Effects of Different In Situ Remediation Strategies for an As-Polluted Soil on Human Health Risk, Soil Properties, and Vegetation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Sampling and Characterisation
2.2. Organic and Inorganic Amendments
2.3. Lolium perenne L.
2.4. Greenhouse Experiment and Monitoring
2.5. As Assessment by RBA Extraction
2.6. Human Health Risk Assessment
- CS: As concentration in soil (mg·kg−1). This value depends on the soil treatment.
- IR: daily ingestion rate (mg∙d−1). For children, this value is 200 mg∙d−1 [46].
- EF: exposure frequency (d∙a−1). This value is 350 d∙a−1 [49].
- RBA: relative bioavailability factor (adimensional). This value depends on the soil treatment.
- CF: conversion factor (10−6 kg∙mg−1).
- ED: exposure duration (years). For children, this value is 6 years [46].
- BW: average body weight (kg). For children, this value is 15 kg [48].
- AT: averaging time (days). This value is equal to exposure duration (ED) for non-carcinogens risk analysis and 70 years for carcinogens risk analysis [49].
2.7. Statistical Analysis
3. Results and Discussion
3.1. Soil and Amendments Characterisation
3.2. Arsenic in Soils and Human Health Risk Analysis
3.3. Effects on Soil Properties
3.3.1. pH and Electrical Conductivity
3.3.2. Organic Matter and Nutrients
3.3.3. Cation Exchange Capacity
3.4. Effects on Plants Growth and As Phytoextraction
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rossiter, D.G. Classification of urban and industrial soils in the world reference base for soil resources (5 pp). J. Soils Sediments 2007, 7, 96–100. [Google Scholar] [CrossRef]
- Liang, S.Y.; Cui, J.L.; Bi, X.Y.; Luo, X.S.; Li, X. Deciphering source contributions of trace metal contamination in urban soil, road dust, and foliar dust of Guangzhou, southern China. Sci. Total Environ. 2019, 695, 133596. [Google Scholar] [CrossRef] [PubMed]
- IUSS; ISRIC. World Reference Base Soil Resources; FAO: Roma, Italy, 2007. [Google Scholar]
- Howard, J.; Weyhrauch, J.; Loriaux, G.; Schultz, B.; Baskaran, M. Contributions of artifactual materials to the toxicity of anthropogenic soils and street dusts in a highly urbanized terrain. Environ. Pollut. 2019, 255, 113350. [Google Scholar] [CrossRef]
- Minkina, T.; Nevidomskaya, D.; Shuvaeva, V.; Bauer, T.; Soldatov, A.V.; Mandzhieva, S.; Trigub, A.; Zubavichus, Y.V.; Ghazaryan, K. Molecular characterization of Zn in Technosols using X-ray absorption spectroscopy. Appl. Geochem. 2019, 104, 168–175. [Google Scholar] [CrossRef]
- Sun, Y.; Li, H.; Guo, G.; Semple, K.T.; Jones, K.C. Soil contamination in China: Current priorities, defining background levels and standards for heavy metals. J. Environ. Manag. 2019, 251, 109512. [Google Scholar] [CrossRef]
- El Khalil, H.; Schwartz, C.; El Hamiani, O.; Sirguey, C.; Kubiniok, J.; Boularbah, A. How physical alteration of technic materials affects mobility and phytoavailabilty of metals in urban soils? Chemosphere 2016, 152, 407–414. [Google Scholar] [CrossRef] [PubMed]
- Shaw, R.K.; Wilson, M.A.; Reinhardt, L.; Isleib, J.; Gilkes, R.; Prakongkep, N. Geochemistry of artifactual coarse fragment types from selected New York City soils. In Proceedings of the 19th World Congress of Soil Science, Brisbane, Australia, 1–6 August 2010; pp. 25–27. [Google Scholar]
