An Evaluation of Kernel Zinc in Hybrids of Elite Quality Protein Maize (QPM) and Non-QPM Inbred Lines Adapted to the Tropics Based on a Mating Design
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Phenotypic Analysis
2.3. Data Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bouis, H.E.; Saltzman, A. Improving nutrition through biofortification: A review of evidence from HarvestPlus, 2003 through 2016. Glob. Food Sec. 2017, 12, 49–58. [Google Scholar] [CrossRef]
- Wessells, K.R.; Brown, K.H. Estimating the Global Prevalence of Zinc Deficiency: Results Based on Zinc Availability in National Food Supplies and the Prevalence of Stunting. PLoS ONE 2012, 7, e50568. [Google Scholar] [CrossRef] [PubMed]
- Stein, A.J.; Meenakshi, J.V.; Qaim, M.; Nestel, P.; Bhutta, Z.A. Analyzing the Health Benefits of Biofortified Staple Crops by Means of the Disability-Adjusted Life Years Approach: A Handbook Focusing on Iron, Zinc and Vitamin A; Technical Monograph Series 4; HarvestPlus: Washington, DC, USA, 2005; pp. 5–16. [Google Scholar]
- Bouis, H.E.; Welch, R.M. Biofortification-A sustainable agricultural strategy for reducing micronutrient malnutrition in the global south. Crop Sci. 2010, 50, 20–32. [Google Scholar] [CrossRef]
- Bouis, H.E.; Hotz, C.; McClafferty, B.; Meenakshi, J.V.; Pfeiffer, W.H. Biofortification: A new tool to reduce micronutrient malnutrition. Food Nutr. Bull. 2011, 32, 31–40. [Google Scholar] [CrossRef]
- Garg, M.; Sharma, N.; Sharma, S.; Kapoor, P.; Kumar, A.; Chunduri, V.; Arora, P. Biofortified Crops Generated by Breeding, Agronomy, and Transgenic Approaches Are Improving Lives of Millions of People around the World. Front. Nutr. 2018, 5, 12. [Google Scholar] [CrossRef]
- Listman, M. Biofortified Maize and Wheat Can Improve Diets and Health, New Study Shows. Available online: https://www.cimmyt.org/news/biofortified-maize-and-wheat-can-improve-diets-and-health-new-study-shows/ (accessed on 10 August 2019).
- Maqbool, M.A.; Beshir, A.R. Zinc biofortification of maize (Zea mays L.): Status and challenges. Plant Breed. 2019, 138, 1–28. [Google Scholar] [CrossRef]
- Chomba, E.; Krebs, N.F.; Patinkin, Z.W.; Palacios, N.; Hambidge, K.M. Zinc Absorption from Biofortified Maize Meets the Requirements of Young Rural Zambian. J. Nutr. 2015, 145, 514–519. [Google Scholar] [CrossRef] [PubMed]
- Ekpa, O.; Palacios-Rojas, N.; Kruseman, G.; Fogliano, V.; Linnemann, A.R. Sub-Saharan African Maize-Based Foods-Processing Practices, Challenges and Opportunities. Food Rev. Int. 2019, 35, 609–639. [Google Scholar]
- Shiferaw, B.; Prasanna, B.M.; Hellin, J.; Bänziger, M. Crops that feed the world 6. Past successes and future challenges to the role played by maize in global food security. Food Secur. 2011, 3, 307–327. [Google Scholar] [CrossRef]
- Nuss, E.T.; Tanumihardjo, S.A. Maize: A paramount staple crop in the context of global nutrition. Compr. Rev. Food Sci. Food Saf. 2010, 9, 417–436. [Google Scholar] [CrossRef]
- Adebayo, M.A.; Menkir, A.; Blay, E.; Gracen, V.; Danquah, E. Combining ability and heterosis of elite drought-tolerant maize inbred lines evaluated in diverse environments of lowland tropics. Euphytica 2017, 213, 1–12. [Google Scholar] [CrossRef]
- Li, S.; Zhou, X.; Huang, Y.; Zhu, L.; Zhang, S.; Zhao, Y.; Guo, J.; Chen, J.; Chen, R. Identification and characterization of the zinc-regulated transporters, iron-regulated transporter-like protein (ZIP) gene family in maize. BMC Plant Biol. 2013, 13, 114. [Google Scholar] [CrossRef]
- Ghandilyan, A.; Vreugdenhil, D.; Aarts, M.G.M. Progress in the genetic understanding of plant iron and zinc nutrition. Physiol. Plant. 2006, 126, 407–417. [Google Scholar] [CrossRef]
