Nutritive Value of Alfalfa Harvested with a Modified Flail Chopper
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Field Operations
2.2. Technical Characteristics of the Modified Flail Chopper
2.3. Chemical Analysis of Plant Material
2.4. Statistical Analysis
3. Results and Discussion
3.1. Plant Characteristics and Yield Affected by Harvest Method and Timing
3.2. Nutritive Value Affected by Harvest Method and Timing
3.3. Qualitative Characteristics of Stubble Remaining after Harvest with an MFC
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
References
- Report from the Commission to the Council and the European Parliament on the Development of Plant Proteins in the European Union (2018) COM/2018/757 Final. 2018. Available online: https://ec.europa.eu/info/sites/info/files/food-farming-fisheries/plants_and_plant_products/documents/report-plant-proteins-com2018-757-final_en.pdf (accessed on 12 March 2020).
- de Visser, C.L.M.; Schreuder, R.; Stoddard, F. The EU’s dependency on soya bean import for the animal feed industry and potential for EU produced alternatives. OCL 2014, 21, D407. [Google Scholar] [CrossRef] [Green Version]
- Mielmann, A. The utilization of lucerne (Medicago sativa): A review. Br. Food J. 2013, 115, 590–600. [Google Scholar] [CrossRef]
- Andrzejewska, J.; Albrecht, K.A.; Ignaczak, S.; Skinder, Z. Method and time of alfalfa sowing when climate is changing. Acta Sci. Pol. Agric. 2015, 14, 3–13. [Google Scholar]
- Albrecht, K.A.; Wedin, W.F.; Buxton, D.R. Cell-wall composition and digestibility of alfalfa stems and leaves. Crop Sci. 1987, 27, 735–741. [Google Scholar] [CrossRef]
- Hakl, J.; Dostälové, A.; Sklenéf, J.; Klejzar, T. Evaluation of potential of forage legume leaves as a protein source for organic pig farms. Grassl. Sci. Eur. 2018, 23, 215–217. [Google Scholar]
- Bilanski, W.K. Enhanced utilization of forage plants through fractionation-state of the art. Int. Agric. Eng. J. 1992, 1, 1–13. [Google Scholar]
- Malmlöf, K.; Hellberg, S.; Cortova, Z.; Jansson, L. Lucerne in Pig Feeding. 1. Nutritive Value of Whole and Fractionated Lucerne Meal; Report No. 196; Swedish University of Agricultural Sciences, Department of Animal Nutrition and Management: Uppsala, Sweden, 1990; pp. 1.1–1.6. [Google Scholar]
- Bora, K.S.; Sharma, S. Phytochemical and pharmacological potential of Medicago sativa: A review. Pharm. Biol. 2011, 49, 211–220. [Google Scholar] [CrossRef]
- Su, H.; Akins, M.S.; Esser, N.M.; Ogden, R.; Coblentz, W.K.; Kalscheur, K.F.; Hatfield, R. Effects of feeding alfalfa stemlage or wheat straw for dietary energy dilution on nutrient intake and digestibility, growth performance, and feeding behavior of Holstein dairy heifers. J. Dairy Sci. 2017, 100, 7106–7115. [Google Scholar] [CrossRef]
- Hakl, J.; Mášková, K.; Fuksa, P.; Šantrůček, J. The changes in gross energy concentration in lucerne leaves and stems in the first cut. In Proceedings of the 14th International Symposium Forage Conservation, Brno, Czech Republic, 17–19 March 2010; pp. 130–132. [Google Scholar]
- Slepetiene, A.; Slepetys, J.; Tilvikiene, V.; Amaleviciute, K.; Liaudanskiene, I.; Ceseviciene, J.; Kadziuliene, Z.; Dabkevicius, Z.; Buliauskaite, R. Evaluation of chemical composition and biogas production from legumes and perennial grasses in anaerobic digestion using the oxitop system. Fresenius Environ. Bull 2016, 25, 1342–1347. [Google Scholar]