- Zahran, S.; Laidlaw, M.; McElmurry, S.; Filippelli, G.M.; Taylor, M.P. Linking source and effect: Resuspended soil lead, air lead, and children’s blood lead levels in detroit, michigan. Environ. Sci. Technol. 2013, 47, 2839–2845. [Google Scholar] [CrossRef] [PubMed]
- Shabnam, N.; Kim, M.; Kim, H. Iron (III) oxide nanoparticles alleviate arsenic induced stunting in Vigna radiata. Ecotoxicol. Environ. Saf. 2019, 183, 109496. [Google Scholar] [CrossRef]
- Wuana, R.A.; Okieimen, F.E. Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol. 2011, 2011. [Google Scholar] [CrossRef] [Green Version]
- Bagherifam, S.; Brown, T.C.; Fellows, C.M.; Naidu, R. Bioavailability of arsenic and antimony in terrestrial ecosystems: A review. Pedosphere 2019, 29, 681–720. [Google Scholar] [CrossRef]
- Beesley, L.; Moreno-Jiménez, E.; Gomez-Eyles, J. Effects of biochar and green waste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi element polluted soil. Environ. Pollut. 2010, 158, 2282–2287. [Google Scholar] [CrossRef] [PubMed]
- Kumpiene, J.; Lagerkvist, A.; Maurice, C. Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments—A review. Waste Manag. 2008, 28, 215–225. [Google Scholar] [CrossRef] [PubMed]
- Tandy, S.; Healey, J.; Nason, M.A.; Williamson, J.C.; Jones, D.L. Remediation of metal polluted mine soil with compost: Co-composting versus incorporation. Environ. Pollut. 2009, 157, 690–697. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Kirkwood, N.; Maksimović, C.; Zheng, X.; O’Connor, D.; Jin, Y.; Hou, D.; Zhen, X. Nature based solutions for contaminated land remediation and brownfield redevelopment in cities: A review. Sci. Total Environ. 2019, 663, 568–579. [Google Scholar] [CrossRef]
- Chi, T.; Zuo, J.; Liu, F. Performance and mechanism for cadmium and lead adsorption from water and soil by corn straw biochar. Front. Environ. Sci. Eng. 2017, 11, 144. [Google Scholar] [CrossRef]
- Liang, D.; Wang, S. Development and characterization of an anaerobic microcosm for reductive dechlorination of PCBs. Front. Environ. Sci. Eng. 2017, 11. [Google Scholar] [CrossRef]
- Bae, S.; Collins, R.N.; Waite, T.D.; Hanna, K. Advances in surface passivation of nanoscale zerovalent iron: A critical review. Environ. Sci. Technol. 2018, 52, 12010–12025. [Google Scholar] [CrossRef]
- Bolan, N.; Kunhikrishnan, A.; Thangarajan, R.; Kumpiene, J.; Park, J.; Makino, T.; Kirkham, M.B.; Scheckel, K. Remediation of heavy metal(loid)s contaminated soils—To mobilize or immobilize? J. Hazard. Mater. 2014, 266, 141–166. [Google Scholar] [CrossRef]
- Vítková, M.; Puschenreiter, M.; Komárek, M. Effect of nano zero-valent iron application on As, Cd, Pb, and Zn availability in the rhizosphere of metal(loid) contaminated soils. Chemosphere 2018, 200, 217–226. [Google Scholar] [CrossRef]
- Qu, X.; Alvarez, P.J.; Li, Q. Applications of nanotechnology in water and wastewater treatment. Water Res. 2013, 47, 3931–3946. [Google Scholar] [CrossRef]
- Gil-Díaz, M.; Gonzalez, A.; Alonso, J.; Lobo, M.C. Evaluation of the stability of a nanoremediation strategy using barley plants. J. Environ. Manag. 2016, 165, 150–158. [Google Scholar] [CrossRef] [PubMed]
