Pennycress as a Cash Cover-Crop: Improving the Sustainability of Sweet Corn Production Systems
Abstract
1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Weather Data
2.3. Experimental Setup
2.4. Sampling and Analyses
3. Results
3.1. Sweet Corn
3.2. Soil N
3.2.1. N Treatment
3.2.2. Cover Crop Treatment
3.3. Pennycress Grain Yield, Biomass Production and Nitrogen Uptake
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dhaliwal, D.S.; Williams, M.M. Optimum Plant Density for Crowding Stress Tolerant Processing Sweet Corn. PLoS ONE 2019, 14, e0223107. [Google Scholar] [CrossRef] [PubMed]
- Bavec, M.; Fekonja, M. Organic and Mineral Nitrogen Fertilizers in Sweet Maize (Zea mays L. saccharata Sturt.) Production under Temperate Climate. Zemdirbyste-Agriculture 2013, 100, 243–250. [Google Scholar] [CrossRef]
- Gao, L.; Li, W.; Ashraf, U.; Lu, W.; Li, Y.; Li, C.; Li, G.; Li, G.; Hu, J. Nitrogen Fertilizer Management and Maize Straw Return Modulate Yield and Nitrogen Balance in Sweet Corn. Agronomy 2020, 10, 362. [Google Scholar] [CrossRef]
- USDA/NASS. 2018 State Agriculture Overview for Minnesota. Available online: https://www.nass.usda.gov/Quick_Stats/Ag_Overview/stateOverview.php?state=MINNESOTA (accessed on 11 January 2020).
- USDA-NASS. United States Department of Agriculture, CropScape—National Agricultural Statistics Service Crop Data Layer Program. Available online: https://nassgeodata.gmu.edu/CropScape/ (accessed on 2 January 2020).
- Rosen, C.J.; Crants, J.; McNearney, M.; Fritz, V.; Rohwer, C. Establishing Nitrogen Credits Following a Sweet Corn Crop; Minnesota Department of Agricultural Grant Report: Saint Paul, MN, USA, 2017. [Google Scholar]
- Fritz, V.A.; Randall, G.W.; Rosen, C.J. Characterization and Utilization of Nitrogen Contained in Sweet Corn Silage Waste. Agron. J. 2001, 93, 627–633. [Google Scholar] [CrossRef]
- Andraski, T.W.; Bundy, L.G. Cover Crop Effects on Corn Yield Response to Nitrogen on an Irrigated Sandy Soil. Agron. J. 2005, 97, 1239–1244. [Google Scholar] [CrossRef]
- Bundy, L.G.; Andraski, T.W. Recovery of Fertilizer Nitrogen in Crop Residues and Cover Crops on an Irrigated Sandy Soil. Soil Sci. Soc. Am. J. 2005, 69, 640–648. [Google Scholar] [CrossRef]
- Kaiser, D.E.; Fernandez, F.; Coulter, J. Fertilizing Corn in Minnesota; University of Minnesota Extension: Saint Paul, MN, USA, 2018. [Google Scholar]
- Prasad, R.; Hochmuth, G.J. Environmental Nitrogen Losses from Commercial Crop Production Systems in the Suwannee River Basin of Florida. PLoS ONE 2016, 11, e0167558. [Google Scholar] [CrossRef]
- Minnesota Pollution Control Agency. The Minnesota Nutrient Reduction Strategy; Minnesota Pollution Control Agency: Saint Paul, MN, USA, 2014. [Google Scholar]
- Salmerón, M.; Cavero, J.; Quílez, D.; Isla, R. Winter Cover Crops Affect Monoculture Maize Yield and Nitrogen Leaching under Irrigated Mediterranean Conditions. Agron. J. 2010, 102, 1700–1709. [Google Scholar] [CrossRef]
- Teixeira, E.I.; Johnstone, P.; Chakwizira, E.; de Ruiter, J.; Malcolm, B.; Shaw, N.; Zyskowski, R.; Khaembah, E.; Sharp, J.; Meenken, E.; et al. Sources of Variability in the Effectiveness of Winter Cover Crops for Mitigating N Leaching. Agric. Ecosyst. Environ. 2016, 220, 226–235. [Google Scholar] [CrossRef]
