ecotoxicol. Environ. Saf. 2018, 149, 225–232. [Google Scholar] [CrossRef]
- Paul, A.L.; Daugherty, C.J.; Bihn, E.A.; Chapman, D.K.; Norwood, K.L.; Ferl, R.J. Transgene expression patterns indicate that spaceflight affects stress signal perception and transduction in Arabidopsis. Plant Physiol. 2001, 126, 613–621. [Google Scholar] [CrossRef] [Green Version]
- Yazdanbakhsh, N.; Fisahn, J. Analysis of Arabidopsis thaliana root growth kinetics with high temporal and spatial resolution. Ann. Bot. 2010, 105, 783–791. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2019. [Google Scholar]
- Avozani, A.; Tonin, R.B.; Reis, E.M.; Camera, J.; Ranzi, C. In vitro sensitivity of Fusarium graminearum isolates to fungicides. Summa Phytopathol. 2014, 40, 231–247. [Google Scholar] [CrossRef] [Green Version]
- Kawakami, H.; Inuzuka, H.; Hori, N.; Takahashi, N.; Ishida, K.; Mochizuki, K.; Ohkusu, K.; Muraosa, Y.; Watanabe, A.; Kamei, K. Inhibitory effects of antimicrobial agents against Fusarium species. Med. Mycol. 2015, 53, 603–611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yörük, E. Tetraconazole leads to alterations in Fusarium graminearum at different molecular levels. Appl. Ecol. Environ. 2018, 16, 6155–6167. [Google Scholar] [CrossRef]
- Ankri, S.; Mirelman, D. Antimicrobial properties of allicin from garlic. Microbes Infect. 1999, 1, 125–129. [Google Scholar] [CrossRef]
- Benkeblia, N. Antimicrobial activity of essential oil extracts of various onions (Allium cepa) and garlic (Allium sativum). LWT Food Sci. Technol. 2004, 37, 263–268. [Google Scholar] [CrossRef]
- Corzo-Martínez, M.; Corzo, N.; Villamiel, M. Biological properties of onions and garlic. Trends Food Sci. Technol. 2007, 18, 609–625. [Google Scholar] [CrossRef]
- Vokou, D.; Douvli, P.; Blionis, G.J.; Halley, J.M. Effects of Monoterpenoids, Acting Alone or in Pairs, on Seed Germination and Subsequent Seedling Growth. J. Chem. Ecol. 2003, 29, 2281–2301. [Google Scholar] [CrossRef] [PubMed]
- Kotan, R.; Cakir, A.; Dadasoglu, F.; Aydin, T.; Cakmakci, R.; Ozer, H.; Kordali, S.; Mete, E.; Dikbas, N. Antibacterial activities of essential oils and extracts of Turkish Achillea, Satureja and Thymus species against plant pathogenic bacteria. J. Sci. Food Agric. 2010, 90, 145–160. [Google Scholar] [CrossRef]
- Amri, I.; Hamrouni, L.; Hanana, M.; Jamoussi, B. Reviews on phytotoxic effects of essential oils and their individual components: News approach for weeds management. Int. J. Appl. Biol. Pharm. Technol. 2013, 4, 96–114. [Google Scholar]
- Ghanizadeh, H.; Harrington, K.C.; James, T.K.; Woolley, D.J. Quick tests for detecting glyphosate-resistant Italian and perennial ryegrass. N. Z. J. Agric. Res. 2015, 58, 108–120. [Google Scholar] [CrossRef]