- Gil-Díaz, M.; Pinilla, P.; Alonso, J.; Lobo, M. Viability of a nanoremediation process in single or multi-metal(loid) contaminated soils. J. Hazard. Mater. 2017, 321, 812–819. [Google Scholar] [CrossRef] [PubMed]
- Mitzia, A.; Vítková, M.; Komárek, M. Assessment of biochar and/or nano zero-valent iron for the stabilisation of Zn, Pb and Cd: A temporal study of solid phase geochemistry under changing soil conditions. Chemosphere 2020, 242, 125248. [Google Scholar] [CrossRef] [PubMed]
- Gil-Díaz, M.; Rodríguez-Valdés, E.; Alonso, J.; Baragaño, D.; Gallego, J.; Lobo, M. Nanoremediation and long-term monitoring of brownfield soil highly polluted with As and Hg. Sci. Total Environ. 2019, 675, 165–175. [Google Scholar] [CrossRef] [PubMed]
- Clemente, R.; Hartley, W.; Riby, P.; Dickinson, N.M.; Lepp, N.W. Trace element mobility in a contaminated soil two years after field amendment with a green waste compost mulch. Environ. Pollut. 2009, 158, 1644–1651. [Google Scholar] [CrossRef]
- Rocco, C.; Seshadri, B.; Adamo, P.; Bolan, N.S.; Mbene, K.; Naidu, R. Impact of waste-derived organic and inorganic amendments on the mobility and bioavailability of arsenic and cadmium in alkaline and acid soils. Environ. Sci. Pollut. Res. 2018, 25, 25896–25905. [Google Scholar] [CrossRef]
- Cao, X.; Ma, L.Q.; Shiralipour, A. Effects of compost and phosphate amendments on arsenic mobility in soils and arsenic uptake by the hyperaccumulator, Pteris vittata L. Environ. Pollut. 2003, 126, 157–167. [Google Scholar] [CrossRef]
- Beesley, L.; Marmiroli, M. The immobilization and retention of soluble arsenic, cadmium and zinc by biochar. Environ. Pollut. 2011, 159, 474–480. [Google Scholar] [CrossRef]
- Baragaño, D.; Forján, R.; Welte, L.; Gallego, J.L.R. Nanoremediation of As and metals polluted soils by means of graphene oxide nanoparticles. Sci. Rep. 2020, 10. [Google Scholar] [CrossRef]
- Hechelski, M.; Louvel, B.; Dufrénoy, P.; Ghinet, A.; Waterlot, C. The potential of ryegrass (Lolium perenne L.) to clean up multi-contaminated soils from labile and phytoavailable potentially toxic elements to contribute into a circular economy. Environ. Sci. Pollut. Res. 2019, 26, 17489–17498. [Google Scholar] [CrossRef]
- Li, J.; Zhao, Q.; Xue, B.; Wu, H.; Song, G.; Zhang, X. Arsenic and nutrient absorption characteristics and antioxidant response in different leaves of two ryegrass (Lolium perenne) species under arsenic stress. PLoS ONE 2019, 14, e0225373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karczewska, A.; Lewińska, K.; Gałka, B. Arsenic extractability and uptake by velvetgrass Holcus lanatus and ryegrass Lolium perenne in variously treated soils polluted by tailing spills. J. Hazard. Mater. 2013, 262, 1014–1021. [Google Scholar] [CrossRef] [PubMed]
- BOCM, Boletín Oficial de la Comunidad de Madrid. Regulation that Regulates the Regime Aplicable to Contaminated Soils. 28, February 2016. Available online: http://www.madrid.org/wleg_pub/secure/normativas/contenidoNormativa.jsf?opcion=VerHtml&nmnorma=4097&cdestado=P#no-back-button (accessed on 26 May 2020).
- MAPA (Ministerio de Agricultura, Pesca y Alimentación). Métodos Oficiales de Análisis; Secretaría General Técnica Ministerio de Agricultura, Pesca y Alimentación: Madrid, Spain, 1994; Volume III, pp. 219–324.