- Heggenstaller, A.H.; Anex, R.P.; Liebman, M.; Sundberg, D.N.; Gibson, L.R. Productivity and Nutrient Dynamics in Bioenergy Double-cropping Systems. Agron. J. 2008, 100, 1740–1748. [Google Scholar] [CrossRef]
- Noland, R.L.; Wells, M.S.; Sheaffer, C.C.; Baker, J.M.; Martinson, K.L.; Coulter, J.A. Establishment and Function of Cover Crops Interseeded into Corn. Crop Sci. 2018, 58, 863. [Google Scholar] [CrossRef]
- Staver, K.W.; Brinsfield, R.B. Using Cereal Grain Winter Cover Crops to Reduce Groundwater Nitrate Contamination in the Mid-Atlantic Coastal Plain. J. Soil Water Cons. 1998, 53, 230–240. [Google Scholar]
- Thomsen, I.K.; Hansen, E.M. Cover Crop Growth and Impact on N Leaching as Affected by Pre- and Postharvest Sowing and Time of Incorporation. Soil Use Manag. 2014, 30, 48–57. [Google Scholar] [CrossRef]
- Malcolm, B.J.; Cameron, K.C.; Di, H.J.; Edwards, G.R.; Moir, J.L. The Effect of Four Different Pasture Species Compositions on Nitrate Leaching Losses under High N Loading. Soil Use Manag. 2014, 30, 58–68. [Google Scholar] [CrossRef]
- Malcolm, B.J.; Moir, J.L.; Cameron, K.C.; Di, H.J.; Edwards, G.R. Influence of Plant Growth and Root Architecture of Italian Ryegrass (Lolium multiflorum) and Tall Fescue (Festuca arundinacea) on N Recovery during Winter. Grass Forage Sci. 2015, 70, 600–610. [Google Scholar] [CrossRef]
- McLenaghen, R.D.; Cameron, K.C.; Lampkin, N.H.; Daly, M.L.; Deo, B. Nitrate Leaching from Ploughed Pasture and the Effectiveness of Winter Catch Crops in Reducing Leaching Losses. N. Z. J. Agric. Res. 1996, 39, 413–420. [Google Scholar] [CrossRef]
- Valkama, E.; Lemola, R.; Känkänen, H.; Turtola, E. Meta-Analysis of the Effects of Undersown Catch Crops on Nitrogen Leaching Loss and Grain Yields in the Nordic Countries. Agric. Ecosyst. Environ. 2015, 203, 93–101. [Google Scholar] [CrossRef]
- Conservation Technology Information Center. Annual Report: 2016–2017 Cover Crop Survey; Conservation Technology Information Center, the North Central Region Sustainable Agriculture Research and Education Program, and the American Seed Trade Association: West Lafayette, IN, USA, 2017. [Google Scholar]
- Roesch-Mcnally, G.E.; Basche, A.D.; Arbuckle, J.G.; Tyndall, J.C.; Miguez, F.E.; Bowman, T.; Clay, R. The Trouble with Cover Crops: Farmers’ Experiences with Overcoming Barriers to Adoption. Renew. Agric. Food Syst. 2018, 33, 322–333. [Google Scholar] [CrossRef]
- Arbuckle, J.G.; Roesch-McNally, G. Cover Crop Adoption in Iowa: The Role of Perceived Practice Characteristics. J. Soil Water Conserv. 2015, 70, 418–429. [Google Scholar] [CrossRef]
- Singer, J.W.; Nusser, S.M.; Alf, C.J. Are Cover Crops Being Used in the US Corn Belt. J. Soil Water Cons. 2007, 62, 353–358. [Google Scholar]
- Maryland Department of Agriculture. 2016–2017 Cover Crop Program Acres Planted Summary by County; Maryland Department of Agriculture: Annapolis, MD, USA, 2017.
- United States Department of Agriculture–National Agricultural Statistics Service. 2017 Census of Agriculture. United States Summary and State Data; Geographic Area Series Part 51. Publication AC-17-A-51; U.S. Department of Agriculture: Washington, DC, USA, 2019; Volume 1.
