Effect of Cropping System and Humidity Level on Nitrate Content and Tipburn Incidence in Endive
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- AFHORFRESH (Asociación Española de Frutas y Hortalizas Lavadas Listas para su Empleo). 2015. Available online: www.afhorla.com (accessed on 16 October 2019).
- CEBAS-CSIC (Centre for Applied Soil Science and Biology of the Segura—Spanish National Research Council) Cienciaceba’s blog. Fresh-cut products. 2015. Available online: www.cienciacebas.wordpress.com (accessed on 20 October 2019).
- Konstantopoulou, E.; Kapotis, G.; Salachas, G.; Petropouls, S.A.; Karapanos, I.C.; Passam, S.A. Nutritional quality of greenhouse lettuce at harvest and after storage in relation to N application and cultivation season. Sci. Hortic. 2010, 125, 93e.1–93e.5. [Google Scholar] [CrossRef]
- Mensinga, T.T.; Speijers, J.A.G.; Meulenbelt, J. Health Implications of Exposure to Environmental Nitrogenous Compounds. Toxicol. Rev. 2003, 22, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Anjana, S.U.; Iqbal, M. Nitrate accumulation in plants, factors affecting the process, and human health implications. A review. Agron. Sustain. Dev. 2007, 27, 45–57. [Google Scholar] [CrossRef]
- OJEU (Official Journal of the European Union). Commission Regulation (EU) No 1258/2011 of December 2011 amending Regulation (EC) No 1881/2006 as regards maximum levels for nitrates in foodstuffs. Official Journal of the European Union. L. 320/15-17. 2011. Available online: http://eur-lex.europa.eu (accessed on 20 October 2019).
- Pavlou, G.C.; Ehaliotis, C.D.; Kavvadias, V.A. Effect of organic and inorganic fertilizers applied during successive crop seasons on growth and nitrate accumulation in lettuce. Sci. Hortic. 2007, 111, 319–325. [Google Scholar] [CrossRef]
- Dapoigny, L.; Tourdonnet, S.; Roger-Estrade, J.; Jeuffroy, M.H.; Fleury, A. Effect of nitrogen nutrition on growth and nitrate accumulation in lettuce (Lactuca sativa L.), under various conditions of radiation and temperature. Agronomie 2000, 20, 843–855. [Google Scholar] [CrossRef]
- Lillo, C. Light regulation of nitrate reductase in green leaves of higher plants. Physiol. Plant. 1994, 90, 616–620. [Google Scholar] [CrossRef]
- Maldonado, J.M. Asimilación del nitrógeno y del azufre. In Fundamentos de fisiología vegetal, 2nd ed.; Azcón Bieto, J., Talón, M., Eds.; Mc Graw Hill: Madrid, Spain, 2008; pp. 287–303. [Google Scholar]
- Reinink, K.; Groenwold, R.; Bootsma, A. Genotypical differences in nitrate content in Lactuca sativa L. and related species and correlation with dry matter content. Euphytica 1987, 36, 11–18. [Google Scholar] [CrossRef]
- Behr, U.; Wiebe, H.J. Relation between photosynthesis and nitrate content of lettuce cultivars. Sci. Hortic. 1992, 49, 175–179. [Google Scholar] [CrossRef]
- Santamaria, P.; Gonella, M.; Elia, A.; Parente, A. Ways of reducing rocket salad nitrate content. Acta Hortic. 2001, 548, 529–537. [Google Scholar] [CrossRef]
- Collier, G.F.; Wurr, D.C.E. The relationship of tipburn incidence in head lettuce to evaporative water loss and leaf dimensions. J. Hort. Sci. 1981, 56, 9–13. [Google Scholar] [CrossRef]
- Maroto, J.V. Fisiopatías. En La lechuga y la escarole; Maroto Borrego, J.V., Miguel Gómez, A., Baixauli Soria, C., Eds.; Mundi-Prensa: Madrid, Spain, 2000; pp. 216–229. [Google Scholar]