- Waters, B.M.; Sankaran, R.P. Moving micronutrients from the soil to the seeds: Genes and physiological processes from a biofortification perspective. Plant Sci. 2011, 180, 562–574. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Oliveira, A.L.; Chander, S.; Ortiz, R.; Menkir, A.; Gedil, M. Genetic basis and breeding perspectives of grain iron and zinc enrichment in cereals. Front. Plant Sci. 2018, 9, 937. [Google Scholar] [CrossRef]
- Welch, R.M.; Smith, M.E.; van Campen, D.R.; Schaefer, S.C. Improving the mineral reserves and protein quality of maize (Zea mays L.) kernels using unique genes. Plant Soil 1993, 156, 215–218. [Google Scholar] [CrossRef]
- Cheah, Z.X.; Kopittke, P.M.; Scheckel, K.G.; Noerpel, M.R.; Bell, M.J. Comparison of Zn accumulation and speciation in kernels of sweetcorn and maize differing in maturity. Ann. Bot. 2020, 125, 185–193. [Google Scholar] [CrossRef]
- Cheah, Z.X.; Kopittke, P.M.; Harper, S.M.; O’hare, T.J.; Wang, P.; Paterson, D.J.; De Jonge, M.D.; Bell, M.J. In situ analyses of inorganic nutrient distribution in sweetcorn and maize kernels using synchrotron-based x-ray fluorescence microscopy. Ann. Bot. 2019, 123, 543–556. [Google Scholar] [CrossRef]
- Sadeghzadeh, B. A review of zinc nutrition and plant breeding. J. Soil Sci. plant Nutr. 2013, 13, 905–927. [Google Scholar] [CrossRef]
- Alloway, B.J. Soil factors associated with zinc deficiency in crops and humans. Environ. Geochem. Health 2009, 31, 537–548. [Google Scholar] [CrossRef]
- Schwartz, S.M.; Welch, R.M.; Grunes, D.L.; Cary, E.E.; Norvell, W.A.; Gilbert, M.D.; Meredith, M.P.; Sanchirico, C.A. Effect of zinc, phosphorous, and root-zone temperature on nutrient uptake by barley. Soil Sci. Soc. Am. J. 1987, 51, 371–375. [Google Scholar] [CrossRef]
- Mortvedt, J.J.; Moraghan, J.T.; Mascagni, H.J. Environmental and Soil Factors Affecting Micronutrient Deficiencies and Toxicities. In Micronutrients in Agriculture; Soil Science Society of America: Madison, WI, USA, 1991; pp. 371–411. [Google Scholar]
- Obrador, A.; Novillo, J.; Alvarez, J.M. Mobility and availability to plants of two zinc sources applied to a calcareous soil. Soil Sci. Soc. Am. J. 2003, 67, 564–572. [Google Scholar] [CrossRef]
- Arnold, J.M.; Bauman, L.F. Inheritance and the interrelationships among maize kernel traits and elemental Contents. Crop Sci. 1976, 16, 439–440. [Google Scholar] [CrossRef]
- Brkić, I.; Šimić, D.; Zdunić, Z.; Jambrović, A.; Ledenčan, T.; Kovačević, V.; Kadar, I. Combining abilities of corn-belt inbred lines of maize for mineral content in grain. Maydica 2003, 48, 293–297. [Google Scholar]
- Long, J.K.; Bänziger, M.; Smith, M.E. Diallel analysis of grain iron and zinc density in southern African-adapted maize inbreds. Crop Sci. 2004, 44, 2019–2026. [Google Scholar] [CrossRef]
- Rakha, F.A.; Omar, A.A.; Abou-Youssef, A.Y. Mode of Inheritance of Zinc Accumulation in Maize. J. Plant Nutr. 1993, 16, 2043–2053. [Google Scholar]
- Zhou, J.-F.; Huang, Y.-Q.; Liu, Z.-Z.; Chen, J.-T.; Zhu, L.-Y.; Song, Z.-Q.; Zhao, Y.-F. Genetic Analysis and QTL Mapping of Zinc, Iron, Copper and Manganese Contents in Maize Seed. J. Plant Genet. Resour. 2010, 11, 593–595. [Google Scholar]
- Qin, H.; Cai, Y.; Liu, Z.; Wang, G.; Wang, J.; Guo, Y.; Wang, H. Identification of QTL for zinc and iron concentration in maize kernel and cob. Euphytica 2012, 187, 345–358. [Google Scholar] [CrossRef]
- Ŝimić, D.; Mladenović Drinić, S.; Zdunić, Z.; Jambrović, A.; Ledenan, T.; Brkić, J.; Brkić, A.; Brkić, I. Quantitative trait loci for biofortification traits in maize grain. J. Hered. 2012, 103, 47–54. [Google Scholar] [CrossRef]
- Baxter, I.R.; Gustin, J.L.; Settles, A.M.; Hoekenga, O.A. Ionomic characterization of maize kernels in the intermated B73 × Mo17 population. Crop Sci. 2013, 53, 208–220. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, J.; Jin, T.; Huang, Y.; Chen, J.; Zhu, L.; Zhao, Y.; Guo, J. Identification of quantitative trait locus and prediction of candidate genes for grain mineral concentration in maize across multiple environments. Euphytica 2017, 213, 1–16. [Google Scholar] [CrossRef]