- Baragaño, D.; Alonso, J.; Gallego, J.L.R.; Lobo, M.; Gil-Díaz, M. Zero valent iron and goethite nanoparticles as new promising remediation techniques for As-polluted soils. Chemosphere 2020, 238, 124624. [Google Scholar] [CrossRef] [PubMed]
- Hartley, W.; Dickinson, N.M.; Riby, P.; Lepp, N.W. Arsenic mobility in brownfield soils amended with greenwaste compost or biochar and planted with Miscanthus. Environ. Pollut. 2009, 157, 2654–2662. [Google Scholar] [CrossRef] [PubMed]
- Gil-Díaz, M.; Diez-Pascual, S.; Gonzalez, A.; Alonso, J.; Rodríguez-Valdés, E.; Gallego, J.L.R.; Lobo, M. A nanoremediation strategy for the recovery of an As-polluted soil. Chemosphere 2016, 149, 137–145. [Google Scholar] [CrossRef]
- Gil-Díaz, M.; Alonso, J.; Rodríguez-Valdés, E.; Gallego, J.L.R.; Lobo, M. Comparing different commercial zero valent iron nanoparticles to immobilize As and Hg in brownfield soil. Sci. Total Environ. 2017, 584, 1324–1332. [Google Scholar] [CrossRef]
- Forján, R.; Rodríguez-Vila, A.; Cerqueira, B.; Covelo, E.F. Comparison of the effects of compost versus compost and biochar on the recovery of a mine soil by improving the nutrient content. J. Geochem. Explor. 2017, 183, 46–57. [Google Scholar] [CrossRef]
- Forján, R.; Rodríguez-Vila, A.; Pedrol, N.; Covelo, E.F. Application of Compost and Biochar with Brassica juncea L. to Reduce Phytoavailable Concentrations in a Settling Pond Mine Soil. Waste Biomass-Valorization 2017, 9, 821–834. [Google Scholar] [CrossRef]
- Rodríguez-Vila, A.; Covelo, E.F.; Forján, R.; Asensio, V. Phytoremediating a copper mine soil with Brassica juncea L., compost and biochar. Environ. Sci. Pollut. Res. 2014, 21, 11293–11304. [Google Scholar] [CrossRef]
- Kelley, M.E.; Brauning, S.E.; Schoof, R.A.; Ruby, M.V. Assessing Oral Bioavailability of Metals in Soil; Battelle Press: Columbus, OH, USA, 2002; 124p. [Google Scholar]
- Juhasz, A.L.; Weber, J.; Smith, E.; Naidu, R.; Rees, M.; Rofe, A.; Kuchel, T.; Sanson, L. Assessment of four commonly employed in vitro arsenic bioaccessibility assays for predicting in vivo relative arsenic bioavailaibility in contaminated soils. Environ. Sci. Technol. 2009, 43, 9487–9494. [Google Scholar] [CrossRef]
- USA EPA. Process for Conducting Probabilistic Risk Assessment. In Risk Assessment Guidance for Superfund: Volume III: Part A; EPA 540-R-02-002; USA Environmental Protection Agency: Washington, DC, USA, 2001. [Google Scholar]
- Spanish Official Gazette. Royal Decree 9/2005 of 14 January which Establishes a List of Potentially Soil Contaminating Activities and Criteria and Standards for Declaring that Sites are Contaminated; Spanish Official Gazette: Madrid, Spain, 2005. [Google Scholar]
- USA EPA. Risk Assessment Guidance for Superfund. In Human Health Evaluation Manual Part A, Interim Final, Vol. I; EPA/540/1e89/002; USA Environmental Protection Agency: Washington, DC, USA, 1989. [Google Scholar]
- Wcisło, E.; Bronder, J.; Bubak, A.; Rodríguez-Valdés, E.; Gallego, J.L.R. Human health risk assessment in restoring safe and productive use of abandoned contaminated sites. Environ. Int. 2016, 94, 436–448. [Google Scholar] [CrossRef]
- USA EPA. Region 9, Regional Screening Levels. Available online: http://www.epa.gov/region9/superfund/prg/index.html (accessed on 26 May 2020).
