Sloping Land Use Affects Soil Moisture and Temperature in the Loess Hilly Region of China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Experimental Design
2.3. Soil Moisture and Temperature Measurement
2.4. Data Analysis
3. Results
3.1. Soil Moisture Variation Characteristics under Different Sloping Land Uses
3.1.1. Temporal Variation in Soil Moisture
3.1.2. Vertical Variation of Soil Moisture
3.2. Characteristics of Soil Temperature Change under Different Sloping Land Uses
3.2.1. Seasonal Variation Characteristics of Soil Temperature
3.2.2. Vertical Variation of Soil Temperature
3.3. Wavelet Fractal Dimension of Soil Moisture and Temperature
4. Discussion
4.1. Soil Moisture Change Characteristics
4.2. Soil Temperature Change Characteristics
4.3. Application of Wavelet Fractal Method in Analysis of Soil Moisture and Temperature Characteristics
4.4. Suggestions for Sloping Land Use Improvement
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sabri, N.S.A.; Zakaria, Z.; Mohamad, S.E.; Jaafar, A.B.; Hara, H. Importance of soil temperature for the growth of temperate crops under a tropical climate and functional role of soil microbial diversity. Microbes Environ. 2018, 33, 144–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Xu, W.; Chen, Z.; Jia, Z.; Huang, J.; Wen, Z.; Chen, Y.; Xu, B. Soil moisture availability at early growth stages strongly affected root growth of Bothriochloa ischaemum when mixed with Lespedeza davurica. Front. Plant Sci. 2018, 9, 1050. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carloto, B.; Buriol, G.; Dornelles, S.; Trivisiol, V.; Peripolli, M.; Escobar, O. Morphological and phenological responses of Eragrostis plana Nees and Eragrostis pilosa (L.) P. Beauv. plants subjected to different soil moisture conditions. Planta Daninha 2019, 37. [Google Scholar] [CrossRef]
- Li, G.; Zhao, B.; Dong, S.; Zhang, J.; Liu, P.; Ren, B.; Lu, D.; Lu, W. Morphological and physiological characteristics of maize roots in response to controlled-release urea under different soil moisture conditions. Agron. J. 2019, 111, 1849–1864. [Google Scholar] [CrossRef]
- Yuan, Z.; Fang, C.; Zhang, R.; Li, F.; Javaid, M.M.; Janssens, I.A. Topographic influences on soil properties and aboveground biomass in lucerne-rich vegetation in a semi-arid environment. Geoderma 2019, 344, 137–143. [Google Scholar] [CrossRef]
- Jia, Y.; Shao, M. Dynamics of deep soil moisture in response to vegetational restoration on the loess plateau of china. J. Hydrol. 2014, 519, 523–531. [Google Scholar] [CrossRef]
- Du, S.; Bai, G.; Yu, J. Soil properties and apricot growth under intercropping and mulching with erect milk vetch in the loess hilly-gully region. Plant Soil 2015, 390, 431–442. [Google Scholar] [CrossRef]
- Clarke, S.J.; Lamont, K.; Pan, H.; Barry, L.; Hall, A.; Rogiers, S.Y. Spring root-zone temperature regulates root growth, nutrient uptake and shoot growth dynamics in grapevines. Aust. J. Grape Wine Res. 2015, 21, 479–489. [Google Scholar] [CrossRef]
- Kubisch, P.; Leuschner, C.; Coners, H.; Gruber, A.; Hertel, D. Fine root abundance and dynamics of stone pine (Pinus cembra) at the alpine treeline is not impaired by self-shading. Front. Plant Sci. 2017, 8, 602. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Wei, W.; Chen, L.; Mo, B. Response of deep soil moisture to land use and afforestation in the semi-arid Loess Plateau, China. J. Hydrol. 2012, 475, 111–122. [Google Scholar] [CrossRef]