- Pazkill, D.A.; Tibbits, T.W.; Williams, P.H. Enhancement of Calcium transport to Inner Leaves of Cabbage for Prevention Tipburn. J. Am. Soc. Hort. Sci. 1976, 101, 645–648. [Google Scholar]
- Pazkill, D.A.; Tibbit, T.W. Evidence that Root Pressure Flow Is Required for Calcium Transport to Head Leaves of Cabbage. Plant Physiol. 1977, 60, 854–856. [Google Scholar] [CrossRef] [PubMed]
- Collier, G.F.; Tibbits, T.W. Tipburn of Lettuce. Hortic. Rev. 1982, 4, 49–65. [Google Scholar]
- Collier, G.F.; Tibbits, T.W. Effects on Relative Humidity and Root Temperature on Calcium Concentration and Tipburn Development in Lettuce. J. Am. Soc. Hort. Sci. 1984, 109, 128–131. [Google Scholar]
- Rosen, C.J. Leaf Tipburn in Cauliflower as Affected by Cultivar, Calcium Sprays, and nitrogen Nutrition. HortScience 1990, 25, 660–663. [Google Scholar] [CrossRef]
- Frantz, J.M.; Ritchue, G.; Cometti, N.N.; Robienson, J.; Bugbee, B. Exploring the Limits of Crop Productivity: Beyond the Limits of Tipburn in Lettuce. J. Am. Soc. Hort. Sci. 2004, 129, 331–338. [Google Scholar] [CrossRef]
- Konno, H.; Yamaya, T.; Yamakasi, Y.; Matsumoto, H. Pectic Polysaccharide Breakdown of Cell Walls in Cucumber Rootss Grown with Calcium Starvation. Plant Physiol. 1984, 76, 633–637. [Google Scholar] [CrossRef]
- Barta, J.D.; Tibbits, T.W. Calcium localization in lettuce with and withouth Tipburn: Comparison of controlled environment and field-gorwn plants. J. Am. Soc. Hort. Sci. 1991, 116, 870–875. [Google Scholar] [CrossRef]
- Guardiola Bárcena, J.L.; García Luis, A. Fisiología vegetal I: Nutrición y transporte, 1st ed.; Síntesis: Madrid, Spain, 1990; p. 440. [Google Scholar]
- Wurr, D.C.E.; Fellows, J.R. The influence of solar radiation and temperature on the head weight of crips lettuce. J Hortic. Sci. 1991, 66, 183–190. [Google Scholar] [CrossRef]
- Wheelet, T.R.; Hadley, P.; Morison, J.I.L.; Ellis, R.H. Effects of temperature on the growth of lettuce (Lactuca sativa L.) and the implications for assessing the impacts of potential climate change. Eur. J. Agron. 1993, 2, 305–311. [Google Scholar] [CrossRef]
- San Bautista, A.; López-Galarza, S.; Pascual, B.; Alagarda, J.; Fresquet, J.L.; Bono, M.S.; Palau, V.; Laza, P.; Torres, J.F.; Maroto, J.V. Influencia de distintas dosis de riego y soluciones nutritivas en el rendimiento comercial y la incidencia de Tipburn en cultivo protegido de dos cvs de lechuga Iceberg. Cuadernos de Fitopatología 2003, 78, 112–121. [Google Scholar]
- Bres, W.; Weston, A. Nutrient accumulation and Tipburn in NFT-grown Lettuce at Several Potassium and pH Levels. HortScience 1992, 27, 790–792. [Google Scholar] [CrossRef]
- Drake, B.G.; Raschke, K.; Salisbury, F.B. Temperatures and Transpiration Resistances of Xanthium Leaveas as Affected by Air Temperature, Humidity, and Wind Speed. Plant Physiol. 1970, 46, 324–330. [Google Scholar] [CrossRef]
- Stratton, M.L.; Nagata, R.T. Preliminary determination of parameters to develop and objective procedure for assessing tipburn in lettuce. Proc. Fla. State Hort. Soc. 1993, 106, 157–159. [Google Scholar]
- Mabrouk, A.E.; Cock, J.H. Stomatal response to air humidity and its relation to stomatal density in a wide range of warm climate species. Photosynth. Res. 1985, 7, 137–149. [Google Scholar]