- Jin, T.; Zhou, J.; Chen, J.; Zhu, L.; Zhao, Y.; Huang, Y. The genetic architecture of zinc and iron content in maize grains as revealed by QTL mapping and meta-analysis. Breed. Sci. 2013, 63, 317–324. [Google Scholar] [CrossRef] [PubMed]
- Pradilla, A.; Francis, C.A. Genetic Manipulation of Plant Protein Quality and Its Value in Human Nutrition. Genes Enzym. Popul. 1973, 313–316. [Google Scholar]
- Gunaratna, N.S.; De Groote, H.; Nestel, P.; Pixley, K.V.; McCabe, G.P. A meta-analysis of community-based studies on quality protein maize. Food Policy 2010, 35, 202–210. [Google Scholar] [CrossRef]
- Gunaratna, N.S.; Moges, D.; De Groote, H. Biofortified maize can improve quality protein intakes among young children in southern Ethiopia. Nutrients 2019, 11, 192. [Google Scholar] [CrossRef] [PubMed]
- Chakraborti, M.; Prasanna, B.M.; Hossain, F.; Singh, A.M.; Guleria, S.K. Genetic evaluation of kernel Fe and Zn concentrations and yield performance of selected Maize (Zea mays L.) genotypes. Range Manag. Agrofor. 2009, 30, 109–114. [Google Scholar]
- Hindu, V.; Palacios-Rojas, N.; Babu, R.; Suwarno, W.B.; Rashid, Z.; Usha, R.; Saykhedkar, G.R.; Nair, S.K. Identification and validation of genomic regions influencing kernel zinc and iron in maize. Theor. Appl. Genet. 2018, 131, 1443–1457. [Google Scholar] [CrossRef]
- Gupta, H.O.; Lodha, M.L.; Mehta, S.L.; Rastogi, D.K.; Joginder, S. Changes in minerals, proteins & amino acids in hard endosperm opaque2 Zea mays during development. Indian J. Exp. Biol. 1980, 18, 1419–1422. [Google Scholar]
- Arnold, J.M.; Bauman, L.F.; Zea, L. Interrelations Among Protein, Lysine, Oil, Certain Mineral Element Concentrations, and Physical Kernel Characteristics in Two Maize Populations. Crop Sci. 1977, 17, 412–425. [Google Scholar] [CrossRef]
- Agrawal, P.K.; Jaiswal, S.K.; Prasanna, B.M.; Hossain, F.; Saha, S.; Guleria, S.K.; Gupta, H.S. Genetic variability and stability for kernel iron and zinc concentration in maize (Zea mays L.) genotypes. Indian J. Genet. Plant Breed. 2012, 72, 421–428. [Google Scholar]
- Mallikarjuna, M.G.; Nepolean, T.; Hossain, F.; Manjaiah, K.M.; Singh, A.M.; Gupta, H.S. Genetic variability and correlation of kernel micronutrients among exotic quality protein maize inbreds and their utility in breeding programme. Indian J. Genet. Plant Breed. 2014, 74, 166–173. [Google Scholar] [CrossRef]
- Bänziger, M.; Long, J. The potential for increasing the iron and zinc density of maize through plant-breeding. Food Nutr. Bull. 2000, 21, 397–400. [Google Scholar] [CrossRef]
- Maziya-Dixon, B.; Kling, J.G.; Menkir, A.; Dixon, A. Genetic variation in total carotene, iron, and zinc contents of maize and cassava genotypes. Food Nutr. Bull. 2000, 21, 419–422. [Google Scholar] [CrossRef]
- Menkir, A. Genetic variation for grain mineral content in tropical-adapted maize inbred lines. Food Chem. 2008, 110, 454–464. [Google Scholar] [CrossRef] [PubMed]
- Prasanna, B.M.; Mazumdar, S.; Chakraborti, M.; Hossain, F.; Manjaiah, K.M.; Agrawal, P.K.; Guleria, S.K.; Gupta, H.S. Genetic variability and genotype x environment interactions for kernel iron and zinc concentrations in maize (Zea mays) genotypes. Indian J. Agric. Sci. 2011, 81, 704–711. [Google Scholar]
- Guleria, S.K.; Chahota, R.K.; Kumar, P.; Kumar, A.; Prasanna, B.M.; Hossain, F.; Agrawal, P.K.; Gupta, H.S. Analysis of genetic variability and genotype x year interactions on kernel zinc concentration in selected Indian and exotic maize (Zea mays) genotypes. Indian J. Agric. Sci. 2013, 83, 836–841. [Google Scholar]
- Comstock, R.E.; Robinson, H.F. The Components of Genetic Variance in Populations of Biparental Progenies and Their Use in Estimating the Average Degree of Dominance. Biometrics 1948, 4, 254–266. [Google Scholar] [CrossRef]
- Patterson, H.D.; Williams, E.R. A new class of resolvable incomplete block designs. Biometrika 1976, 63, 83–92. [Google Scholar] [CrossRef]