- Martin, M.; Ronco, A. Effect of Mixtures of Pesticides Used in the Direct Seeding Technique on Nontarget Plant Seeds. Bull. Environ. Contam. Toxicol. 2006, 77. [Google Scholar] [CrossRef]
- Ronco, A.E.; Carriquiriborde, P.; Natale, G.; Martin, M.; Mugni, H.; Bonetto, C. Integrated approach for the assessment of biotech soybean pesticides impact on low order stream ecosystems of the pampasic region. In Ecosystem Ecology Research Trends; Chen, J., Guô, C., Eds.; Nova Science Publishers: New York, NY, USA, 2008; pp. 209–239. [Google Scholar]
- Kuang, Y.; Yang, S.X.; Sampietro, D.A.; Zhang, X.F.; Tan, J.; Gao, Q.X.; Liu, H.W.; Ni, Q.X.; Zhang, Y.Z. Phytotoxicity of leaf constituents from bamboo (Shibataea chinensis nakai) on germination and seedling growth of lettuce and cucumber. Allelopath. J. 2017, 40, 133–142. [Google Scholar] [CrossRef]
- Charles, J.; Sancey, B.; Morin-Crini, N.; Badot, P.-M.; Degiorgi, F.; Trunfio, G.; Crini, G. Evaluation of the phytotoxicity of polycontaminated industrial effluents using the lettuce plant (Lactuca sativa) as a bioindicator. Ecotoxicol. Environ. Saf. 2011, 74, 2057–2064. [Google Scholar] [CrossRef]
- Pennacchio, M.; Jefferson, L.V.; Havens, K. Arabidospis thaliana: A new test species for phytotoxic bioassays. J. Chem. Ecol. 2005, 31, 1877–1885. [Google Scholar] [CrossRef]
- Gruda, N.; Rau, B.J.; Wright, R.D. Laboratory bioassay and Greenhouse Evaluation of a Pine Tree substrate used as a container substrate. Eur. J. Hortic. Sci. 2009, 74, 73–78. [Google Scholar]
- Marcu, D.; Cristea, V.; Daraban, L. Dose-dependent effects of gamma radiation on lettuce (Lactuca sativa var. capitata) seedlings. Int. J. Radiat. Biol. 2013, 89, 219–223. [Google Scholar] [CrossRef] [PubMed]
- Labud, V.; Garcia, C.; Hernandez, T. Effect of hydrocarbon pollution on the microbial properties of a sandy and a clay soil. Chemosphere 2007, 66, 1863–1871. [Google Scholar] [CrossRef] [PubMed]
- Santos, S.C.; OLIVEIRA, U.A.; Trindade, L.; ASSIS, M.D.; Campos, J.M.; Salgado, E.G.; Barbosa, S.A. Genotypes selection for plant bioassays using Lactuca sativa L. and Allium cepa L. Pakistan J. Bot. 2017, 49, 2201–2212. [Google Scholar]
- Park, J.; Yoon, J.; Depuydt, S.; Oh, J.; Jo, Y.; Kim, K.; Brown, M.; Han, T. The sensitivity of an hydroponic lettuce root elongation bioassay to metals, phenol and wastewaters. Ecotoxicol. Environ. Saf. 2016, 126, 147–153. [Google Scholar] [CrossRef]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef]
- Christaki, E.; Bonos, E.; Giannenas, I.; Florou-Paneri, P. Aromatic Plants as a Source of Bioactive Compounds. Agriculture 2012, 2, 228–243. [Google Scholar] [CrossRef] [Green Version]