- Reimer, A.P.; Weinkauf, D.K.; Prokopy, L.S. The Influence of Perceptions of Practice Characteristics: An Examination of Agricultural Best Management Practice Adoption in Two Indiana Watersheds. J. Rural Stud. 2012, 28, 118–128. [Google Scholar] [CrossRef]
- Gesch, R.W.; Archer, D.W.; Berti, M.T. Dual Cropping Winter Camelina with Soybean in the Northern Corn Belt. Agron. J. 2014, 106, 1735–1745. [Google Scholar] [CrossRef]
- Groeneveld, J.H.; Klein, A.-M. Pollination of Two Oil-Producing Plant Species: Camelina (Camelina Sativa L. Crantz) and Pennycress (Thlaspi arvense L.) Double-cropping in Germany. GCB Bioenergy 2014, 6, 242–251. [Google Scholar] [CrossRef]
- Eberle, C.A.; Thom, M.D.; Nemec, K.T.; Forcella, F.; Lundgren, J.G.; Gesch, R.W.; Riedell, W.E.; Papiernik, S.K.; Wagner, A.; Peterson, D.H.; et al. Using Pennycress, Camelina, and Canola Cash Cover Crops to Provision Pollinators. Ind. Crops Prod. 2015, 75, 20–25. [Google Scholar] [CrossRef]
- Johnson, G.A.; Kantar, M.B.; Betts, K.J.; Wyse, D.L. Field Pennycress Production and Weed Control in a Double Crop System with Soybean in Minnesota. Agron. J. 2015, 107, 532–540. [Google Scholar] [CrossRef]
- Gesch, R.W. Ecosystem Services Provided by Oilseed Cover Crops; University of Minnesota: Saint Paul, MN, USA, 2017. [Google Scholar]
- Weyers, S.; Thom, M.; Forcella, F.; Eberle, C.; Matthees, H.; Gesch, R.; Ott, M.; Feyereisen, G.; Strock, J.; Wyse, D. Reduced Potential for Nitrogen Loss in Cover Crop-Soybean Relay Systems in a Cold Climate. J. Environ. Qual. 2019, 48, 660–669. [Google Scholar] [CrossRef]
- Thom, M.; Forcella, F.; Eberle, C.; Matthees, H.; Weyers, S.; Gesch, R.; Ott, M.; Feyereisen, G.; Strock, J.; Wyse, D. Reduced-Nutrient Leachates in Cash Cover Crop-Soybean Systems. bioRxiv 2018, 254169. [Google Scholar] [CrossRef]
- Johnson, G.A.; Wells, M.S.; Anderson, K.; Gesch, R.W.; Forcella, F.; Wyse, D.L. Yield Tradeoffs and Nitrogen between Pennycress, Camelina, and Soybean in Relay- and Double-Crop Systems. Agron. J. 2017, 109, 2128. [Google Scholar] [CrossRef]
- Sedbrook, J.C.; Phippen, W.B.; Marks, M.D. New Approaches to Facilitate Rapid Domestication of a Wild Plant to an Oilseed Crop: Example Pennycress (Thlaspi Arvense L.). Plant Sci. 2014, 227, 122–132. [Google Scholar] [CrossRef]
- Evangelista, R.L.; Cermak, S.C.; Hojilla-Evangelista, M.P.; Moser, B.R.; Isbell, T.A. Field Pennycress: A New Oilseed Crop for the Production of Biofuels, Lubricants, and High-Quality Proteins. In Surfactants in Tribology; CRC Press: Boca Raton, FL, USA, 2017; Volume 5, pp. 369–400. [Google Scholar] [CrossRef]
- Fan, J.; Shonnard, D.R.; Kalnes, T.N.; Johnsen, P.B.; Rao, S. A Life Cycle Assessment of Pennycress (Thlaspi arvense L.) -Derived Jet Fuel and Diesel. Biomass Bioenergy 2013, 55, 87–100. [Google Scholar] [CrossRef]
- Sindelar, A.J.; Schmer, M.R.; Gesch, R.W.; Forcella, F.; Eberle, C.A.; Thom, M.D.; Archer, D.W. Winter Oilseed Production for Biofuel in the US Corn Belt: Opportunities and Limitations. GCB Bioenergy 2017, 9, 508–524. [Google Scholar] [CrossRef]
- Cermak, S.C.; Biresaw, G.; Isbell, T.A.; Evangelista, R.L.; Vaughn, S.F.; Murray, R. New Crop Oils-Properties as Potential Lubricants. Ind. Crops Prod. 2013, 44, 232–239. [Google Scholar] [CrossRef]
- Chopra, R.; Johnson, E.B.; Emenecker, R.; Cahoon, E.B.; Lyons, J.; Kliebenstein, D.J.; Daniels, E.; Dorn, K.M.; Esfahanian, M.; Folstad, N.; et al. Progress toward the Identification and Stacking of Crucial Domestication Traits in Pennycress. bioRxiv 2019, 609990. [Google Scholar] [CrossRef]