- Schulze, E. Carbon dioxide and water vapor Exchange in response to drought in the atmosphere and in the soil. Annu. Rev. Plant Physiol. 1986, 37, 247–274. [Google Scholar] [CrossRef]
- Leonardia, C.; Guichard, S.; Bertinb, N. High vapour pressure déficit infuences growth transpiration and quality of tomato fruit. Sci. Hortic. 2000, 84, 285–296. [Google Scholar] [CrossRef]
- Maroto, J.V. Etiología y descripción de las principales fisiopatías de la horticultura Mediterránea; Ediciones y promociones L.A.V.: Valencia, Spain, 1997. [Google Scholar]
- Everaarts, A.P.; Blom-Zandstra, M. Internal tipburn of cabbage (Brassica oleracea var. capitae). J. Hort. Sci. Biotechnol. 2001, 76, 515–521. [Google Scholar]
- Kuronuma, T.; Wotanabe, Y.; Ando, M.; Watanabe, H. Tipburn Severity and Calcium Distribution in Lisianthus (Eustoma Grandiflorum (Raf.) Shim) Cultivars Under Different Relative Air Humidity Conditions. Agronomy 2018, 8, 218. [Google Scholar] [CrossRef]
- Brumm, I. Einflub des Stickstoffangebots auf das Aufreten von Ca-Mangel bei Kopfsalat (Lactuca sativa L.). Ph.D. Thesis, Universität Hannover, Hannover, Germany, 1992. [Google Scholar]
- Eckerson, S.H. Protein synthesis by plants I. Nitrate reduction. Bot. Gaz. 1924, 77, 377–390. [Google Scholar] [CrossRef]
- Skok, J. Effect of the form of the available nitrogen on the calcium deficiency symptoms in the bean plant. Plant Physiol. 1941, 16, 145–157. [Google Scholar] [CrossRef] [PubMed]
- Gromaz, A. Escarola (Cichorium endivia L.): Sistemas de manejo y ciclos como factores de la incidencia de fisiopatias y acumulación de nitratos. Ph.D. Thesis, Universitat Politècnica de València, València, Spain, November 2016. [Google Scholar]
- Stagnari, F.; Di Bitteto, V.; Pisante, M. Effects of N fertilizers and rates on yield, safety and nutrients in processing spinach genotypes. Sci. Hortic. 2007, 114, 225–233. [Google Scholar] [CrossRef]
- Govedarica-Lucik, V.; Mojevic, M.; Percovic, G.; Govedarica, B. Yield and nutritional quality of greenhouse lettuce (Lactuca sativa L.) as affected by genotype and production methods. Genetika 2014, 46, 1027–1036. [Google Scholar] [CrossRef]
- Nicholas, J.C.; Harper, J.E.; Hageman, R.H. Nitrate Reductase Activity in Soybeans (Glycine max [L.] Merr.). Plant Physiol. 1976, 58, 731–735. [Google Scholar] [CrossRef]
- Blom-Zandstra, M.; Lampe, J.E.M. The Role of Nitrate in the Osmoregulation of Lettuce (Lactuca sativa L.) Grown at Different Light Intensities. J. Exp. Bot. 1985, 36, 1043–1052. [Google Scholar]
- Fallovo, C.; Rouphael, Y.; Cardelli, M.; Rea, E.; Battistelli, A.; Colla, G. Yield and quality of leafy lettuce in response to nutrient solution and growing season. J. Food Agric. Environ. 2009, 7, 456–462. [Google Scholar]
- Parks, S.E.; Huett, D.O.; Campbell, L.C.; Spohr, L.J. Nitrate and nitrite in Australian leafy vegetables. Aust. J. Agric. Res. 2008, 59, 632–638. [Google Scholar] [CrossRef]
- Fallovo, C.; Rouphael, Y.; Rea, E.; Battistelli, A.; Colla, G. Nutrient solution concentration and growing season affect yield and quality of Lactuca sativa L. var. acephala in floating raft culture. J. Sci. Food Agric. 2009, 89, 1682–1689. [Google Scholar] [CrossRef]