- Komárek, M.; Vanek, A.; Ettler, V. Chemical stabilization of metals and arsenic in contaminated soils using oxidesea review. Environ. Pollut. 2013, 172, 9–22. [Google Scholar] [CrossRef]
- Atiyeh, R.; Edwards, C.; Subler, S.; Metzger, J. Pig manure vermicompost as a component of a horticultural bedding plant medium: Effects on physicochemical properties and plant growth. Bioresour. Technol. 2001, 78, 11–20. [Google Scholar] [CrossRef]
- Walker, D.J.; Clemente, R.; Bernal, M.P. Contrasting effects of manure and compost on soil pH, heavy metal availability and growth of Chenopodium album L. in a soil contaminated by pyritic mine waste. Chemosphere 2004, 57, 215–224. [Google Scholar] [CrossRef]
- Sanchez, P.A.; Couto, W.; Buol, S.W. The fertility capability soil classification system: Interpretation, applicability and modification. Geoderma 1982, 27, 283–309. [Google Scholar] [CrossRef]
- Hazelton, P.; Murphy, B. Interpreting Soil Test Results; CSIRO Publishing: Clayton, VIC, Australia, 2007. [Google Scholar]
- Juárez, M.; Sánchez, J.; Sánchez, A. Química del Suelo y Medio Ambiente; Publicaciones Universidad de Alicante: Alicante, Spain, 2006; ISBN 84-7908-893-1. [Google Scholar]
- Anastopoulos, I.; Kyzas, G.Z. Composts as biosorbents for decontamination of various pollutants: A review. Water Air Soil Pollut. 2015, 226, 61. [Google Scholar] [CrossRef]
- Beesley, L.; Inneh, O.S.; Norton, G.; Moreno-Jimenez, E.; Pardo, T.; Clemente, R.; Dawson, J.J. Assessing the influence of compost and biochar amendments on the mobility and toxicity of metals and arsenic in a naturally contaminated mine soil. Environ. Pollut. 2014, 186, 195–202. [Google Scholar] [CrossRef]
- Fischer, D.; Glaser, B. Synergisms between Compost and Biochar for Sustainable Soil Amelioration, Management of Organic Waste; Institute of Agricultural and Nutritional Sci. Soil Biogechemistry: Halle, Germany, 2012; pp. 167–198. [Google Scholar]
- Harpole, W.S.; Biederman, L. Biochar and its effects on plant productivity and nutrient cycling: A meta-analysis. GCB Bioenergy 2013, 5, 202–214. [Google Scholar] [CrossRef] [Green Version]
- Madiba, O.F.; Solaiman, Z.M.; Carson, J.K.; Murphy, D.V. Biochar increases availability and uptake of phosphorus to wheat under leaching conditions. Biol. Fertil. Soils 2016, 52, 439–446. [Google Scholar] [CrossRef]
- Agegnehu, G.; Bass, A.; Nelson, P.N.; Muirhead, B.; Wright, G.; Bird, M.I. Biochar and biochar-compost as soil amendments: Effects on peanut yield, soil properties and greenhouse gas emissions in tropical North Queensland, Australia. Agric. Ecosyst. Environ. 2015, 213, 72–85. [Google Scholar] [CrossRef]
- Alvarenga, P.; Gonçalves, A.; Fernandes, R.; De Varennes, A.; Vallini, G.; Duarte, E.; Cunha-Queda, A.; Cunha-Queda, A.C. Evaluation of composts and liming materials in the phytostabilization of a mine soil using perennial ryegrass. Sci. Total Environ. 2008, 406, 43–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Sun, X.; Li, S.; Zhang, T.; Zhang, W.; Zhai, P. Application of organic amendments to a coastal saline soil in north china: Effects on soil physical and chemical properties and tree growth. PLoS ONE 2014, 9, e89185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fowles, M. Black carbon sequestration as an alternative to bioenergy. Biomass-Bioenergy 2007, 31, 426–432. [Google Scholar] [CrossRef]