- Adapa, P.K.; Schoenau, G.J.; Tabil, L.G.; Sokhansanj, S.; Crerar, B. Pelleting of fractionated alfalfa products. In Proceedings of the ASAE Annual Meeting, St. Joseph, MI, USA, 27–30 July 2003. Paper No. 036069. [Google Scholar]
- Chrisman, J.; Kohler, G.O.; Mottola, A.C.; Nelson, J.W. High and Low Protein Fractions by Separation Milling of Alfalfa; Agricultural Research Services: Washington, DC, USA, 1971. [Google Scholar]
- Bilanski, W.K.; Graham, W.D.; Mowat, D.N.; Mkomwa, S.S. Separation of alfalfa silage into stem and leaf fractions in a horizontal air stream. Trans. ASAE 1989, 32, 1684–1690. [Google Scholar] [CrossRef]
- Arinze, E.A.; Schoenau, G.J.; Sokhansanj, S.; Adapa, P. Aerodynamic separation and fractional drying of alfalfa leaves and stems—A review & new concept. Dry. Technol. 2003, 21, 1673–1702. [Google Scholar]
- Adapa, P.K.; Schoenau, G.J.; Arinze, E.A. Fractionation of alfalfa into leaves and stems using a three-pass rotary drum dryer. Biosyst. Eng. 2004, 91, 455–463. [Google Scholar] [CrossRef]
- Koegel, R.G.; Straub, R.J.; Shinners, K.J.; Broderick, G.A.; Mertens, D.R. An overview of physical treatments of lucerne performed at Madison, Wisconsin, for improving properties. J. Agric. Eng. Res. 1992, 52, 183–191. [Google Scholar] [CrossRef]
- Currence, H.D.; Buchele, W.F. Leaf-strip harvester for alfalfa. Agric. Eng. 1967, 48, 20–23. [Google Scholar]
- Grajewski, J.; Malmlöf, K.; Böhm, J. New technology of harvest and preservation of lucerne leaves. Biul. Nauk. Przem. Pasz. 1994, 23, 30–36. [Google Scholar]
- Shinners, K.J.; Herzmann, M.E.; Binversie, B.N.; Digman, M.F. Harvest fractionation of alfalfa. Trans. ASABE 2007, 50, 713–718. [Google Scholar] [CrossRef]
- Liebhardt, P.; Maxa, J.; Bernhardt, H.; Thurner, S. Harvesting techniques for legumes (especially leaves) as protein feed for monogastric animals. Grassl. Sci. Eur. 2019, 24, 69–71. [Google Scholar]
- Digman, M.F.; Runge, T.M.; Shinners, K.J.; Hatfield, R.D. Wet fractionation for improved utilization of alfalfa leaves. Biol. Eng. Trans. 2013, 6, 29–42. [Google Scholar] [CrossRef]
- Malmlöf, K.; Hellberg, S.; Grajewski, J.; Cortova, Z. Lucerne in Pig Feeding. 2. Nutritive Value of Dried and Ensiled Lucerne Leaves in Growing Pigs; Report No. 196; Swedish University of Agricultural Sciences, Department of Animal Nutrition and Management: Uppsala, Sweden, 1990; pp. 2:1–2:8. [Google Scholar]
- Sikora, M.C.; Hatfield, R.D.; Kalscheur, K.F. Fermentation and chemical composition of high-moisture lucerne leaf and stem silages harvested at different stages of development using a leaf stripper. Grass Forage Sci. 2019, 74, 254–263. [Google Scholar] [CrossRef]
- Andrzejewska, J.; Ignaczak, S.; Albrecht, K.A.; Surucu, M. Fractional harvest of perennial legumes can improve forage quality and their exploitation. Grassl. Sci. Eur. 2017, 22, 509–511. [Google Scholar]
- Ignaczak, S.; Andrzejewska, J. Green Forage Cutter for Leaf Harvest; The Patent Office of the Republic of Poland: Warsaw, Poland, 2016; p. 125066. [Google Scholar]
- Hintz, R.W.; Albrecht, K.A. Prediction of alfalfa chemical composition from maturity and plant morphology. Crop Sci. 1991, 31, 1561–1565. [Google Scholar] [CrossRef]