- Shaaban, H.A.E.; El-Ghorab, A.H.; Shibamoto, T. Bioactivity of essential oils and their volatile aroma components: Review. J. Essent. Oil Res. 2012, 24, 203–212. [Google Scholar] [CrossRef]
- de Araújo Couto, H.G.S.; Blank, A.F.; e Silva, A.M.D.O.; de Lima Nogueira, P.C.; de Fátima Arrigoni-Blank, M.; de Castro Nizio, D.A.; de Oliveira Pinto, J.A. Essential oils of basil chemotypes: Major compounds, binary mixtures, and antioxidant activity. Food Chem. 2019, 293, 446–454. [Google Scholar] [CrossRef]
- Ben Kaab, S.; Rebey, I.; Hanafi, M.; Berhal, C.; Fauconnier, M.; De Clerck, C.; Ksouri, R.; Jijakli, H. Rosmarinus officinalis essential oil as an effective antifungal and herbicidal agent. Span. J. Agric. Res. 2019, 17, 1006. [Google Scholar] [CrossRef] [Green Version]
- Lagrouh, F.; Dakka, N.; Bakri, Y. The antifungal activity of Moroccan plants and the mechanism of action of secondary metabolites from plants. J. Mycol. Med. 2017, 27, 303–311. [Google Scholar] [CrossRef]
- Vicki Caligur, B.S.; McClanahan, C. Antifungals. In Biofiles: Antibiotics for Research Applications; Sigma-Aldrich: St. Louis, MO, USA, 2009; Volume 4, pp. 10–15. [Google Scholar]
- Ciobanu, A.; Mallard, I.; Landy, D.; Brabie, G.; Nistor, D.; Fourmentin, S. Retention of aroma compounds from Mentha piperita essential oil by cyclodextrins and crosslinked cyclodextrin polymers. Food Chem. 2013, 138, 291–297. [Google Scholar] [CrossRef] [PubMed]
- Kfoury, M.; Auezova, L.; Fourmentin, S.; Greige-Gerges, H. Investigation of monoterpenes complexation with hydroxypropyl-β-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 2014, 80, 51–60. [Google Scholar] [CrossRef]
A. Root a | A. Seed b | Chervil | Chive | Garlic | Leek | Onion | Shallot | Thuja | |
---|---|---|---|---|---|---|---|---|---|
α-Thujene | - | - | - | - | - | - | - | - | 0.45 ± 0.006 |
Methyl propyl disulfide | - | - | - | 3.5 ± 0.3 | - | 3.6 ± 0.02 | 2.8 ± 0.09 | 6.5 ± 0.1 | - |
α-Pinene | 21.4 ± 1.1 | 11.4 ± 0.2 | - | - | - | - | - | - | 2.5 ± 0.06 |
2,5-dimethyl thiophene | - | - | - | - | - | - | - | 1.7 ± 0.06 | - |
Camphene | 0.8 ± 0.003 | - | - | - | - | - | - | - | 5.7 ± 0.3 |
Sabinene | 5.4 ± 0.05 | 1.4 ± 0.01 | - | - | - | - | - | - | - |
Allyl propyl disulfide | - | - | - | - | - | - | - | 6.5 ± 0.2 | - |
β-Pinene | 1.2 ± 0.1 | 1.0 ± 0.3 | 0.1 ± 0.001 | - | - | - | - | - | 0.2 ± 0.001 |
β-Myrcene | 4.0 ± 0.06 | 3.6 ± 0.09 | - | - | - | - | - | - | 0.8 ± 0.1 |
α-Phellandrene | 8.9 ± 0.8 | 1.6 ± 0.05 | - | - | - | - | - | - | - |
δ-3-Carene | 22.9 ± 1.0 | - | - | - | - | - | - | - | 0.6 ± 0.005 |
trans-β-Ocimene | 0.9 ± 0.2 | 1.4 ± 0.02 | - | - | - | - | - | - | 1.8 ± 0.1 |