- Forján, R.; Asensio, V.; Rodríguez-Vila, A.; Covelo, E. Effect of amendments made of waste materials in the physical and chemical recovery of mine soil. J. Geochem. Explor. 2014, 147, 91–97. [Google Scholar] [CrossRef]
- Wild, A. Rusell´s Soil Conditions and Plant Growth, 1st ed.; Longman: London, UK, 1988. [Google Scholar]
- Arienzo, M.; Adamo, P.; Cozzolino, V. The potential of Lolium perenne for revegetation of contaminated soil from a metallurgical site. Sci. Total Environ. 2004, 319, 13–25. [Google Scholar] [CrossRef]
- Norini, M.-P.; Thouin, H.; Miard, F.; Battaglia-Brunet, F.; Gautret, P.; Guégan, R.; Le Forestier, L.; Morabito, D.; Bourgerie, S.; Motelica-Heino, M. Mobility of Pb, Zn, Ba, As and Cd toward soil pore water and plants (willow and ryegrass) from a mine soil amended with biochar. J. Environ. Manag. 2019, 232, 117–130. [Google Scholar] [CrossRef]
- Huang, M.; Luo, N.; Liu, C.; Zeng, G.; Li, Z.; Huang, B.; Zhu, Y. Compost as a soil amendment to remediate heavy metal-contaminated agricultural soil: Mechanisms, efficacy, problems, and strategies. Water Air Soil Pollut. 2016, 227, 359. [Google Scholar] [CrossRef]
- Lebrun, M.; Miard, F.; Nandillon, R.; Léger, J.C.; Hattab-Hambli, N.; Scippa, G.S.; Bourgerie, S.; Morabito, D. Assisted phytostabilization of a multicontaminated mine technosol using biochar amendment: Early stage evaluation of biochar feedstock and particle size effects on As and Pb accumulation of two Salicaceae species (Salix viminalis and Populus euramericana). Chemosphere 2018, 194, 316–326. [Google Scholar] [CrossRef]
- Lebrun, M.; Miard, F.; Nandillon, R.; Scippa, G.S.; Bourgerie, S.; Morabito, D. Biochar effect associated with compost and iron to promote Pb and As soil stabilization and Salix viminalis L. growth. Chemosphere 2019, 222, 810–822. [Google Scholar] [CrossRef] [Green Version]
- Peng, X.; Deng, Y.; Peng, Y.; Yue, K. Effects of biochar addition on toxic element concentrations in plants: A meta-analysis. Sci. Total Environ. 2018, 616–617, 970–977. [Google Scholar] [CrossRef]
- El-Naggar, A.; Shaheen, S.M.; Hseu, Z.Y.; Wang, S.L.; Ok, Y.S.; Rinklebe, J. Release dynamics of As, Co, and Mo in a biochar treated soil under pre-definite redox conditions. Sci. Total Environ. 2019, 657, 686–695. [Google Scholar] [CrossRef] [PubMed]
- Arco-Lázaro, E.; Agudo, I.; Clemente, R.; Bernal, M.P. Arsenic (V) adsorption-desorption in agricultural and mine soils: Effects of organic matter addition and phosphate competition. Environ. Pollut. 2016, 216, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Jaoude, L.A.; Garau, G.; Nassif, N.; Darwish, T.; Castaldi, P. Metal(loid)s immobilization in soils of Lebanon using municipal solid waste compost: Microbial and biochemical impact. Appl. Soil Ecol. 2019, 143, 134–143. [Google Scholar] [CrossRef]
- Nandillon, R.; Lebrun, M.; Miard, F.; Gaillard, M.; Sabatier, S.; Villar, M.; Bourgerie, S.; Morabito, D. Capability of amendments (biochar, compost and garden soil) added to a mining technosol contaminated by Pb and As to allow poplar seed (Populus nigra L.) germination. Environ. Monit. Assess. 2019, 191, 465. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Jimenez, E.; Esteban, E.; Peñalosa, J.M. The Fate of Arsenic in Soil-Plant Systems. In Reviews of Environmental Contamination and Toxicology; Springer: New York, NY, USA, 2012; pp. 1–37. [Google Scholar]