- Phippen, W.B.; Phippen, M.E. Soybean Seed Yield and Quality as a Response to Field Pennycress Residue. Crop Sci. 2012, 52, 2767–2773. [Google Scholar] [CrossRef]
- Cubins, J.A. Harvest Time Optimization of Pennycress for Use within the Corn-Soybean Rotation. Master’s Thesis, University of Minnesota, Saint Paul, MN, USA, 2019. [Google Scholar]
- Rukavina, H.; Sahm, D.C.; Manthey, L.K.; Phippen, W.B. The Effect of Nitrogen Rate on Field Pennycress Yield and Oil Content; Western Illinois University: Macomb, IL, USA, 2011. [Google Scholar]
- Phippen, W.; Gallant, J.; Phippen, M. Evaluation of Planting Method and Seeding Rates with Field Pennycress (Thlaspi Arvense L.); Western Illinois University: Macomb, IL, USA, 2010. [Google Scholar]
- Carr, P.M. Potential of Fanweed and Other Weeds as Novel Industrial Oilseed Crops. In New Crops; Janick, J., Simon, J.E., Eds.; Wiley: New York, NY, USA, 1993. [Google Scholar]
- Hazebroek, J.P.; Metzger, J.D. Environmental Control of Seed Germination in Thlaspi arvense (Cruciferae). Am. J. Bot. 1990, 77, 945–953. [Google Scholar] [CrossRef]
- 1981–2010 Normals|Data Tools|Climate Data Online (CDO)|National Climatic Data Center (NCDC). Available online: https://www.ncdc.noaa.gov/cdo-web/datatools/normals (accessed on 11 January 2020).
- Combs, S.M.; Nathan, M.V. Soil Organic Matter. In Recommended Chemical Soil Test Procedures for the North Central Region; North Central Regional Research Publication No. 221 (Revised); Missouri Agricultural Experiment Station: Columbia, MO, USA, 1998; pp. 53–58. [Google Scholar]
- Brown, J.R. (Ed.) Recommended Chemical Soil Test Procedures for the North Central Region; Missouri Agricultural Experiment Station: Columbia, MO, USA, 1998. [Google Scholar]
- United States Department of Agriculture–Soil Conservation Service. Method No. 5A3a. Cation Exchange Capacity by Summation. In Soil Survey Laboratory Methods Manual; Soil Survey Investigations Report No. 42; United Stated Department of Agriculture–Soil Conservation Service: Washington, DC, USA, 1992. [Google Scholar]
- Watson, M.E.; Brown, J.R. PH and Lime Requirement. In Recommended Chemical Soil Test Procedures for the North Central Region; North Central Regional Research Publication No. 221 (Revised); Missouri Agricultural Experiment Station: Columbia, MO, USA, 1998. [Google Scholar]
- Mehlich, A. Mehlich 3 Soil Test Extractant: A Modification of Mehlich 2 Extractant. Commun. Soil Sci. Plant Anal. 1984, 15, 1409–1416. [Google Scholar] [CrossRef]
- Fassel, V.A.; Kniseley, R.N. Inductively Coupled Plasma. Optical Emission Spectroscopy. Anal. Chem. 1974, 46, 1110A–1120A. [Google Scholar] [CrossRef]
- O’dell, J.W. U.S. Environmental Protection Agency Method 350.1: Determination of Ammonia Nitrogen by Semi-Automated Colorimetry; United States Environmental Protection Agency: Washington, DC, USA, 1993; Volume 45268. [Google Scholar]
- Gelderman, R.H.; Beegle, D. Nitrate-Nitrogen. In Recommended Chemical Soil Test Procedures for the North Central Region; North Central Regional Research Publication No. 221 (Revised); Missouri Agricultural Experiment Station: Columbia, MO, USA, 1998. [Google Scholar]
- Willis, R.B.; Gentry, C.E. Automated Method for Determining Nitrate and Nitrite in Water and Soil Extracts. Commun. Soil Sci. Plant Anal. 1987, 18, 625–636. [Google Scholar] [CrossRef]
- Askew, E.F. Determination of Inorganic Ammonia by Continuous Flow Gas Diffusion and Conductivity Cell Analysis; Timberline Ammonia-001; Timberline Instruments: Boulder, CO, USA, 2011. [Google Scholar]
- USDA/NASS QuickStats Query Tool. Available online: https://quickstats.nass.usda.gov/ (accessed on 11 January 2020).