- Li, Q.; Liu, G.; Xu, M.; Sun, H.; Zhang, Z.; Gao, L. Effect of seasonal freeze-thaw on soil anti-scouribility and its related physical property in hilly Loess Plateau. Trans. Chin. Soc. Agric. Eng. 2013, 29, 105–112. (In Chinese) [Google Scholar]
- Gao, X.; Wu, P.; Zhao, X.; Wang, J.; Shi, Y. Effects of land use on soil moisture variations in a semi-arid catchment: Implications for land and agricultural water management. Land Degrad. Dev. 2014, 25, 163–172. [Google Scholar] [CrossRef]
- Wang, J.; Liu, H.; Wu, X.; Li, C.; Wang, X. Effects of different types of mulches and legumes for the restoration of urban abandoned land in semi-arid northern china. Ecol. Eng. 2017, 102, 55–63. [Google Scholar] [CrossRef]
- Niu, C.; Musa, A.; Liu, Y. Analysis of soil moisture condition under different land uses in the arid region of horqin sandy land, northern china. Solid Earth 2015, 6, 1157–1167. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Xiao, W.; Zhao, Y.; Wang, Y.; Hou, B.; Zhou, Y.; Yang, H.; Zhang, X.; Cui, H. The spatiotemporal variability of evapotranspiration and its response to climate change and land use/land cover change in the three gorges reservoir. Water 2019, 11, 1739. [Google Scholar] [CrossRef] [Green Version]
- Kang, S.; Kim, S.; Oh, S.; Lee, D. Predicting spatial and temporal patterns of soil temperature based on topography, surface cover and air temperature. For. Ecol. Manag. 2000, 136, 173–184. [Google Scholar] [CrossRef]
- Ma, K.; He, X.; Ma, B.; Luo, D.; Ma, Y. Effects of land use pattern on soil in the loess plateau of south ningxia. Ecol. Environ. 2006, 15, 1231–1236. (In Chinese) [Google Scholar]
- Gao, H.; Shao, M. Effect of rainfall on soil water and soil temperature in arid region. J Irrig. Dra 2011, 30, 40–45. (In Chinese) [Google Scholar]
- Yu, B.; Liu, G.; Liu, Q.; Wang, X.; Feng, J.; Huang, C. Soil moisture variations at different topographic domains and land use types in the semi-arid loess plateau, china. Catena 2018, 165, 125–132. [Google Scholar] [CrossRef]
- Savva, Y.; Szlavecz, K.; Pouyat, R.V.; Groffman, P.M.; Heisler, G. Effects of land use and vegetation cover on soil temperature in an urban ecosystem. Soil Sci. Soc. Am. J. 2010, 74, 469–480. [Google Scholar] [CrossRef]
- Mandelbrot, B.B. The Fractal Geometry of Nature; WH freeman New York: New York, NY, USA, 1983; Volume 173. [Google Scholar]
- Fu, Q.; Hou, R.; Wang, Z.; Li, T. Soil moisture thermal interaction effects under snow cover during freezing and thawing period. Trans. Chin. Soc. Agric. Eng. 2015, 31, 101–107. (In Chinese) [Google Scholar]
- Luan, Q.; Wu, X.; Gao, X.; Sun, Q.; Li, Y. Analysis on change of precipitation complexity distribution in typical region. Water Resour. Hydropower Eng. 2014, 45, 24–27. (In Chinese) [Google Scholar]
- Hao, M.; Wei, X.; Dang, T. Effect of long-term applying zinc fertilizer on wheat yield and content of zinc in dry land. Plant Nutr. Fertil. Sci. 2003, 9, 377–380. (In Chinese) [Google Scholar]