- Rodríguez-Vila, A.; Forján, R.; Guedes, R.S.; Covelo, E.F. Changes on the phytoavailability of nutrients in a mine soil reclaimed with compost and biochar. Water Air Soil Pollut. 2016, 227, 453. [Google Scholar] [CrossRef]
- Beesley, L.; Marmiroli, M.; Pagano, L.; Pigoni, V.; Fellet, G.; Fresno, T.; Vamerali, T.; Bandiera, M.; Marmiroli, N. Biochar addition to an arsenic contaminated soil increases arsenic concentrations in the pore water but reduces uptake to tomato plants (Solanum lycopersicum L.). Sci. Total Environ. 2013, 454, 598–603. [Google Scholar] [CrossRef]
- Forján, R.; Rodríguez-Vila, A.; Covelo, E.F. Increasing the nutrient content in a mine soil through the application of technosol and biochar and grown with Brassica juncea L. Waste Biomass-Valorization 2017, 10, 103–119. [Google Scholar] [CrossRef]
- Arco-Lázaro, E.; Pardo, T.; Clemente, R.; Bernal, M.P. Arsenic adsorption and plant availability in an agricultural soil irrigated with As-rich water: Effects of Fe-rich amendments and organic and inorganic fertilisers. J. Environ. Manag. 2018, 209, 262–272. [Google Scholar] [CrossRef]
- Hartley, W.; Lepp, N.W. Remediation of arsenic contaminated soils by iron-oxide application, evaluated in terms of plant productivity, arsenic and phytotoxic metal uptake. Sci. Total Environ. 2008, 390, 35–44. [Google Scholar] [CrossRef]
- Jiang, D.; Zeng, G.; Huang, D.; Chen, M.; Zhang, C.; Huang, C.; Wan, J. Remediation of contaminated soils by enhanced nanoscale zero valent iron. Environ. Res. 2018, 163, 217–227. [Google Scholar] [CrossRef]
- Ma, X.; Gurung, A.; Deng, Y. Phytotoxicity and uptake of nanoscale zero-valent iron (nZVI) by two plant species. Sci. Total Environ. 2013, 443, 844–849. [Google Scholar] [CrossRef] [PubMed]
Treatment | Soil | nZVI | Compost | Biochar |
---|---|---|---|---|
S | 100 | |||
SN | 97.5 | 2.5 | ||
SC | 87.5 | 12.5 | ||
SCB | 85 | 12.5 | 2.5 |
Parameters | Units | S | C | B | |
---|---|---|---|---|---|
Physic-chemical properties | EC | µs·cm−1 | 111 ± 1.00c | 11,911 ± 3.60a | 642 ± 1.03b |
pH | 8.70 ± 0.02b | 8.07 ± 0.01c | 9.65 ± 0.03a | ||
OM | mg·kg−1 | 2.28 ± 0.03c | 177 ± 0.53b | 713 ± 0.73a | |
TN | 2.16 ± 0.20c | 12.41 ± 0.02a | 9.60 ± 0.02b | ||
P (available) | 1.73 ± 0.03c | 1656 ± 4.96a | 161 ± 0.72b | ||
Pseudo-total | As | mg·kg−1 | 76.3 ± 0.43a | 22.4 ± 0.49b | 14.6 ± 0.52c |
Cd | u.l | 1.51 ± 0.01a | 0.75 ± 0.01b | ||
Cu | 29.1 ± 0.40b | 33.6 ± 0.57a | 15.7 ± 0.43c | ||
Pb | 37.9 ± 0.06b | 29.3 ± 0.05c | 40.6 ± 0.15a | ||
Zn | 120 ± 0.56c | 148 ± 1.30b | 221 ± 0.16a | ||
RBA | As | mg·kg−1 | 7.61 ± 0.45a | 0.65 ± 0.02b | 0.10 ± 0.01c |
Nutrients | Ca | mg·kg−1 | 2685 ± 149b | 6337 ± 9.36a | 756 ± 2.86c |
K | 315 ± 30.10c | 18,127 ± 2.50a | 2554 ± 1.36b | ||
Mg | 1013 ± 138b | 1657 ± 2.06a | 26.7 ± 0.03c | ||
Na | 51.5 ± 7.66c | 3412 ± 2.25a | 140 ± 0.51b | ||
Exchange cations | Al | cmol(+) kg−1 | 0.03 ± 0.00a | 0.01 ± 0.00a | 0.33 ± 0.40a |
Ca | 44.1 ± 2.82b | 63.6 ± 0.53a | 7.52 ± 0.49c | ||
K | 2.60 ± 0.27c | 92.6 ± 0.40a | 13.5 ± 0.46b | ||