- Torres, J.F.; Ndamekele, J.B.; San Bautista, A.; Pascual-España, B.; Bono, M.S.; López Galarza, S.; Pascual-Seva, N.; Alagarda, J.; Maroto, J.V. Influencia de ciclos, fertilización nitrogenada y modalidades de cultivo en la incidencia de diversas fisiopatías y la acumulación de nitratos en cuatro cultivares de minilechuga (I). Phytoma 2013, 245, 16–21. [Google Scholar]
- Lorenz, H.P.; Wiebe, H.J. Effect of temperature on photosynthesis of lettuce adapted to different light and temperature conditions. Sci. Hortic. 1980, 13, 115–123. [Google Scholar] [CrossRef]
- Rincón Sanchez, L.; Pérez Crespo, A.; Pellicer Botía, C.; Sáez Sironi, J.; Abadía Sanchez, A. Influencia de la fertilización nitrogenada en la absorción de nitrógeno y acumulación de nitratos en la lechuga iceberg. Invest. Agric. Prod. Prot. Veg. 2002, 17, 303–318. [Google Scholar]
Year | Seasons | Seeding Date | Transplanting Date | Harvest Date | |
---|---|---|---|---|---|
2013 | Winter | 29/01/13 | 06/03/13 | Greenhouse Open-field | 26/04/13 08/05/13 |
Spring | 03/05/13 | 27/05/13 | Greenhouse Open-field | 16/07/13 22/07/13 | |
2014 | Winter | 04/12/13 | 10/01/14 | Greenhouse Open-field | 10/03/14 to 20/03/14 27/03/14 to 01/04/14 |
Spring | 30/03/14 | 24/04/14 | Greenhouse Open-field | 02/06/14 to 03/06/14 12/06/14 to 13/06/14 |
Temperature (°C) | Humidity Relative (%) | |
---|---|---|
Greenhouse | 26.91± 0.53 [26.38; 27.73] | 57.44± 2.57 [57.87; 60.01] |
Open-field | 23.75± 1.08 [22.67; 24.83] | 67.62± 2.11 [65.51; 69.73] |
Low humidity | 20.22± 0.42 [19.80; 20.64] | 55.37± 1.49 [53.88; 56.86] |
High humidityH | 25.29± 0.55 [24.70; 25.84] | 68.49± 1.23 [67.26; 69.72] |
Biomass of Marketable Plants (g·Plant−1) | |||||
---|---|---|---|---|---|
2013 | 2014 | ||||
Winter | Spring | Winter | Spring | ||
Cultivar (Cv) | |||||
‘Cuartana’ | 669.3 ± 58.2 | 317.4 ± 28.7 | 769.7 ± 27.9 | 694.4 ± 32.5 b | |
‘Natacha’ | 650.7 ± 58.2 | 365.7 ± 49.7 | 755.4 ± 27.9 | 811.0 ± 40.7 a | |
Humidity level (HL) | |||||
Low Humidity | 621.1 ± 58.2 | 422.8 ± 49.7 a | 694.2 ± 28.8 b | 629.8 ± 35.5 | |
High Humidity | 698.9 ± 58.2 | 260.3 ± 28.7 b | 830.9 ± 29.4 a | 709.6 ± 44.5 | |
Cropping system (CS) | |||||
Greenhouse | 539.4 ± 58.2 b | 377.7 ± 49.7 | 477.2 ± 26.3 b | 543.6 ± 31.8 b | |
Open-field | 780.7 ± 58.2 a | 305.7 ± 28.7 | 1047.9 ± 26.3 a | 795.6 ± 52.1 a | |
Analysis of variance Parameters (degrees of freedom) | Significance level | ||||
Cv (n = 1) | ns | ns | ns | ** | |
HL (n = 1) | ns | ** | ** | ns | |
CS (n = 1) | ** | ns | ** | ** | |
Cv × HL (n = 1) | ns | ns | ns | ns | |
Cv × CS (n = 1) | ns | ns | ns | * | |
HL × CS (n = 1) | ns | ** | ** | ns | |
Cv × HL × CS (n = 1) | ns | ns | ns | ns |
Tipburn Incidence (%) | ||||
---|---|---|---|---|
2013 | 2014 | |||
Winter | Spring | Winter | Spring | |
Cultivar (Cv) | ||||
‘Cuartana’ | 6.7 ± 8.4 | 10.8 ± 7.9 b | 1.6 ± 2.1 b | 18.3 ± 7.3 b |
‘Natacha’ | 20.2 ± 25.2 | 46.9 ± 7.9 a | 16.6 ± 20.9 a | 48.3 ± 7.3 a |
Humidity level (HL) | ||||
Low Humidity | 25.0 ± 31.5 a | 29.4 ± 7.9 | 16.6 ± 25.2 a | 57.7 ± 6.0 a |
High Humidity | 1.7 ± 2.1 b | 28.3 ± 7.9 | 1.6 ± 1.3 b | 21.1 ± 6.0 b |
Cropping system (CS) | ||||
Greenhouse | 26.4 ±33.5 a | 47.1 ± 7.9 a | 16.6 ± 25.2 a | 31.1 ± 6.0 b |
Open-field | 0.0 ± 0.0 b | 10.7 ± 7.9 b | 1.6 ± 1.3 b | 47.7 ± 6.0 a |
Analysis of variance Parameters (degrees of freedom) | Significance level | |||
Cv (n = 1) | ns | ** | ** | ** |
HL (n = 1) | ** | ns | ** | ** |
CS (n = 1) | ** | ** | ** | * |