- Chen, J.; Zheng, X.; Qin, Z.; Liu, P.; Zang, H.; Sun, M. Effects of maize straw mulch on spatiotemporal variation of soil profile moisture and temperature during freeze-thaw period. Trans. Chin. Soc. Agric. Eng. 2013, 29, 102–110. (In Chinese) [Google Scholar]
- Abdi, H. Coefficient of variation. Encycl. Res. Des. 2010, 1, 169–171. [Google Scholar]
- Yu, L.; Wei, D.; WANG, H.; Huang, Q.; Peng, Y.; Xu, Y. Spatial variability of soil organic matter and appropriate number of samples on county scale in jianghan plain. J. Nat. Resour. 2016, 31, 855–864. (In Chinese) [Google Scholar]
- Sang, Y.; Wang, D.; Wu, J.; Zhu, Q.-P.; Wang, L. Quantitative characterization of complicated characteristics of hydrologic series. J. China Hydrol. 2010, 5, 1–6, 56. (In Chinese) [Google Scholar]
- Abry, P.; Veitch, D. Wavelet analysis of long-range-dependent traffic. IEEE Trans. Inf. Theory 1998, 44, 2–15. [Google Scholar] [CrossRef]
- Wang, W.; Xiang, H.; Zhao, D. Estimating the fractal dimension of hydrological time series by wavelet analysis. J. Sichuan Univ. (Eng. Sci. Ed.) 2005, 37, 1–4. (In Chinese) [Google Scholar]
- Jian, S.; Zhao, C.; Fang, S.; Yu, K. Effects of different vegetation restoration on soil water storage and water balance in the chinese loess plateau. Agric. For. Meteorol. 2015, 206, 85–96. [Google Scholar] [CrossRef]
- Macinnis-Ng, C.M.; Flores, E.E.; Müller, H.; Schwendenmann, L. Throughfall and stemflow vary seasonally in different land-use types in a lower montane tropical region of panama. Hydrol. Process. 2014, 28, 2174–2184. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, R.; Song, Y.; Han, C.; Liu, J.; Liu, Z. Comparison of precipitation and evapotranspiration of five different land-cover types in the high mountainous region. Sci. Cold Arid Reg. 2018, 9, 534–542. [Google Scholar]
- Tang, M.; Zhao, X.; Gao, X.; Zhang, C.; Wu, P.; Li, H.; Ling, Q.; Chau, H. Characteristics of soil moisture variation in different land uses in a small catchment on the loess plateau, china. J. Soil Water Conserv. 2019, 74, 24–32. [Google Scholar] [CrossRef]
- Tao, Z.; Si, B.; Jin, J. Canopy interception modified intra-rainfall isotopic and hydrochemical characteristics of dwarfed jujube tree. J. Soil Water Conserv. 2017, 31, 189–195. (In Chinese) [Google Scholar]
- Wang, J.; Huang, J.; Zhao, X.; Wu, P.; Horwath, W.R.; Li, H.; Jing, Z.; Chen, X. Simulated study on effects of ground managements on soil water and available nutrients in jujube orchards. Land Degrad. Dev. 2016, 27, 35–42. [Google Scholar] [CrossRef]
- Arnáez, J.; Lana-Renault, N.; Lasanta, T.; Ruiz-Flaño, P.; Castroviejo, J. Effects of farming terraces on hydrological and geomorphological processes. A Rev. Catena 2015, 128, 122–134. [Google Scholar] [CrossRef] [Green Version]
- Sauer, T.J.; Ochsner, T.E.; Horton, R. Soil heat flux plates. Agron. J. 2007, 99, 304–310. [Google Scholar] [CrossRef]
- Zhang, S.; Li, X. Soil moisture and temperature dynamics in typical alpine ecosystems: A continuous multi-depth measurements-based analysis from the qinghai-tibet plateau, china. Hydrol. Res. 2018, 49, 194–209. [Google Scholar] [CrossRef]
- Ni, J.; Cheng, Y.; Wang, Q.; Ng, C.W.W.; Garg, A. Effects of vegetation on soil temperature and water content: Field monitoring and numerical modelling. J. Hydrol. 2019, 571, 494–502. [Google Scholar] [CrossRef]