- Buxton, D.R.; Hornstein, J.S.; Wedin, W.F.; Marten, G.C. Forage quality in stratified canopies of alfalfa, birdsfoot trefoil, and red clover. Crop Sci. 1985, 25, 273–279. [Google Scholar] [CrossRef]
- Parsons, D.; Cherney, D.J.; Peterson, P.R. Preharvest neutral detergent fiber concentration of alfalfa as influenced by stubble height. Agron. J. 2009, 101, 769–774. [Google Scholar] [CrossRef]
- Lemaire, G.; Bélanger, G. Allometries in plants as drivers of forage nutritive value: A review. Agriculture 2020, 10, 5. [Google Scholar] [CrossRef] [Green Version]
- Fick, G.W.; Holthausen, R.S. Significance of parts other than blades and stems in leaf-stem separations of alfalfa herbage. Crop Sci. 1975, 15, 259–262. [Google Scholar] [CrossRef]
- Hintz, R.W.; Mertens, D.R.; Albrecht, K.A. Effects of sodium sulfite on recovery and composition of detergent fiber and lignin. J. AOAC Int. 1996, 79, 16–22. [Google Scholar] [CrossRef] [Green Version]
- Goering, H.K.; Van Soest, P.J. Forage fiber analyses: Apparatus, reagents, procedures, and some applications. In USDA Agricultural Handbook; Government Printing Office: Washington, DC, USA, 1970; p. 379. [Google Scholar]
- Lamb, J.F.S.; Jung, H.-J.G.; Sheaffer, C.C.; Samac, D.A. Alfalfa leaf protein and stem cell wall polysaccharide yields under hay and biomass management systems. Crop. Sci. 2007, 47, 1407–1415. [Google Scholar] [CrossRef]
- Stringer, W.C.; Peiffer, R.A. Soil contamination of forage samples by forage plot harvesters. Agron. J. 1981, 73, 65–66. [Google Scholar] [CrossRef]
- Neu, A.E.; Sheaffer, C.C.; Undersander, D.J.; Hall, M.H.; Kniffen, D.M.; Wells, M.S.; Catalano, D.N.; Martinson, K.L. Hay rake-type effect on ash and forage nutritive values of alfalfa hay. Agron. J. 2017, 109, 2163–2171. [Google Scholar] [CrossRef]
- Barnes, D.K.; Bingham, E.T.; Murphy, R.P.; Hunt, O.J.; Beard, D.F.; Skrdla, W.H.; Teuber, L.R. Alfalfa Germplasm in the United States: Genetic Vulnerability, Use, Improvement, and Maintenance; United States Department of Agriculture, Agricultural Research Service: Washington, DC, USA, 1977.
- Milić, D.; Karagić, D.; Vasiljević, S.; Mikić, A.; Mijić, B.; Katić, S. Leaf and stem chemical composition of divergent alfalfa cultivars. Biotech. Anim. Husb. 2011, 27, 1505–1511. [Google Scholar] [CrossRef] [Green Version]
- Edwards, L.E.; Plush, K.J.; Ralph, C.R.; Morrison, R.S.; Acharya, R.Y.; Doyle, R.E. Enrichment with lucerne hay improves sow maternal behaviour and improves piglet survival. Animals 2019, 9, 558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Péter, P.; Anikó, H.; János, G.; György, F.S. Effect of chopped alfalfa hay supplementation of the feedstuffs during pregnancy on breeding sows’ reproductive performance. Magyar Állatorvosok Lapja 2008, 130, 199–204. [Google Scholar]
- Rehman, M.; Liu, J.; Johnson, A.C.; Dada, T.E.; Gurr, G.M. Organic mulches reduce crop attack by sweet potato weevil (Cylas formicarius). Sci. Rep. 2019, 9, 14860. [Google Scholar] [CrossRef] [PubMed]
Year | Cut | Harvest Date | Development Stage | Harvest Event Abbreviation | Lodging Status |
---|---|---|---|---|---|
2016 | 1 | 24 May | Bud | 1.1 | No lodging |
2 June | Early flower 1 | 1.2 | Negligible lodging | ||