D-Limonene | 7.5 ± 0.6 | - | 0.1 ± 0.003 | - | - | - | - | - | 2.1 ± 0.3 |
β-Phellandrene | 16.5 ± 1.3 | 67.2 ± 1.6 | - | - | - | - | - | - | - |
cis-β-Ocimene | 6.4 ± 0.3 | 4.9 ± 0.2 | - | - | - | - | - | - | - |
γ-Terpinene | 1.4 ± 0.03 | - | - | - | - | - | - | - | 0.2 ± 0.001 |
Diallyl disulfide | - | - | - | - | 29.3 ± 1.6 | - | - | - | - |
Terpilonene | 1.0 ± 0.02 | - | - | - | - | - | - | - | - |
Undecane | - | - | 3.62 ± 0.1 | - | - | - | - | - | - |
Dipropyl disulfide | - | - | - | 43.4 ± 1.8 | - | 50.4 ± 1.9 | 35.5 ± 2.3 | 23.7 ± 0.9 | - |
3-Thujanone | - | - | - | - | - | - | - | - | 71.5 ± 3.2 |
Disulfide, bis(1-methylethyl) | - | - | - | 7.9 ± 0.8 | - | 4.5 ± 0.6 | 6.7 ± 1.5 | 6.8 ± 1.3 | - |
α-Thujone | - | - | - | - | - | - | - | - | 10.6 ± 1.0 |
Allyl methyl disulfide | - | - | - | - | 3.1 ± 0.05 | - | - | - | - |
Methyl propyl trisulfide | - | - | - | 8.1 ± 1.1 | - | 6.4 ± 0.5 | 9.1 ± 0.8 | 20.5 ± 1.8 | - |
1,2-Dithiolane | - | - | - | - | 2.9 ± 0.2 | - | - | 1.0 ± 0.1 | - |
Terpinen-4-ol | - | 1.0 ± 0.1 | - | - | - | - | - | - | 2.9 ± 0.06 |
Isothujol | - | - | - | - | - | - | - | - | 0.2 ± 0 |
Estragole | - | - | 42.0 ± 0.3 | - | - | - | - | - | - |
Dimethyl tetrasulfide | - | - | - | - | - | - | - | 1.5 ± 0.03 | - |
1-Propenyl propyl disulfide | - | - | - | - | - | 0.4 ± 0.06 | - | - | - |
Camphanol acetate | 0.8 ± 0.07 | - | - | - | - | - | - | - | - |
α-limonene diepoxide | - | - | 0.2 ± 0.04 | - | - | - | - | - | 0.2 ± 0.005 |
Oxalic acid | - | - | 0.3 ± 0.006 | - | - | - | - | - | - |
Diallyl trisulfide | - | - | - | - | 24.2 ± 0.9 | - | - | - | - |
Dipropyl trisulfide | - | - | - | 25.6 ± 1.3 | - | 20.1 ± 0.5 | 17.6 ± 0.6 | 13.9 ± 0.4 | - |
Allyl n-propyl sulfide | - | - | - | - | - | 2.0 ± 0.05 | 3.3 ± 0.08 | 2.6 ± 0.07 | - |
trans-3,5-Diethyl-1,2,4-trithiolane | - | - | - | - | - | 0.8 ± 0.004 | 2.3 ± 0.05 | - | - |
α-terpinyl acetate | - | 0.6 ± 0.09 | - | - | - | - | - | - | 0.4 ± 0 |
1,2,4-Trithiolane, 3,5-diethyl- | - | - | - | - | - | 2.1 ± 0.02 | 2.7 ± 0.06 | 2.4 ± 0.03 | - |
Allyl-propyl trisulfide | - | - | - | - | 0.2 ± 0 | - | - | - | - |
Copaene | 0.9 ± 0.05 | 2.0 ± 0.08 | 0.1 ± 0 | - | - | - | - | - | - |
Allyl-methyl trisulfide | - | - | - | - | 2.13 ± 0.06 | - | 0.8 ± 0.07 | - | - |
Methyl 2-propenyl disulfide | - | - | - | - | 1.5 ± 0.04 | - | - | - | - |
Methyl isoeugenol | - | - | 1.1 ± 0.1 | - | - | - | - | - | - |
Methyl isopropyl disulfide | - | - | - | 0.9 ± 0.05 | - | 0.6 ± 0.08 | 3.4 ± 0.1 | 6.1 ± 0.3 | - |
Methyleugenol | - | - | 51.7 ± 1.8 | - | - | - | - | - | - |
cis-1-Propenyl propyl trisulfide | - | - | - | - | - | 0.4 ± 0.2 | - | - | - |
Caryophyllene | - | - | 0.2 ± 0 | 0.7 ± 0.05 | - | 0.6 ± 0.1 | - | - | - |