- Štraus, I.; Mrak, T.; Ferlan, M.; Železnik, P.; Kraigher, H. Influence of soil temperature on growth traits of European beech seedlings. Can. J. For. Res. 2015, 45, 246–251. [Google Scholar] [CrossRef]
- Zhao, Y.; Si, B. Thermal properties of sandy and peat soils under unfrozen and frozen conditions. Soil Tillage Res. 2019, 189, 64–72. [Google Scholar] [CrossRef]
- Liao, K.; Lai, X.; Zhou, Z.; Zhu, Q. Applying fractal analysis to detect spatio-temporal variability of soil moisture content on two contrasting land use hillslopes. CATENA 2017, 157, 163–172. [Google Scholar] [CrossRef]
- Su, S. Spatial Heterogeneity and Vegetation Maintaining Mechanism of Pinus taiwanensis Forest in Daiyun Mountain High Altitude Area. Ph.D. Thesis, Fujian Agriculture And Forestry University, Fujian, China, 2015. [Google Scholar]
- Ai, X.; Dong, Q.; Wang, X.; Zhang, Y. Application of wavelet fractal dimension estimation in dividing flood stages for three gorges reservoir. Syst. Eng. -Theory Pract. 2009, 29, 145–151. [Google Scholar] [CrossRef]
- Feng, X.; Wang, Y.; Chen, L.; Fu, B.; Bai, G. Modeling soil erosion and its response to land-use change in hilly catchments of the chinese loess plateau. Geomorphology 2010, 118, 239–248. [Google Scholar] [CrossRef]
- Zhao, G.; Mu, X.; Wen, Z.; Wang, F.; Gao, P. Soil erosion, conservation, and eco-environment changes in the loess plateau of china. Land Degrad. Dev. 2013, 24, 499–510. [Google Scholar] [CrossRef]
- Liang, K.; Qi, J.; Liu, E.; Jiang, Y.; Li, S.; Meng, F. Estimated potential impacts of soil and water conservation terraces on potato yields under different climate conditions. J. Soil Water Conserv. 2019, 74, 225–234. [Google Scholar] [CrossRef]
- Huo, J.; Yu, X.; Liu, C.; Chen, L.; Zheng, W.; Yang, Y.; Tang, Z. Effects of soil and water conservation management and rainfall types on runoff and soil loss in sloped area in north china. Land Degrad. Dev. 2020. [Google Scholar] [CrossRef]
- Li, H.; Zhao, X.; Gao, X.; Ren, K.; Wu, P. Effects of water collection and mulching combinations on water infiltration and consumption in a semiarid rainfed orchard. J. Hydrol. 2018, 558, 432–441. [Google Scholar] [CrossRef]
- Ma, L.; Wang, X.; Gao, Z.; Youke, W.; Nie, Z.; Liu, X. Canopy pruning as a strategy for saving water in a dry land jujube plantation in a loess hilly region of china. Agric. Water Manag. 2019, 216, 436–443. [Google Scholar] [CrossRef]
Sloping Land Use | Slope Gradient (°) | Slope Aspect | Description |
---|---|---|---|
Soybean sloping field | 18 | Shady slope | The cultivation period is over 30 years, and the cropping system is one crop per year. Soybean (Glycine max (Linn.) Merr.) was sown in late April with a planting density of 19.5 × 104 plants per hectare and harvested in early October. Fertilizer was rarely applied and weeds were removed regularly during the experiment. |
Maize terraced field | 20 | Shady slope | The terraced field has been cultivated for many years, and the cropping system is one crop a year. Maize (Zea mays L.) was sown in early May with a planting density of 9 × 104 plants per hectare and harvested in early October. Fertilizer was seldom applied and regular weeding was done. |