- Lauer, J. Methods for Calculating Corn Yield. F. Crop. 2002, 28. [Google Scholar]
- Galicia, L.; Miranda, A.; Gutiérrez, M.G.; Custodio, O.; Rosales, A.; Ruíz, N.; Surles, R. Laboratorio de Calidad Nutricional de Maíz y Análisis de Tejido Vegetal: Protocolos de Laboratorio 2012; CIMMYT: Mexico City, Mexico, 2012. [Google Scholar]
- Alvarado, G.; López, M.; Vargas, M.; Pacheco, A.; Rodríguez, F.; Burgueño, J.; Crossa, J. META-R (Multi Environment Trial Analysis with R for Windows) Version 6.04; CIMMYT: Mexico City, Mexico, 2016. [Google Scholar]
- Hallauer, A.; Miranda, J. Hereditary Variance: Mating Designs. In Quantitative Genetics in Maize Breeding, 2nd ed.; Iowa State University Press: Ames, IA, USA, 1988; pp. 103–112. [Google Scholar]
- SAS-Insitute. SAS Version 9.4; SAS Institute Inc.: Cary, NC, USA, 2014. [Google Scholar]
- Moore, K.J.; Dixon, P.M. Analysis of combined experiments revisited. Agron. J. 2015, 107, 763–771. [Google Scholar] [CrossRef]
- Chakraborti, M.; Prasanna, B.M.; Hossain, F.; Singh, A.M. Evaluation of single cross quality protein maize (QPM) hybrids for kernel iron and zinc concentrations. Indian J. Genet. Plant Breed. 2011, 71, 312–319. [Google Scholar]
- Velu, G.; Rai, K.; Muralidharan, V.; Longvah, T.; Crossa, J. Gene effects and heterosis for grain iron and zinc density in pearl millet (Pennisetum glaucum (L.) R. Br). Euphytica 2011, 180, 251–259. [Google Scholar] [CrossRef]
- Govindaraj, M.; Rai, K.N.; Shanmugasundaram, P.; Dwivedi, S.L.; Sahrawat, K.L.; Muthaiah, A.R.; Rao, A.S. Combining ability and heterosis for grain iron and zinc densities in pearl millet. Crop Sci. 2013, 53, 507–517. [Google Scholar] [CrossRef]
- Kanatti, A.; Rai, K.N.; Radhika, K.; Govindaraj, M.; Sahrawat, K.L. Grain iron and zinc density in pearl millet: Combining ability, heterosis and association with grain yield and grain size. Springerplus 2014, 3, 763. [Google Scholar] [CrossRef] [PubMed]
- Kanatti, A.; Rai, K.N.; Radhika, K.; Govindaraj, M. Tester Effect on Combining Ability and Its Relationship with Line Performance per se for Grain Iron and Zinc Densities in Pearl Millet. Crop Sci. 2016, 56, 689–696. [Google Scholar] [CrossRef]
- Chakraborti, M.; Hossain, F.; Kumar, R.; Gupta, H.S.; Prasanna, B.M. Genetic Evaluation of Grain Yield and Kernel Micronutrient Traits in Maize. Pusa AgriSci. 2009, 32, 11–16. [Google Scholar]
- Gupta, H.S.; Raman, B.; Agrawal, P.K.; Mahajan, V.; Hossain, F.; Thirunavukkarasu, N. Accelerated development of quality protein maize hybrid through marker-assisted introgression of opaque-2 allele. Plant Breed. 2013, 132, 77–82. [Google Scholar] [CrossRef]
- Muthusamy, V.; Hossain, F.; Thirunavukkarasu, N.; Choudhary, M.; Saha, S.; Bhat, J.S.; Prasanna, B.M.; Gupta, H.S. Development of β-carotene rich maize hybrids through marker-assisted introgression of β-carotene hydroxylase allele. PLoS ONE 2015, 10, e0122130. [Google Scholar] [CrossRef]
- Maqbool, M.A. Heterosis Estimation of Indigenous maize (Zea mays L.) Hybrids and Stability Analysis of exotic Accessions for Pro-Vitamin A and Yield Components. Ph.D. Thesis, University of Agriculture Faisalabad, Faisalabad, Pakistan, 2017. [Google Scholar]
- Vyn, T.J.; Tollenaar, M. Changes in chemical and physical quality parameters of maize grain during three decades of yield improvement. F. Crop. Res. 1998, 59, 135–140. [Google Scholar] [CrossRef]
- Akinwale, R.O.; Adewopo, O.A. Grain Iron and Zinc Concentrations and their Relationship with Selected Agronomic Traits in Early and Extra-Early Maize. J. Crop Improv. 2016, 30, 641–656. [Google Scholar] [CrossRef]
- Jennifer, J. First Zinc Maize Variety Launched to Reduce Malnutrition in Colombia. Available online: https://www.cimmyt.org/news/first-zinc-maize-variety-launched-to-reduce-malnutrition-in-colombia/ (accessed on 10 August 2019).