Mg | 28.7 ± 3.28a | 27.5 ± 0.35a | 0.44 ± 0.01b | ||
Na | 1.46 ± 0.16b | 34.3 ± 0.50a | 1.40 ± 0.01b | ||
CEC | cmol(+) kg−1 | 76.9 ± 5.85b | 217 ± 2.17a | 22.3 ± 0.33c | |
Texture | Lime | 26.2 | |||
Sand | % | 33.1 | |||
Silt | 40.7 |
Treatment | ADD Non-Carcinogenic (mg∙kg−1∙Day) | ADD Carcinogenic (mg∙kg−1∙Day) | HI | CR |
---|---|---|---|---|
S | 1.01E+08 | 8.68E+06 | 0.06 | 9.63E-07 |
SN | 5.69E+07 | 4.88E+06 | 0.03 | 5.43E-07 |
SC | 9.93E+07 | 8.51E+06 | 0.06 | 9.48E-07 |
SCB | 8.94E+07 | 7.66E+06 | 0.05 | 8.48E-07 |
S | SN | SC | SCB | ||
---|---|---|---|---|---|
OM | mg·kg−1 | 3.0 ± 0.5b | 2.5 ± 0.6b | 6.8 ± 0.1a | 7.4 ± 0.4a |
Ca | 2645 ± 169b | 3022 ± 128b | 3735 ±1 26a | 3833 ± 206a | |
K | 305 ± 32a | 298 ± 11a | 284 ± 37a | 334 ± 15a | |
Na | 50 ± 6a | 64 ± 10a | 63 ± 5a | 52 ± 8a | |
Mg | 1033 ± 12ab | 980 ± 8b | 1182 ± 74a | 1212 ± 58a | |
P | 4.8 ± 0.8b | 4.2 ± 0.8b | 12.4 ± 0.8a | 9.7 ± 3.6a |
S | SN | SC | SCB | ||
---|---|---|---|---|---|
Ca2+ | cmol(+) kg−1 | 44.10 ± 2.82b | 50.37 ± 2.14b | 62.25 ± 2.11a | 62.52 ± 2.84a |
K+ | 2.60 ± 0.27a | 2.54 ± 0.09a | 2.42 ± 0.31a | 2.86 ± 0.13a | |
Na+ | 0.73 ± 0.08a | 0.93 ± 0.14a | 0.91 ± 0.06a | 0.75 ± 0.11a | |
Mg2+ | 28.71 ± 3.28a | 27.23 ± 0.22a | 32.84 ± 2.05a | 33.33 ± 1.61a | |
Al3+ | 0.03 ± 0.00a | 0.04 ± 0.00a | 0.03 ± 0.01a | 0.03 ± 0.00a | |
CEC | 76.1 ± 5.87b | 81.1 ± 2.24b | 98.4 ± 4.43a | 98.2 ± 5.71a | |
V | % | 99.96 ± 0.00a | 99.95 ± 0.00a | 99.97 ± 0.01a | 99.96 ± 0.01a |
Al% | 0.04 ± 0.00a | 0.04 ± 0.00a | 0.03 ± 0.014a | 0.03 ± 0.00a |
S | SN | SC | SCB | ||
---|---|---|---|---|---|
Fresh biomass | g | 2.5 ± 0.1b | 1.1 ± 0.2c | 6.3 ± 1.4a | 5.2 ± 0.3a |
Dry biomass | 0.43 ± 0.14b | 0.17 ± 0.04c | 0.86 ± 0.20a | 0.73 ± 0.07a | |
As | mg·kg−1 | 0.41 ± 0.03b | 0.14 ± 0.02c | 1.06 ± 0.17a | 0.96 ± 0.02a |
Na | 52 ± 5d | 145 ± 6c | 322 ± 11a | 207 ± 4b | |
Mg | 1962 ± 86c | 947 ± 168d | 3874 ± 109a | 3279 ± 21b | |
P | 1554 ± 44c | 611 ± 4d | 4408 ± 130a | 3542 ± 118b | |
K | 16,000 ± 452c | 7318 ± 200d | 45,320 ± 252a | 37,195 ± 123b | |
Ca | 3540 ± 150c | 1494 ± 230d | 7375 ± 240a | 6303 ± 81b | |
Fe | 193 ± 5b | 126 ± 55b | 320 ± 11a | 266a ± 36b |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baragaño, D.; Gallego, J.L.R.; Baleriola, G.; Forján, R. Effects of Different In Situ Remediation Strategies for an As-Polluted Soil on Human Health Risk, Soil Properties, and Vegetation. Agronomy 2020, 10, 759. https://doi.org/10.3390/agronomy10060759
Baragaño D, Gallego JLR, Baleriola G, Forján R. Effects of Different In Situ Remediation Strategies for an As-Polluted Soil on Human Health Risk, Soil Properties, and Vegetation. Agronomy. 2020; 10(6):759. https://doi.org/10.3390/agronomy10060759
Chicago/Turabian StyleBaragaño, Diego, José Luis R. Gallego, Gaspar Baleriola, and Rubén Forján. 2020. "Effects of Different In Situ Remediation Strategies for an As-Polluted Soil on Human Health Risk, Soil Properties, and Vegetation" Agronomy 10, no. 6: 759. https://doi.org/10.3390/agronomy10060759
APA StyleBaragaño, D., Gallego, J. L. R., Baleriola, G., & Forján, R. (2020). Effects of Different In Situ Remediation Strategies for an As-Polluted Soil on Human Health Risk, Soil Properties, and Vegetation. Agronomy, 10(6), 759. https://doi.org/10.3390/agronomy10060759