- Ott, M. Four Cover Crops Dual-Cropped with Soybean: Agronomics, Income, and Nutrient Uptake Across Minnesota. Master’s Thesis, University of Minnesota, Saint Paul, MN, USA, 2018. [Google Scholar]
- Premrov, A.; Coxon, C.E.; Hackett, R.; Kirwan, L.; Richards, K.G. Effects of Over-Winter Green Cover on Soil Solution Nitrate Concentrations beneath Tillage Land. Sci. Total Environ. 2014, 470–471, 967–974. [Google Scholar] [CrossRef]
- United States Department of Agriculture–Natural Resources Conservation Service. Seedbed Preparation and Seed to Soil Contact; United States Department of Agriculture: Spokane, WA, USA, 2005.
- Johnson, S.R. Estimated Costs of Pasture and Hay Production, Iowa State Extension: Ames, IA, USA. Available online: https://www.extension.iastate.edu/agdm/crops/html/a1-15.html (accessed on 2 January 2020).
- Moore, S.A.; University of Minnesota, Saint Paul, MN, USA. Unpublished work. 2020.
- Everett, L.A.; Wilson, M.L.; Pepin, R.J.; Coulter, J.A. Winter Rye Cover Crop with Liquid Manure Injection Reduces Spring Soil Nitrate but Not Maize Yield. Agronomy 2019, 9, 852. [Google Scholar] [CrossRef]
- Wilson, M.L.; Allan, D.L.; Baker, J.M.; Pagliari, P.H. Comparing Methods for Overseeding Winter Rye into Standing Soybean. Agroecosys. Geosci. Environ. 2019, 2. [Google Scholar] [CrossRef]
- Hively, W.D.; Cox, W.J. Interseeding Cover Crops into Soybean and Subsequent Corn Yields. Agron. J. 2001, 93, 308–313. [Google Scholar] [CrossRef]
- Dean, J.E.; Weil, R.R. Brassica Covers for Nitrogen Retention in the Mid-Atlantic Coastal Plain. J. Environ. Qual. 2009, 38, 520–528. [Google Scholar] [CrossRef] [PubMed]
- United States Department of Agriculture-National Agriculture Statistics Service. Usual Planting and Harvesting Dates for U.S. Field Crops; United States Department of Agriculture: Washington, DC, USA, 2010.
- Blackshaw, R.E.; Brandt, R.N.; Janzen, H.H.; Entz, T.; Grant, C.A.; Derksen, D.A. Differential Response of Weed Species to Added Nitrogen. Weed Sci. 2003, 51, 532–539. [Google Scholar] [CrossRef]
- Carlson, R.J. Continuous Living Cover in a Corn-Soybean Rotation: Management Approaches and Environmental Benefits. Master’s Thesis, University of Minnesota, Saint Paul, MN, USA, 2018. [Google Scholar]
- Dorn, K.M.; Fankhauser, J.D.; Wyse, D.L.; Marks, M.D. A Draft Genome of Field Pennycress (Thlaspi arvense) Provides Tools for the Domestication of a New Winter Biofuel Crop. DNA Res. 2015, 22, 121–131. [Google Scholar] [CrossRef]
2017–2018 † | 2018–2019 † | |||||||
---|---|---|---|---|---|---|---|---|