- Schmidt, R.J.; Burr, F.A.; Aukerman, M.J.; Burr, B. Maize regulatory gene opaque-2 encodes a protein with a “leucine-zipper” motif that binds to zein DNA. Proc. Natl. Acad. Sci. USA 1990, 87, 46–50. [Google Scholar] [CrossRef] [PubMed]
- Habben, J.E.; Kirleis, A.W.; Larkins, B.A. The origin of lysine-containing proteins in opaque-2 maize endosperm. Plant Mol. Biol. 1993, 23, 825–835. [Google Scholar] [CrossRef] [PubMed]
- Bjarnason, M.; Vasal, S.K. Breeding of Quality Protein Maize (QPM). In Plant Breeding Reviews; Janick, J., Ed.; John Wiley & Sons, Inc.: New York, NY, USA, 1992; pp. 181–210. [Google Scholar]
- Diez-Altares, C.; Bornemisza, E. The localization of zinc-65 in germinating corn tissues. Plant Soil 1967, 26, 175–188. [Google Scholar] [CrossRef]
- Chakraborti, M.; Prasanna, B.M.; Singh, A.M.; Hossain, F. Generation mean analysis of kernel iron and zinc concentrations in maize (Zea mays). Indian J. Agric. Sci. 2010, 80, 956–959. [Google Scholar]
- Dionisio, G.; Uddin, M.N.; Vincze, E. Enrichment and identification of the most abundant zinc binding proteins in developing barley grains by zinc-IMAC capture and nano LC-MS/MS. Proteomes 2018, 6, 3. [Google Scholar] [CrossRef]
- Gorsline, G.W.; Thomas, W.I.; Baker, D.E. Inheritance of P, K, Mg, Cu, B, Zn, Mn, Al, and Fe concentrations by corn (Zea mays L.) leaves and grain. Crop Sci. 1964, 4, 207–210. [Google Scholar] [CrossRef]
- Zhang, M.W.; Guo, B.J.; Peng, Z.M. Genetic effects on Fe, Zn, Mn and P contents in Indica black pericarp rice and their genetic correlations with grain characteristics. Euphytica 2004, 135, 315–323. [Google Scholar] [CrossRef]
- Zhang, M.W.; Guo, B.J.; Peng, Z.M. Genetic effects on grain characteristics of indica black rice and their uses on indirect selections for some mineral element contents in grains. Genet. Resour. Crop Evol. 2005, 52, 1121–1128. [Google Scholar] [CrossRef]
- Kumar, A.A.; Reddy, B.V.S.; Ramaiah, B.; Sahrawat, K.L.; Pfeiffer, W.H. Gene effects and heterosis for grain iron and zinc concentration in sorghum [Sorghum bicolor (L.) Moench]. F. Crop. Res. 2013, 146, 86–95. [Google Scholar] [CrossRef]
- Manickavelu, A.; Hattori, T.; Yamaoka, S.; Yoshimura, K.; Kondou, Y.; Onogi, A.; Matsui, M.; Iwata, H.; Ban, T. Genetic nature of elemental contents in wheat grains and its genomic prediction: Toward the effective use of wheat landraces from Afghanistan. PLoS ONE 2017, 12, e0169416. [Google Scholar] [CrossRef]
- Baker, R.J. Issues in Diallel Analysis. Crop Sci. 1978, 18, 533–536. [Google Scholar] [CrossRef]
- Makumbi, D.; Betrán, J.F.; Bänziger, M.; Ribaut, J.M. Combining ability, heterosis and genetic diversity in tropical maize (Zea mays L.) under stress and non-stress conditions. Euphytica 2011, 180, 143–162. [Google Scholar] [CrossRef]
Line | Pedigree | Group | Description | Role of Inbred Line | Set |
---|---|---|---|---|---|
1 | ((CML491/LAPOSTASEQ-C7-F64-2-6-2-2-B*3)/CML491)-B-7-1-1-1-1-B | A | High Zn, QPM | Female | 1, 2 & 3 |
2 | ((CML491/LAPOSTASEQ-C7-F64-2-6-2-2-B*3)/CML491)-B-37-1-1-1-1-B | A | High Zn, QPM | Female | 1, 2 & 3 |
3 | ((CML491/((((CML176/R1)/R1)-73-1-3-1/R1)-79/R1)-36-1-B)/CML491)-B-18-1-1-1-1-B | A | High Zn, QPM | Female | 1, 2 & 3 |
4 | ((CML491/LAPOSTASEQ-C7-F103-2-2-2-1-B*3)/CML491)-B-17-2-1-1-1-1-B | A | High Zn, QPM | Female | 1, 2 & 3 |
5 | ((CML491/LAPOSTASEQ-C7-F64-2-6-2-1-B-B)/CML491)-B-50-1-2-1-1-B | A | High Zn, QPM | Female | 1, 2 & 3 |