13 June | Late flower 2 | 1.3 | Negligible lodging | ||
2 | N/A 3 | N/A | 2.1 | N/A | |
4 July | Early flower | 2.2 | Negligible lodging | ||
8 July | Late flower | 2.3 | Negligible lodging | ||
2017 | 1 | 31 May | Bud | 1.1 | Noticeable lodging |
9 June | Early flower | 1.2 | Stand inclined 30–40° | ||
19 June | Late flower | 1.3 | Stand inclined 40–50° | ||
2 | 3 July | Bud | 2.1 | Negligible lodging | |
10 July | Early flower | 2.2 | Negligible lodging | ||
24 July | Late flower | 2.3 | Negligible lodging |
Characteristic | Year | Harvest Method 1 | 1st Cut | 2nd Cut | Mean | ||||
---|---|---|---|---|---|---|---|---|---|
Bud | Early Flower | Late Flower | Bud | Early Flower | Late Flower | ||||
Plant height (cm) | 2016 | M and MFC | 70 b | 86 a 2 | 90 a | - | 65 b | 71 b | 76 |
2017 | 87 ab | 100 a | 102 a | 58 c | 70 c | 85 b | 83 | ||
Stubble height (cm) | 2016 | MFC | 34 b | 48 a | 51 a | - | 31 b | 34 b | 40 |
2017 | 26 bc | 29 b | 41 a | 20 c | 29 b | 27 bc | 29 | ||
Dry matter yield (g m−2) | 2016 | M | 567 b | 558 b | 638 a | - | 314 c | 364 c | 488 A 3 |
MFC | 277 bc | 319 ab | 366 a | - | 217 c | 272 bc | 290 B | ||
2017 | M | 493 b | 510 b | 662 a | 260 d | 312 d | 402 c | 440 A | |
MFC | 318 c | 408 b | 501 a | 173 d | 230 d | 318 c | 324 B | ||
Leaf proportion in yield DM (%) | 2016 | M | 46 ab | 38 b | 36 b | - | 52 a | 48 a | 44 B |
MFC | 82 a | 68 bc | 63 c | - | 76 ab | 64 c | 70 A | ||
2017 | M | 36 bc | 33 c | 37 bc | 50 a | 47 a | 44 ab | 41 B | |
MFC | 56 c | 41 d | 50 c | 76 a | 64 b | 56 c | 57 A |
Characteristic | Year | 1st Cut | 2nd Cut | Mean | LSD (p < 0.05) | ||||
---|---|---|---|---|---|---|---|---|---|
Bud | Early Flower | Late Flower | Bud | Early Flower | Late Flower | ||||
CP, g kg−1 | 2016 | 130 a 1 | 104 b | 104 b | - | 122 ab | 106 b | 111 | 21 |
2017 | 131 a | 125 a | 98 b | 124 a | 113 a | 82 b | 112 | 23 | |
NDF, g kg−1 | 2016 | 552 b | 623 a | 644 a | - | 636 a | 656 a | 622 | 57 |
2017 | 564 b | 565 b | 583 b | 569 b | 591 b | 660 a | 589 | 53 | |
ADF, g kg−1 | 2016 | 410 b | 466 a | 485 a | - | 470 a | 492 a | 466 | 45 |
2017 | 424 b | 426 b | 448 b | 441 b | 456 b | 517 a | 452 | 46 | |
IVTD, g kg−1 | 2016 | 707 a | 637 b | 633 b | - | 607 b | 587 b | 634 | 14 |
2017 | 705 a | 691 a | 683 a | 694 a | 664 a | 571 b | 668 | 46 | |
Ash g kg−1 | 2016 | 96 a | 85 ab | 77 ab | - | 71 b | 72 b | 80 | 14 |
2017 | 88 a | 90 a | 75 b | 93 a | 83 a | 68 b | 83 | 13 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andrzejewska, J.; Ignaczak, S.; Albrecht, K.A. Nutritive Value of Alfalfa Harvested with a Modified Flail Chopper. Agronomy 2020, 10, 690. https://doi.org/10.3390/agronomy10050690
Andrzejewska J, Ignaczak S, Albrecht KA. Nutritive Value of Alfalfa Harvested with a Modified Flail Chopper. Agronomy. 2020; 10(5):690. https://doi.org/10.3390/agronomy10050690
Chicago/Turabian StyleAndrzejewska, Jadwiga, Stanisław Ignaczak, and Kenneth A. Albrecht. 2020. "Nutritive Value of Alfalfa Harvested with a Modified Flail Chopper" Agronomy 10, no. 5: 690. https://doi.org/10.3390/agronomy10050690
APA StyleAndrzejewska, J., Ignaczak, S., & Albrecht, K. A. (2020). Nutritive Value of Alfalfa Harvested with a Modified Flail Chopper. Agronomy, 10(5), 690. https://doi.org/10.3390/agronomy10050690