Month | Mean Air Temperature (°C) | Departure from Average ‡ (°C) | Accumulated Precipitation (mm) | Departure from Average ‡ (mm) | Mean air Temperature (°C) | Departure from Average ‡ (°C) | Accumulated Precipitation (mm) | Departure from Average ‡ (mm) |
Rosemount | ||||||||
Jun. | 20.5 | 0.9 | 91.4 | −28.5 | 21.5 | 1.9 | 154.4 | 34.5 |
Jul. | 22.3 | 0.4 | 138.7 | 24.4 | 22.0 | 0.1 | 111.0 | −3.3 |
Aug. | 18.9 | −1.8 | 128.8 | 8.7 | 21.1 | 0.4 | 102.1 | −18.0 |
Sep. | 17.9 | 1.9 | 42.4 | −49.8 | 17.4 | 1.4 | 157.2 | 65.0 |
Oct. | 9.6 | 0.7 | 98.6 | 26.0 | 6.2 | −2.7 | 90.9 | 18.3 |
Nov. | −0.6 | −0.7 | 1.8 | −51.5 | −3.3 | −3.4 | 37.6 | −15.7 |
Dec. | −8.2 | 0.0 | 8.4 | −22.6 | −5.0 | 3.2 | 47.2 | 16.3 |
Jan. | −11.1 | −0.4 | 24.9 | −1.5 | −11.0 | −0.4 | 35.1 | 8.6 |
Feb. | −11.9 | −4.2 | 28.2 | 5.1 | −13.2 | −5.5 | 72.8 | 49.6 |
Mar. | −1.4 | −0.9 | 23.1 | − 35.3 | −4.3 | −3.8 | 59.2 | 0.8 |
Apr. | 1.0 | −6.9 | 50.3 | −23.9 | 6.5 | −1.4 | 129.5 | 55.4 |
May. | 18.6 | 4.3 | 108.7 | 6 .1 | 11.6 | −2.6 | 173.0 | 70.3 |
Jun. | 21.5 | 1.9 | 154.4 | 34.5 | 20.0 | 0.4 | 119.8 | −0.1 |
Waseca | ||||||||
Jun. | 21.1 | 0.9 | 105.6 | −14.0 | 21.5 | 1.2 | 146.9 | 27.3 |
Jul. | 23.1 | 0.9 | 166.7 | 54.0 | 21.7 | −0.5 | 111.1 | −1.6 |
Aug. | 19.1 | −1.9 | 99.3 | −21.8 | 20.7 | −0.3 | 121.7 | 0.6 |
Sep. | 17.7 | 1.4 | 51.5 | −42.1 | 17.8 | 1.5 | 267.7 | 174.1 |
Oct. | 9.8 | 0.8 | 105.1 | 37.0 | 6.4 | −2.6 | 80.4 | 12.3 |
Nov. | −0.4 | −0.8 | 4.4 | −50.7 | −4.2 | −4.6 | 34.2 | −20.9 |
Dec. | −8.4 | −0.5 | 22.9 | −14.8 | −5.1 | 2.8 | 53.3 | 15.6 |
Jan. | −11.7 | −1.3 | 46.9 | 15.0 | −11.2 | −0.7 | 32.5 | 0.6 |
Feb. | −11.7 | −4.2 | 29.5 | 4.0 | −14.1 | −6.6 | 77.0 | 51.5 |
Mar. | −1.6 | −1.2 | 29.6 | −33.9 | −4.2 | −3.7 | 51.0 | −12.5 |
Apr. | 0.6 | −7.2 | 89.4 | 7.5 | 6.9 | −1.0 | 108.0 | 26.1 |
May. | 18.5 | 3.6 | 134.2 | 34.0 | 12.0 | −2.8 | 161.1 | 60.9 |
Jun. | 21.5 | 1.2 | 146.9 | 27.3 | 20.2 | 0.0 | 84.7 | −34.9 |
Environment | W/V | CEC | pH | OM | Ca | Mg | K | P | Nmin |
---|---|---|---|---|---|---|---|---|---|
g cm−3 | cmol kg−1 | mg kg−1 | kg ha−1 | ||||||
Rosemount | |||||||||
2017 | 1.5 | 26.5 | 5.9 | 4.7 | 2889.8 | 586.2 | 194.0 | 23.8 | 217 |
2018 | 1.5 | 16.7 | 6.1 | 3.6 | 1744.1 | 427.3 | 96.1 | 8.5 | 65 |
Waseca | |||||||||
2017 | 1.5 | 24.0 | 6.2 | 3.9 | 2504.2 | 548.7 | 212.5 | 16.0 | 146 |
2018 | 1.4 | 36.9 | 6.3 | 5.3 | 4068.3 | 643.9 | 164.5 | 8.5 | 89 |
Environment | Fixed Effects | Residual Soil Nmin | Pennycress † | |||
---|---|---|---|---|---|---|
Seeding | Harvest | Yield | Biomass | N Uptake | ||
Rosemount 2017 | N | <0.001 | <0.001 | 0.625 | 0.634 | 0.678 |
Cover Crop | - | <0.001 | 0.834 | 0.574 | 0.396 | |
N × Cover Crop | - | 0.022 | 0.978 | 0.837 | 0.844 | |
Rosemount 2018 | N | <0.001 | 0.718 | 0.277 | 0.627 | 0.665 |