β-Germacrene | - | 0.8 ± 0.04 | - | - | - | - | - | - | - |
δ-Germacrene | - | 0.6 ± 0.03 | - | - | - | - | - | - | - |
Humulene | - | 1.8 ± 0.2 | - | - | - | - | - | - | - |
β-Copaene | - | 0.7 ± 0.1 | - | - | - | - | - | - | - |
Hexadecane | - | - | 0.4 ± 0.03 | - | - | - | - | - | - |
Diallyl tetrasulfide | - | - | - | - | 22.3 ± 0.5 | - | - | - | - |
Dipropyl tetrasulfide | - | - | - | 5.8 ± 0.8 | - | 3.8 ± 0.1 | 11.0 ± 0.6 | 5.8 ± 0.3 | - |
Methyl propyl tetrasulfide | - | - | - | 0.8 ± 0.2 | - | - | - | - | - |
1-Propyl-2-(4-thiohept-2-en-5-yl) disulfide | - | - | - | 1.8 ± 0.09 | 0.9 ± 0.1 | 1.2 ± 0.1 | 0.94 ± 0.06 | - | - |
1-(1-Propenyl)-2-(4-thiohept-5-yl) disulfide | - | - | - | 0.5 ± 0.06 | - | 0.4 ± 0.04 | 1.2 ± 0.03 | - | - |
8-Ethyl-4,5,6,7,9-pentathiadecane | - | - | - | - | - | 0.3 ± 0.01 | - | - | - |
4-Methyl-1,2,3,5,6-pentathiepane | - | - | - | - | 0.9 ± 0.07 | - | - | - | - |
2,4-Dimethyl-5,6-dithia-2,7-nonadienal | - | - | - | 1.1 ± 0.03 | - | 0.7 ± 0.1 | 1.2 ± 0.05 | 1.0 ± 0.06 | - |
6-Ethyl-4,5,7,8-tetrathianonane | - | - | - | - | - | 1.5 ± 0.03 | 1.7 ± 0.04 | - | - |
Diallyl sulfide | - | - | - | - | 9.9 ± 0.5 | - | - | - | - |
Phytol | - | - | 0.2 ± 0 | - | - | - | - | - | - |
(Z)-1-propenyl propyl tetrasulfide | - | - | - | - | - | 0.3 ± 0 | - | - | - |
Cyclooctasulfur | - | - | - | - | 2.7 ± 0.3 | - | - | - | - |
A. Root A | A. Seed B | Chervil | Chive | Garlic | Leek | Onion | Shallot | Thuja | |
---|---|---|---|---|---|---|---|---|---|
Retention percentage (%) | 61 ± 1.9 b | 27 ± 3.4 e | 46 ± 2.1 cd | 54 ± 1.7 c | 78 ± 4.2 a | 62 ± 5.7 b | 71 ± 3.6 a | 43 ± 2.8 d | 60 ± 1.8 b |
A. Root | A. Seed | Chervil | Chive | Garlic | Leek | Onion | Shallot | Thuja | Positive Control | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Direct Contact assay | IC50 (g L−1) without HP-β-CD | 4.2 ± 0.1 b | 0.3 ± 0.003 ij | 3.1 ± 0.04 d | 0.9 ± 0.007 g | 1.6 ± 0.1 f | 1.2 ± 0.03 g | 0.1 ± 0.002 jkl | 0.01 ± 0.0003 l | 3.6 ± 0.02 c | 0.0010 ± 0.0006 l |
IC50 (g L−1) with HP-β-CD | 5.8 ± 0.1 a | 0.2 ± 0.001 ij | 1.9 ± 0.001 e | 0.3 ± 0.009 ij | 0.4 ± 0.01 hi | 0.6 ± 0.001 h | 0.2 ± 0.005 jk | 0.03 ± 0.0003 kl | 3.7 ± 0.02 c | ||
Volatility asssay | IC50 (g L−1) without HP-β-CD | 2.2 ± 0.01 ij’ | 0.8 ± 0.01 k’ | 5.5 ± 0.02 f’ | 16.9 ± 0.1 c’ | 22.6 ± 0.5 b’ | 25.6 ± 0.4 a’ | 2.3 ± 0.06 i’ | 0.08 ± 0.0005 k’ | 9.5 ± 0.08 d’ | NC |
IC50 (g L−1) with HP-β-CD | 7.3 ± 0.01 e’ | 0.7 ± 0.01 k’ | 6.7 ± 0.02 e’ | 2.4 ± 0.05 i’ | 3.2 ± 0.1 h’ | 4.4 ± 0.1 g’ | 1.4 ± 0.04 j’ | 0.09 ± 0.0002 k’ | 3.6 ± 0.02 gh’ |