6 | ((CML491/CML150)/CML491)-B-13-1-1-1-1-1-B-B | B | Low Zn, QPM | Male & Female | 1, 4 & 5 |
7 | ((CML491/CML150)/CML491)-B-21-1-1-1-1-B-B | B | Low Zn, QPM | Male & Female | 1, 4 & 5 |
8 | ((CML491/LAPOSTASEQ-C7-F64-2-6-2-1-B-B)/CML491)-B-30-1-1-1-1-B-B | B | Low Zn, QPM | Male & Female | 1, 4 & 5 |
9 | CML247Q | B | Low Zn, QPM | Male & Female | 1, 4 & 5 |
10 | CML254Q | B | Low Zn, QPM | Male & Female | 1, 4 & 5 |
11 | (CML550/CML511)-B-62-2-1-1-B | C | Low Zn, Non-QPM | Male & Female | 2, 4 & 6 |
12 | (CLG2312/CML9)-B-80-1-1-1-B | C | Low Zn, Non-QPM | Male & Female | 2, 4 & 6 |
13 | (CML550/CML511)-B-106-1-1-1-B | C | Low Zn, Non-QPM | Male & Female | 2, 4 & 6 |
14 | ((CRIOLLOTTH/CML247)/CLRCW105)-B-37-1-1-1-B | C | Low Zn, Non-QPM | Male & Female | 2, 4 & 6 |
15 | (CLG2312/CML505)-B-43-1-1-1-B | C | Low Zn, Non-QPM | Male & Female | 2, 4 & 6 |
16 | ((CML247/((((CML176/R1)/R1)-73-1-3-1/R1)-79/R1)-36-1-B)/CML247)-B-14-2-1-1-1-B-B | D | High Zn, Non-QPM | Male | 3, 5 & 6 |
17 | ((CML247/((((CML176/R1)/R1)-73-1-3-1/R1)-79/R1)-36-1-B)/CML247)-B-18-1-1-1-1-B-B | D | High Zn, Non-QPM | Male | 3, 5 & 6 |
18 | (CLRCW79/CLRCW98)-B-14-2-1-1-B-B | D | High Zn, Non-QPM | Male | 3, 5 & 6 |
19 | (CLRCW79/CLRCW98)-B-16-2-1-1-B-B | D | High Zn, Non-QPM | Male | 3, 5 & 6 |
20 | (CLRCW79/CLRCW98)-B-22-3-1-1-B-B | D | High Zn, Non-QPM | Male | 3, 5 & 6 |
Hybrid | Cross | Group | Tlaltizapan 2015 | Tlaltizapan 2016 | Agua Fria 2015 | Cotaxtla 2015 | Average across Environments | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
GY | Zn | GY | Zn | GY | Zn | GY | Zn | GY | Zn | |||
t ha−1 | μg/g | t ha−1 | μg/g | t ha−1 | μg/g | t ha−1 | μg/g | t ha−1 | μg/g | |||
56 | 2 × 16 | A × D | 10.35 | 28.32 | 9.14 | 28.96 | 6.04 | 32.94 | 6.79 | 32.58 | 8.22 | 31.45 |
51 | 1 × 16 | A × D | 9.73 | 26.78 | 11.07 | 31.35 | 7.74 | 33.33 | 5.80 | 30.46 | 8.80 | 31.07 |
60 | 2 × 20 | A × D | 11.18 | 25.80 | 9.51 | 32.76 | 8.93 | 35.38 | 7.31 | 25.79 | 9.40 | 30.25 |
57 | 2 × 17 | A × D | 9.80 | 25.27 | 10.12 | 30.20 | 5.92 | 31.90 | 4.71 | 28.21 | 7.80 | 29.26 |
55 | 1 × 20 | A × D | 10.01 | 25.39 | 11.24 | 29.69 | 7.70 | 32.80 | 4.90 | 25.61 | 8.61 | 29.07 |
1 | 1 × 6 | A × B | 6.20 | 26.85 | 6.34 | 30.10 | 2.88 | 31.34 | 2.31 | 24.22 | 4.11 | 28.72 |
21 | 5 × 6 | A × B | 3.84 | 27.83 | 4.72 | 31.50 | 1.79 | 26.43 | 1.37 | - | 2.48 | 28.66 |
23 | 5 × 8 | A × B | 5.95 | 26.06 | 5.60 | 32.25 | 4.60 | 25.42 | 2.91 | 29.16 | 4.62 | 28.62 |
66 | 4 × 16 | A × D | 10.40 | 25.54 | 8.74 | 27.84 | 6.81 | 31.99 | 6.65 | 27.39 | 8.15 | 28.61 |
11 | 3 × 6 | A × B | 5.82 | 23.88 | 4.65 | 32.53 | 2.36 | 28.51 | 1.77 | - | 3.23 | 28.28 |
65 | 3 × 20 | A × D | 10.20 | 24.07 | 10.93 | 27.60 | 6.70 | 31.95 | 4.80 | 27.87 | 8.29 | 28.16 |
13 | 3 × 8 | A × B | 4.33 | 24.41 | 3.56 | 28.76 | 1.20 | 31.74 | 1.90 | 25.27 | 2.33 | 27.79 |
69 | 4 × 19 | A × D | 10.00 | 26.33 | 10.98 | 30.56 | 7.77 | 26.87 | 4.74 | 26.01 | 8.49 | 27.78 |
125 | 10 × 20 | B × D | 7.73 | 24.30 | 6.63 | 27.95 | 4.49 | 28.75 | 3.53 | 28.36 | 5.38 | 27.76 |
7 | 2 × 7 | A × B | 5.12 | 26.40 | 5.80 | 28.62 | 4.12 | 25.93 | 3.34 | 27.78 | 4.38 | 27.71 |
Trial Mean | 8.75 | 22.47 | 8.57 | 26.51 | 6.10 | 25.52 | 4.87 | 24.30 | 7.07 | 24.70 | ||
Mean top 15 | 8.04 | 25.82 | 7.94 | 30.04 | 5.27 | 30.35 | 4.19 | 27.59 | 6.29 | 28.88 | ||
Min | 3.84 | 17.83 | 3.56 | 20.43 | 1.08 | 19.04 | 1.37 | 19.45 | 2.33 | 18.93 | ||
Max | 12.59 | 28.32 | 11.24 | 32.77 | 8.93 | 35.38 | 7.31 | 32.58 | 9.40 | 31.45 | ||