Jujube orchard | 20 | Shady slope | The variety of jujube (Ziziphus jujuba Mill.) is Lizao, which was planted in 2003 with a plant spacing of 2 m and a row spacing of 3 m. During the experiment, jujube trees were in full bearing period. A small amount of farm manure and urea were applied at the beginning of each year. Weeds in the orchard were removed regularly. |
Grassland | 17 | Shady slope | Grassland is naturally restored from slope farmland for more than 30 years. The eugenic vegetation is Artemisia gmelinii, and the associated vegetation is Lespedeza davurica, Bothriochloa ischaemum, etc. |
Sloping Land Use | Soil Layer (cm) | Bulk Density (g·cm-3) | Soil Texture | Soil Porosity (%) | Saturated Hydraulic Conductivity (cm·d−1) | Organic Matter (g·kg−1) | Total N (g·kg−1 ) | ||
---|---|---|---|---|---|---|---|---|---|
Sand (%) | Silt (%) | Clay (%) | |||||||
Soybean sloping field | 0–20 | 1.17 ± 0.15 | 21.0 ± 5.6 | 63.0 ± 3.7 | 16.0 ± 3.9 | 58.9 ± 5.6 | 74.2 ± 20.6 | 3.34 ± 0.24 | 0.29 ± 0.02 |
20−40 | 1.29 ± 0.11 | 19.5 ± 5.4 | 63.4 ± 2.4 | 17.0 ± 4.5 | 54.3 ± 3.7 | 2.66 ± 0.31 | 0.22 ± 0.04 | ||
40−60 | – | 19.9 ± 3.9 | 65.0 ± 1.9 | 15.1 ± 3.2 | – | 2.52 ± 0.38 | 0.20 ± 0.02 | ||
Maize terraced field | 0–20 | 1.26 ± 0.11 | 17.7 ± 1.9 | 63.8 ± 2.3 | 18.5 ± 2.9 | 55.1 ± 4.2 | 55.6 ± 10.4 | 4.24 ± 0.37 | 0.30 ± 0.03 |
20−40 | 1.36 ± 0.07 | 16.6 ± 3.9 | 64.9 ± 1.7 | 18.6 ± 4.1 | 52.5 ± 2.7 | 2.98 ± 0.33 | 0.22 ± 0.03 | ||
40−60 | – | 16.2 ± 4.1 | 63.3 ± 1.1 | 20.5 ± 4.2 | – | 2.74 ± 0.42 | 0.20 ± 0.03 | ||
Jujube orchard | 0–20 | 1.31 ± 0.12 | 23.7 ± 4.0 | 62.6 ± 1.9 | 13.7 ± 2.4 | 51.7 ± 4.5 | 36.6 ± 9.6 | 3.64 ± 0.85 | 0.31 ± 0.06 |
20−40 | 1.41 ± 0.10 | 21.6 ± 3.4 | 64.0 ± 1.9 | 14.4 ± 2.7 | 52.1 ± 3.8 | 2.76 ± 0.89 | 0.26 ± 0.05 | ||
40−60 | – | 20.7 ± 2.2 | 64.2 ± 1.2 | 15.1 ± 2.5 | – | 2.60 ± 0.66 | 0.27 ± 0.05 | ||
Grassland | 0–20 | 1.28 ± 0.09 | 17.3 ± 2.8 | 63.6 ± 1.3 | 19.1 ± 3.4 | 54.0 ± 3.4 | 35.3 ± 8.3 | 5.12 ± 0.79 | 0.34 ± 0.04 |
20−40 | 1.28 ± 0.04 | 15.1 ± 1.7 | 62.9 ± 1.6 | 22.0 ± 0.7 | 52.1 ± 1.5 | 4.43 ± 0.28 | 0.28 ± 0.04 | ||
40−60 | – | 14.9 ± 3.7 | 63.3 ± 1.3 | 21.8 ± 3.8 | – | 4.23 ± 0.36 | 0.28 ± 0.06 |
Experimental Year | Soil Layer (cm) | Variation Eigenvalue | Sloping Land Use | |||
---|---|---|---|---|---|---|
Soybean Sloping Field | Maize Terraced Field | Jujube Orchard | Grassland | |||
2014 | 0–20 | Ka | 2.325 | 1.486 | 2.795 | 2.151 |
Cv | 0.175 | 0.094 | 0.267 | 0.177 | ||
20–60 | Ka | 1.691 | 1.365 | 2.087 | 1.371 | |
Cv | 0.136 | 0.069 | 0.157 | 0.082 | ||
60–160 | Ka | 1.164 | 1.113 | 1.265 | 1.136 | |
Cv | 0.040 | 0.029 | 0.067 | 0.039 | ||
2015 | 0–20 | Ka | 3.202 | 1.741 | 3.598 | 3.076 |
Cv | 0.325 | 0.123 | 0.335 | 0.270 | ||
20–60 | Ka | 1.932 | 1.493 | 1.942 | 1.847 | |
Cv | 0.216 | 0.098 | 0.216 | 0.206 | ||
60–160 | Ka | 1.217 | 1.260 | 1.628 | 1.483 | |
Cv | 0.067 | 0.086 | 0.196 | 0.118 |
Experimental Year | Soil Layer (cm) | Variation Eigenvalue | Sloping Land Use | |||
---|---|---|---|---|---|---|
Soybean Sloping Field | Maize Terraced Field | Jujube Orchard | Grassland | |||
2014 | 0–20 | Ka | 2.587 | 2.214 | 2.911 | 2.646 |
Cv | 0.202 | 0.197 | 0.234 | 0.200 | ||