Cv × HL (n = 1) | * | * | ** | ** |
Cv × CS (n = 1) | * | * | ** | ns |
HL × CS (n = 1) | ** | ns | ** | ** |
Cv × HL × CS (n = 1) | * | * | ** | ** |
Nitrate Content (mg/kg Fresh Product) | ||||
---|---|---|---|---|
2013 | 2014 | |||
Winter | Spring | Winter | Spring | |
Cultivar (Cv) | ||||
‘Cuartana’ | 2253.8 ± 206.2 a | 3690.4 ± 412.8 | 2172.9 ± 159.4 | 2733.7 ± 283.2 |
‘Natacha’ | 1656.3 ± 206.2 b | 3595.1 ± 412.8 | 1847.0 ± 159.4 | 2849.1 ± 283.2 |
Humidity level (HL) | ||||
Low Humidity | 2019.3 ± 206.2 | 3260.9 ± 412.8 | 2178.0 ± 130.2 | 3061.8 ± 231.3 a |
High Humidity | 1890.7 ± 206.2 | 4020.6 ± 412.8 | 1935.9 ± 130.2 | 2443.5 ± 231.3 b |
Cropping system (CS) | ||||
Greenhouse | 2411.1 ± 206.2 a | 3567.9 ± 412.8 | 2634.2 ± 130.2 a | 3130.8 ± 231.3 a |
Open-field | 1498.8 ± 206.2 b | 3713.5 ± 412.8 | 1479.8 ± 130.2 b | 2374.4 ± 231.3 b |
Analysis of variance Parameters (degrees of freedom) | Significance level | |||
Cv (n = 1) | * | ns | ns | ns |
HL (n = 1) | ns | ns | ns | ** |
CS (n = 1) | * | ns | ** | ** |
Cv × HL (n = 1) | ns | ns | ns | ns |
Cv × CS (n = 1) | ns | ns | * | ns |
HL × CS (n = 1) | ns | ns | ns | ns |
Cv × HL × CS (n = 1) | ns | ns | ns | ns |
Chlorophyll Content (mg/g Fresh Product) | ||||
---|---|---|---|---|
2013 | 2014 | |||
Winter | Spring | Winter | Spring | |
Cultivar (Cv) | ||||
‘Cuartana’ | 1.07 ± 0.009 a | 1.17 ± 0.01 a | 1.01 ± 0.006 a | 1.02 ± 0.01 a |
‘Natacha’ | 1.00 ± 0.009 b | 1.12 ± 0.01 b | 0.96 ± 0.006 b | 0.99 ± 0.01 b |
Humidity level (HL) | ||||
Low Humidity | 1.06 ± 0.009 a | 1.14 ± 0.01 | 0.99 ± 0.006 | 1.01 ± 0.01 |
High Humidity | 1.01 ± 0.009 b | 1.15 ± 0.01 | 0.98 ± 0.006 | 1.00 ± 0.01 |
Cropping system (CS) | ||||
Greenhouse | 1.01 ± 0.009 b | 1.08 ± 0.01 b | 0.96 ± 0.006 b | 0.96 ± 0.01 b |
Open-field | 1.06 ± 0.009 a | 1.21 ± 0.01 a | 1.01 ± 0.006 a | 1.05 ± 0.01 a |
Analysis of variance Parameters (degrees of freedom) | Significance level | |||
Cv (n = 1) | * | * | ** | * |
HL (n = 1) | * | ns | ns | ns |
CS (n = 1) | ** | ** | ** | ** |
Cv × HL (n = 1) | ns | ns | ns | ns |
Cv × CS (n = 1) | ns | ns | ns | ns |
HL × Cv (n = 1) | ns | ns | ns | ns |
Cv × HL × CS (n = 1) | ns | ns | ns | ns |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
San Bautista, A.; Gromaz, A.; Ferrarezi, R.S.; López-Galarza, S.; Pascual, B.; Maroto, J.V. Effect of Cropping System and Humidity Level on Nitrate Content and Tipburn Incidence in Endive. Agronomy 2020, 10, 749. https://doi.org/10.3390/agronomy10050749
San Bautista A, Gromaz A, Ferrarezi RS, López-Galarza S, Pascual B, Maroto JV. Effect of Cropping System and Humidity Level on Nitrate Content and Tipburn Incidence in Endive. Agronomy. 2020; 10(5):749. https://doi.org/10.3390/agronomy10050749
Chicago/Turabian StyleSan Bautista, Alberto, Andrea Gromaz, Rhuanito Soranz Ferrarezi, Salvador López-Galarza, Bernardo Pascual, and José Vicente Maroto. 2020. "Effect of Cropping System and Humidity Level on Nitrate Content and Tipburn Incidence in Endive" Agronomy 10, no. 5: 749. https://doi.org/10.3390/agronomy10050749
APA StyleSan Bautista, A., Gromaz, A., Ferrarezi, R. S., López-Galarza, S., Pascual, B., & Maroto, J. V. (2020). Effect of Cropping System and Humidity Level on Nitrate Content and Tipburn Incidence in Endive. Agronomy, 10(5), 749. https://doi.org/10.3390/agronomy10050749