LSD0.05 | 1.40 | 2.68 | 1.61 | 2.90 | 1.12 | 2.97 | 1.43 | 3.27 | 1.00 | 0.87 | ||
Heritability | 0.87 | 0.75 | 0.83 | 0.82 | 0.91 | 0.83 | 0.76 | 0.73 | 0.91 | 0.85 | ||
σ2 G | 3.76 | 7.33 | 3.64 | 11.09 | 3.33 | 12.91 | 2.15 | 8.81 | 2.79 | 7.59 | ||
σ2 G × E | - | - | - | - | - | - | - | - | 0.49 | 2.48 | ||
Residual | 1.08 | 4.84 | 1.47 | 4.97 | 0.66 | 5.29 | 1.39 | 6.68 | 1.11 | 1.07 |
Inbred Line | Group | Hybrid Zn Levels (μg/g) | Hybrid GY across Environments | ||||
---|---|---|---|---|---|---|---|
Tlaltizapan 2015 | Tlaltizapan 2016 | Agua Fria 2015 | Cotaxtla 2015 | Across Environments | t ha−1 | ||
1 | A | 24.31 (15) | 27.83 (15) | 27.26(15) | 25.10 (15) | 26.30 (15) | 7.16 (15) |
2 | A | 24.43 (15) | 29.09 (15) | 27.91 (15) | 26.01 (15) | 27.08 (15) | 7.59(15) |
3 | A | 22.58 (15) | 27.64 (15) | 26.57(15) | 24.78 (15) | 25.44 (15) | 7.32 (15) |
4 | A | 23.15 (15) | 27.45 (15) | 26.35 (15) | 24.59 (15) | 25.43 (15) | 7.36 (15) |
5 | A | 24.23 (15) | 27.83 (15) | 25.53 (15) | 24.83 (15) | 25.77 (15) | 7.12(15) |
23.74 | 27.97 | 26.72 | 25.06 | 26.00 | 7.31 | ||
6 | B | 22.90 (15) | 28.23 (15) | 26.44 (15) | 24.48 (15) | 25.64 (15) | 5.53 (15) |
7 | B | 22.73 (15) | 25.78 (15) | 25.40 (15) | 24.63 (15) | 24.67 (15) | 5.54 (15) |
8 | B | 23.56 (15) | 27.30 (15) | 26.16 (15) | 25.48 (15) | 25.73 (15) | 6.61 (15) |
9 | B | 22.21 (15) | 25.53 (15) | 25.45 (15) | 24.79 (15) | 24.48 (15) | 6.74 (15) |
10 | B | 22.44 (15) | 28.41 (15) | 25.51 (15) | 24.75 (15) | 25.27 (15) | 6.61 (15) |
22.77 | 27.05 | 25.79 | 24.83 | 25.16 | 6.21 | ||
11 | C | 21.65 (15) | 26.23 (15) | 25.08 (15) | 22.56 (15) | 23.75 (15) | 7.16 (15) |
12 | C | 20.93 (15) | 24.31 (15) | 22.51 (15) | 23.16 (15) | 22.49 (15) | 6.63 (15) |
13 | C | 22.9 1(14) | 27.25 (14) | 25.81 (14) | 24.79 (14) | 25.21 (14) | 7.99 (14) |
14 | C | 20.35 (15) | 22.83 (15) | 22.97 (15) | 22.78 (15) | 21.94 (15) | 6.63 (15) |
15 | C | 19.94 (14) | 23.15 (14) | 21.86 (14) | 22.00 (14) | 21.41 (14) | 7.38 (14) |
21.15 | 24.75 | 23.64 | 23.06 | 22.96 | 7.16 | ||
16 | D | 23.93 (14) | 27.46 (14) | 27.99 (14) | 26.99 (14) | 26.52 (14) | 7.30 (14) |
17 | D | 22.49 (14) | 26.63 (14) | 25.95 (14) | 24.96 (14) | 25.02 (14) | 6.67 (14) |
18 | D | 21.41 (15) | 26.64 (15) | 25.41 (15) | 24.83 (15) | 24.53 (15) | 7.68 (15) |
19 | D | 22.67 (15) | 26.52 (15) | 25.31 (15) | 24.23 (15) | 24.66 (15) | 7.31 (15) |
20 | D | 22.93 (15) | 27.23 (15) | 28.51 (15) | 25.01 (15) | 25.98 (15) | 7.72 (15) |
22.68 | 26.90 | 26.63 | 25.00 | 25.34 | 7.34 | ||
LSD 0.05 | 1.19 | 1.30 | 1.66 | 0.94 | 1.32 | 0.64 |
Set Composition | GY (t ha−1) | Zn (μg/g) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Tlalti 2015 | Tlalti 2016 | Agua Fria 2015 | Cotaxtla 2015 | Average across Environments | Tlalti 2015 | Tlalti 2016 | Agua Fria 2015 | Cotaxtla 2015 | Average across Environments | |
Group A × Group B | 7.24 | 6.79 | 4.35 | 3.35 | 5.42 | 24.49 | 29.04 | 27.33 | 26.71 | 26.93 |
Group A × Group C | 9.40 | 9.70 | 7.63 | 5.66 | 8.09 | 22.82 | 26.21 | 23.90 | 22.09 | 23.74 |
Group A × Group D | 10.57 | 10.29 | 7.39 | 5.68 | 8.49 | 25.14 | 29.69 | 29.72 | 27.31 | 27.96 |
Group B × Group C | 8.04 | 8.43 | 6.04 | 4.90 | 6.85 | 19.72 | 23.48 | 21.72 | 21.28 | 21.55 |
Group B × Group D | 8.76 | 8.27 | 5.38 | 4.70 | 6.79 | 22.69 | 27.14 | 26.86 | 25.42 | 25.56 |
Group C × Group D | 8.35 | 8.15 | 5.92 | 4.88 | 6.83 | 20.21 | 23.84 | 23.69 | 22.93 | 22.70 |