Cover crop | - | <0.001 | 0.073 | 0.490 | 0.299 | |
N × Cover crop | - | 0.360 | 0.766 | 0.987 | 0.864 | |
Waseca 2017 | N | <0.001 | 0.116 | <0.001 | 0.057 | 0.047 |
Cover crop | - | <0.001 | 0.572 | 0.105 | 0.097 | |
N × Cover crop | - | 0.537 | 0.225 | 0.808 | 0.590 | |
Waseca 2018 | N | <0.001 | 0.197 | 0.265 | 0.909 | 0.780 |
Cover crop | - | 0.295 | 0.791 | 0.474 | 0.961 | |
N × Cover crop | - | 0.211 | 0.430 | 0.706 | 0.611 |
N Treatment | Rosemount † | Waseca † | ||||||
---|---|---|---|---|---|---|---|---|
2017 | 2018 | 2017 | 2018 | |||||
(kg ha−1) | ||||||||
0 | 28.0 | C | 33.8 | C | 33.8 | C | 52.9 | C |
65 | 33.8 | C | 47.9 | C | 42.1 | BC | 54.6 | BC |
135 | 61.1 | B | 85.1 | B | 45.6 | B | 62.4 | B |
135s | 73.1 | AB | 77.3 | B | 42.4 | BC | 79.7 | A |
200 | 88.6 | A | 172.1 | A | 70.9 | A | 85.1 | A |
Cover Crop Treatment | Rosemount | Waseca | |||||
---|---|---|---|---|---|---|---|
2017 | 2018 | 2017 | 2018 | ||||
(kg ha−1) | |||||||
No Pennycress | 45.6 A † | 55.1 | A | 78.4 | A | 41.0 | A |
DBC+INC | 31.2 A | 32.2 | B | 58.1 | B | 38.8 | A |
DRILL | 30.2 A | 32.1 | B | 56.9 | B | 41.4 | A |
N Treatment | Rosemount | Waseca | ||||||
---|---|---|---|---|---|---|---|---|
Seed Yield | N Uptake | Seed Yield | N Uptake | |||||
2017 | 2018 | 2017 | 2018 | 2017 † | 2018 | 2017 † | 2018 | |
kg ha−1 | ||||||||
0 | 666 | 287 | 22 | 15 | 329 BC | 546 | 18 B | 21 |
65 | 553 | 380 | 23 | 20 | 260 D | 487 | 17 B | 17 |
135 | 631 | 381 | 28 | 18 | 345 AB | 581 | 18 B | 21 |
135s | 594 | 442 | 28 | 20 | 266 CD | 681 | 18 B | 21 |
200 | 643 | 420 | 28 | 20 | 397 A | 559 | 22 A | 24 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moore, S.A.; Wells, M.S.; Gesch, R.W.; Becker, R.L.; Rosen, C.J.; Wilson, M.L. Pennycress as a Cash Cover-Crop: Improving the Sustainability of Sweet Corn Production Systems. Agronomy 2020, 10, 614. https://doi.org/10.3390/agronomy10050614
Moore SA, Wells MS, Gesch RW, Becker RL, Rosen CJ, Wilson ML. Pennycress as a Cash Cover-Crop: Improving the Sustainability of Sweet Corn Production Systems. Agronomy. 2020; 10(5):614. https://doi.org/10.3390/agronomy10050614
Chicago/Turabian StyleMoore, Sarah A., M. Scott Wells, Russ W. Gesch, Roger L. Becker, Carl J. Rosen, and Melissa L. Wilson. 2020. "Pennycress as a Cash Cover-Crop: Improving the Sustainability of Sweet Corn Production Systems" Agronomy 10, no. 5: 614. https://doi.org/10.3390/agronomy10050614
APA StyleMoore, S. A., Wells, M. S., Gesch, R. W., Becker, R. L., Rosen, C. J., & Wilson, M. L. (2020). Pennycress as a Cash Cover-Crop: Improving the Sustainability of Sweet Corn Production Systems. Agronomy, 10(5), 614. https://doi.org/10.3390/agronomy10050614