A. Root | A. Seed | Chervil | Chive | Garlic | Leek | Onion | Shallot | Thuja | Positive Control | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Lettuce | IC50 (g L−1) without HP-β-CD | 4.9 ± 0.9 c | 0.01 ± 0.002 g | 0.3 ± 0.05 g | 0.9 ± 0.1 f | 0.3 ± 0.05 g | 0.1 ± 0.04 g | 0.2 ± 0.04 g | 0.2 ± 0.04 g | 2.3 ± 0.4 d | 0.01 ± 0.006 g |
IC50 (g L−1) with HP-β-CD | 1.1 ± 0.3 f | NC a | 1.7 ± 0.4 e | 0.8 ± 0.2 f | 5.4 ± 0.7 b | 1.6 ± 0.5 e | 0.083 ± 0.02 f | 0.1 ± 0.03 g | NC a | ||
Rye-grass | IC50 (g L−1) without HP-β-CD | NC a’ | 0.6 ± 0.07 h’ | 1.7 ± 0.3 ef’ | 3.9 ± 0.5 c’ | 2.9 ± 0.5 d’ | 3.7 ± 0.5 c’ | 1.7 ± 0.3 ef’ | 0.7 ± 0.09 h’ | 2.1 ± 0.5 e’ | 0.04 ± 0.01 i’ |
IC50 (g L−1) with HP-β-CD | NC a’ | 0.5 ± 0.07 h’ | 1.4 ± 0.3 fg’ | 1.2 ± 0.3 g’ | NC a’ | 1.8 ± 0.3 ef’ | 0.4 ± 0.6 h’ | 1.3 ± 0.3 fg’ | 4.8 ± 0.9 b’ |
A. Root | A. Seed | Chervil | Chive | Garlic | Leek | Onion | Shallot | Thuja | Positive Control | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Lettuce | IC50 (g L−1) without HP-β-CD | 0.2 ± 0.04 cd | 0.0008 ± 0.0004 e | 0.02 ± 0.003 e | 0.1 ± 0.04 de | 0.2 ± 0.06 cd | 0.03 ± 0.004 e | 0.2 ± 0.04 cd | 0.2 ± 0.04 cd | 0.3 ± 0.05 c | 0.0001 ± 0.0002 e |
IC50 (g L−1) with HP-β-CD | 3.2 ± 0.9 a | 0.04 ± 0.008 e | 0.3 ± 0.1 c | 0.08 ± 0.04 e | 0.03 ± 0.007 e | 0.08 ± 0.05 e | 0.03 ± 0.02 e | 0.02 ± 0.007 e | 0.8 ± 0.1 b | ||
Rye-grass | IC50 (g L−1) without HP-β-CD | 0.5 ± 0.06 e’ | 0.01 ± 0.003 h’ | 0.3 ± 0.06 de’ | 0.06 ± 0.02 gh’ | 0.3 ± 0.05 f’ | 0.2 ± 0.04 fg’ | 0.2 ± 0.03 fg’ | 0.2 ± 0.04 fg’ | 0.8 ± 0.1 d’ | 0.001 ± 0.0006 h’ |
IC50 (g L−1) with HP-β-CD | 1.3 ± 0.4 c’ | 0.06 ± 0.03 gh’ | 0.09 ± 0.03 gh’ | 0.1 ± 0.04 gh’ | 3.2 ± 0.5 b’ | 0.1 ± 0.04 gh’ | 0.08 ± 0.03 gh’ | 0.07 ± 0.02 gh’ | 3.6 ± 0.8 a’ |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Alam, I.; Raveau, R.; Fontaine, J.; Verdin, A.; Laruelle, F.; Fourmentin, S.; Chahine, R.; Makhlouf, H.; Lounès-Hadj Sahraoui, A. Antifungal and Phytotoxic Activities of Essential Oils: In Vitro Assays and Their Potential Use in Crop Protection. Agronomy 2020, 10, 825. https://doi.org/10.3390/agronomy10060825
El-Alam I, Raveau R, Fontaine J, Verdin A, Laruelle F, Fourmentin S, Chahine R, Makhlouf H, Lounès-Hadj Sahraoui A. Antifungal and Phytotoxic Activities of Essential Oils: In Vitro Assays and Their Potential Use in Crop Protection. Agronomy. 2020; 10(6):825. https://doi.org/10.3390/agronomy10060825
Chicago/Turabian StyleEl-Alam, Imad, Robin Raveau, Joël Fontaine, Anthony Verdin, Frédéric Laruelle, Sophie Fourmentin, Ramez Chahine, Hassane Makhlouf, and Anissa Lounès-Hadj Sahraoui. 2020. "Antifungal and Phytotoxic Activities of Essential Oils: In Vitro Assays and Their Potential Use in Crop Protection" Agronomy 10, no. 6: 825. https://doi.org/10.3390/agronomy10060825