LSD 0.05 | 0.55 | 0.54 | 0.47 | 0.49 | 0.14 | 0.79 | 0.90 | 0.94 | 0.90 | 0.32 |
Source of Variation | Set1 | Set2 | Set3 | Set4 | Set5 | Set6 |
---|---|---|---|---|---|---|
Group A × Group B | Group A × Group C | Group A × Group D | Group B × Group C | Group B × Group D | Group C × Group D | |
Grain yield | ||||||
GCAf | ns | ns | ns | ** | *** | *** |
GCAm | *** | ns | ns | * | ns | ns |
SCA | *** | ns | ns | *** | *** | * |
Zn concentration | ||||||
GCAf | ns | *** | * | ns | ns | *** |
GCAm | * | ** | * | *** | ns | *** |
SCA | ns | ns | ns | * | ns | ns |
Inbred Line | Grain Yield | Zn Concentration | ||||
---|---|---|---|---|---|---|
High Zn, QPM | LZn, QPM | LZn, Non-QPM | HZn, Non-QPM | LZn, QPM | LZn, Non-QPM | HZn, Non-QPM |
1 | 0.00 | −0.04 | 0.00 | 0.03 | 0.00 | 0.26 |
2 | 0.00 | 0.14 | 0.00 | 0.01 | 1.63 ** | 1.18 * |
3 | 0.00 | −0.03 | 0.00 | 0.02 | −1.40 * | −0.51 |
4 | 0.00 | 0.06 | 0.00 | −0.05 | 0.03 | −0.51 |
5 | 0.00 | −0.13 | 0.00 | 0.00 | −0.26 | −0.42 |
Low Zn, QPM | HZn, QPM | LZn, non-QPM | HZn, non-QPM | HZn, QPM | LZn, non-QPM | HZn, non-QPM |
6 | −2.28 * | 0.23 | 1.16 | 0.51 | 0.00 | 0.02 |
7 | −1.44 | −0.14 | 0.33 | −0.16 | −0.63 | −0.09 |
8 | −0.51 | 0.67 | 1.28 | 0.28 | 0.48 | 0.13 |
9 | 1.80 | −0.46 | −0.45 | −0.50 | −0.10 | −0.18 |
10 | 2.43 * | −0.30 | −2.31 * | −0.13 | 0.25 | 0.12 |
Low Zn, non-QPM | HZn, QPM | LZn, QPM | HZn, non-QPM | HZn, QPM | LZn, QPM | HZn, non-QPM |
11 | 0.00 | 0.00 | 0.26 | 0.44 | 0.68 | 1.01 |
12 | 0.00 | 0.00 | −1.04 * | −0.38 | −0.27 | −0.73 |
13 | 0.00 | 0.00 | 1.02 * | 2.34 ** | 2.53 ** | 2.53 ** |
14 | 0.00 | 0.00 | −0.71 | −1.00 | −1.16 | −1.16 |
15 | 0.00 | 0.00 | 0.47 | −1.40 | −1.71 * | −1.71 |
High Zn, non-QPM | HZn, QPM | LZn, QPM | HZn, non-QPM | HZn, QPM | LZn, QPM | LZn, non-QPM |
16 | −0.06 | 0.00 | −0.08 | 1.55 | 0.34 | 1.43 * |
17 | −0.50 | 0.00 | −0.31 | −0.63 | −0.84 | 0.40 |
18 | 0.20 | 0.00 | 0.28 | −1.01 | 0.13 | −1.33 * |
19 | 0.05 | 0.00 | −0.11 | −0.59 | −0.26 | −0.95 |
20 | 0.32 | 0.00 | 0.23 | 0.73 | 0.63 | 0.45 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mageto, E.K.; Lee, M.; Dhliwayo, T.; Palacios-Rojas, N.; San Vicente, F.; Burgueño, J.; Hallauer, A.R. An Evaluation of Kernel Zinc in Hybrids of Elite Quality Protein Maize (QPM) and Non-QPM Inbred Lines Adapted to the Tropics Based on a Mating Design. Agronomy 2020, 10, 695. https://doi.org/10.3390/agronomy10050695
Mageto EK, Lee M, Dhliwayo T, Palacios-Rojas N, San Vicente F, Burgueño J, Hallauer AR. An Evaluation of Kernel Zinc in Hybrids of Elite Quality Protein Maize (QPM) and Non-QPM Inbred Lines Adapted to the Tropics Based on a Mating Design. Agronomy. 2020; 10(5):695. https://doi.org/10.3390/agronomy10050695
Chicago/Turabian StyleMageto, Edna K., Michael Lee, Thanda Dhliwayo, Natalia Palacios-Rojas, Félix San Vicente, Juan Burgueño, and Arnel R. Hallauer. 2020. "An Evaluation of Kernel Zinc in Hybrids of Elite Quality Protein Maize (QPM) and Non-QPM Inbred Lines Adapted to the Tropics Based on a Mating Design" Agronomy 10, no. 5: 695. https://doi.org/10.3390/agronomy10050695
APA StyleMageto, E. K., Lee, M., Dhliwayo, T., Palacios-Rojas, N., San Vicente, F., Burgueño, J., & Hallauer, A. R. (2020). An Evaluation of Kernel Zinc in Hybrids of Elite Quality Protein Maize (QPM) and Non-QPM Inbred Lines Adapted to the Tropics Based on a Mating Design. Agronomy, 10(5), 695. https://doi.org/10.3390/agronomy10050695