20–60 | Ka | 1.884 | 1.579 | 1.910 | 1.870 | |
Cv | 0.159 | 0.113 | 0.166 | 0.156 | ||
60–100 | Ka | 1.861 | 1.440 | 1.887 | 1.721 | |
Cv | 0.154 | 0.091 | 0.155 | 0.137 | ||
2015 | 0–20 | Ka | 3.974 | 3.569 | 5.852 | 3.912 |
Cv | 0.228 | 0.218 | 0.272 | 0.219 | ||
20–60 | Ka | 2.306 | 1.857 | 2.339 | 1.882 | |
Cv | 0.167 | 0.156 | 0.190 | 0.154 | ||
60–100 | Ka | 1.636 | 1.843 | 2.120 | 1.770 | |
Cv | 0.135 | 0.152 | 0.175 | 0.141 |
Experimental Year | Soil Layer (cm) | Fractal Dimension | Sloping Land Use | |||
---|---|---|---|---|---|---|
Soybean Sloping Field | Maize Terraced Field | Jujube Orchard | Grassland | |||
2014 | 0–20 | D | 1.497 | 1.489 | 1.507 | 1.495 |
R2 | 0.999 | 0.999 | 0.999 | 0.999 | ||
p | 0.000 | 0.000 | 0.000 | 0.000 | ||
20–60 | D | 1.496 | 1.433 | 1.500 | 1.460 | |
R2 | 1.000 | 0.999 | 1.000 | 0.999 | ||
p | 0.000 | 0.000 | 0.000 | 0.000 | ||
60–160 | D | 1.434 | 1.345 | 1.480 | 1.412 | |
R2 | 0.999 | 0.997 | 1.000 | 0.998 | ||
p | 0.000 | 0.000 | 0.000 | 0.000 | ||
2015 | 0–20 | D | 1.431 | 1.429 | 1.526 | 1.431 |
R2 | 0.996 | 0.998 | 0.999 | 0.995 | ||
p | 0.000 | 0.000 | 0.000 | 0.000 | ||
20–60 | D | 1.412 | 1.383 | 1.432 | 1.384 | |
R2 | 0.999 | 0.992 | 0.996 | 0.992 | ||
p | 0.000 | 0.000 | 0.000 | 0.000 | ||
60–160 | D | 1.320 | 1.387 | 1.405 | 1.337 | |
R2 | 0.998 | 0.999 | 0.994 | 0.988 | ||
p | 0.000 | 0.000 | 0.000 | 0.000 |
Experimental Year | Soil Layer (cm) | Fractal Dimension | Sloping Land Use | |||
---|---|---|---|---|---|---|
Soybean Sloping Field | Maize Terraced Field | Jujube Orchard | Grassland | |||
2014 | 0–20 | D | 1.516 | 1.499 | 1.563 | 1.544 |
R2 | 0.999 | 0.999 | 0.998 | 0.999 | ||
p | 0.000 | 0.000 | 0.000 | 0.000 | ||
20–60 | D | 1.461 | 1.425 | 1.488 | 1.433 | |
R2 | 0.999 | 0.998 | 1.000 | 0.999 | ||
p | 0.000 | 0.000 | 0.000 | 0.000 | ||
60–100 | D | 1.302 | 1.230 | 1.371 | 1.308 | |
R2 | 0.997 | 0.990 | 0.998 | 0.996 | ||
p | 0.000 | 0.000 | 0.000 | 0.000 | ||
2015 | 0–20 | D | 1.568 | 1.486 | 1.574 | 1.553 |
R2 | 0.999 | 0.999 | 0.998 | 0.999 | ||
p | 0.000 | 0.000 | 0.000 | 0.000 | ||
20–60 | D | 1.447 | 1.363 | 1.448 | 1.417 | |
R2 | 0.997 | 0.996 | 0.998 | 0.997 | ||
p | 0.000 | 0.000 | 0.000 | 0.000 | ||
60–100 | D | 1.247 | 1.246 | 1.282 | 1.247 | |
R2 | 0.997 | 0.994 | 0.997 | 0.996 | ||
p | 0.000 | 0.000 | 0.000 | 0.000 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, M.; Gao, X.; Zhang, C.; Zhao, X.; Wu, P. Sloping Land Use Affects Soil Moisture and Temperature in the Loess Hilly Region of China. Agronomy 2020, 10, 774. https://doi.org/10.3390/agronomy10060774
Tang M, Gao X, Zhang C, Zhao X, Wu P. Sloping Land Use Affects Soil Moisture and Temperature in the Loess Hilly Region of China. Agronomy. 2020; 10(6):774. https://doi.org/10.3390/agronomy10060774
Chicago/Turabian StyleTang, Min, Xiaodong Gao, Chao Zhang, Xining Zhao, and Pute Wu. 2020. "Sloping Land Use Affects Soil Moisture and Temperature in the Loess Hilly Region of China" Agronomy 10, no. 6: 774. https://doi.org/10.3390/agronomy10060774
APA StyleTang, M., Gao, X., Zhang, C., Zhao, X., & Wu, P. (2020). Sloping Land Use Affects Soil Moisture and Temperature in the Loess Hilly Region of China. Agronomy, 10(6), 774. https://doi.org/10.3390/agronomy10060774