Five-Year Field Trial of Eight Camelina sativa Cultivars for Biomass to be Used in Biofuel under Irrigated Conditions in a Semi-Arid Climate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Description and Weather Conditions
2.2. Treatment and Experimental Design
2.3. Field Establishment and Management
2.4. Computations and Data Collection
2.5. Statistical Analysis
3. Results
3.1. Weather Data
3.2. Seed Yield
3.3. Biomass Yield
3.4. Harvest Index (HI)
3.5. Oil Content, Oil Yield, and Biodiesel Yield
3.6. Power of the Experiment
3.7. Coefficient of Variation
3.8. Other Field Trials
4. Discussion
4.1. Effect of Irrigation on Seed Yield
4.2. Biomass Yield and Harvest Indices
4.3. Oil Content, Oil, and Biodiesel Yield
4.4. Related Studies
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Putnam, D.H.; Budin, J.T.; Field, L.A.; Breene, W.M. Camelina: A promising low-input oilseed. In New Crops; Wiley: New York, NY, USA, 1993; pp. 314–321. [Google Scholar]
- Zubr, J. Oil-seed crop: Camelina sativa. Ind. Crops Prod. 1997, 6, 113–119. [Google Scholar] [CrossRef]
- Berti, M.; Gesch, R.; Eynck, C.; Anderson, J.; Cermak, S. Camelina uses, genetics, genomics, production, and management. Ind. Crops Prod. 2016, 94, 690–710. [Google Scholar] [CrossRef]
- Colombini, S.; Broderick, G.A.; Galasso, I.; Martinelli, T.; Rapetti, L.; Russo, R.; Reggiani, R. Evaluation of Camelina sativa (L.) Crantz meal as an alternative protein source in ruminant rations. J. Sci. Food Agric. 2014, 94, 736–743. [Google Scholar] [CrossRef] [PubMed]
- Moser, B.R.; Vaughn, S.F. Evaluation of alkyl esters from Camelina sativa oil as biodiesel and as blend components in ultra low-sulfur diesel fuel. Bioresourc. Technol. 2010, 101, 646–653. [Google Scholar] [CrossRef]
- Moser, B.R. Camelina (Camelina sativa L.) oil as a biofuels feedstock: Golden opportunity or false hope? Lipid Technol. 2010, 22, 270–273. [Google Scholar] [CrossRef]
- Ciubota-Rosie, C.; Ruiz, J.R.; Ramos, M.J.; Pérez, Á. Biodiesel from Camelina sativa: A comprehensive characterisation. Fuel 2013, 105, 572–577. [Google Scholar] [CrossRef]
- Shonnard, D.R.; Williams, L.; Kalnes, T.N. Camelina-derived jet fuel and diesel: Sustainable advanced biofuels. Environ. Prog. Sustain. Energy 2010, 29, 382–392. [Google Scholar] [CrossRef]
- Keske, C.M.; Hoag, D.L.; Brandess, A.; Johnson, J.J. Is it economically feasible for farmers to grow their own fuel? A study of Camelina sativa produced in the western United States as an on-farm biofuel. Biomass Bioenerg. 2013, 54, 89–99. [Google Scholar] [CrossRef]
- Robinson, R.G. Camelina: A Useful Research Crop. and A Potential Oilseed Crop; Station Bulletin 579–1987; Minnesota Agricultural Experiment Station, University of Minnesota: St. Paul, MN, USA, 1987; pp. 1–12. [Google Scholar]
- Dobre, P.; Jurcoane, S.; Matei, F.; Stelica, C.; Farcas, N.; Moraru, A.C. Camelina sativa as a double crop using the minimal tillage system. Rom. Biotechnol. Lett. 2014, 9, 9190–9195. [Google Scholar]
- Obour, A.K.; Chen, C.; Sintim, H.Y.; McVay, K.; Lamb, P.; Obeng, E.; Mohammed, Y.A.; Khan, Q.; Afshar, R.K.; Zheljazkov, V.D. Camelina sativa as a fallow replacement crop in wheat-based crop production systems in the US Great Plains. Ind. Crops Prod. 2018, 111, 22–29. [Google Scholar] [CrossRef]
- Berti, M.; Samarappuli, D.; Johnson, B.L.; Gesch, R.W. Integrating winter camelina into maize and soybean cropping systems. Ind. Crops Prod. 2017, 107, 595–601. [Google Scholar] [CrossRef]
- Chen, C.; Bekkerman, A.; Afshar, R.; Neill, K. Intensification of dryland cropping systems for bio-feedstock production: Evaluation of agronomic and economic benefits of Camelina sativa. Ind. Crops Prod. 2015, 71, 114–121. [Google Scholar] [CrossRef] [Green Version]
- NASS. National Agricultural Statistics Service, USDA. Available online: https://www.nass.usda.gov/ (accessed on 11 May 2018).
- Lindenmayer, R.B.; Hansen, N.C.; Brummer, J.; Pritchett, J.G. Deficit irrigation of alfalfa for water-savings in the Great Plains and Intermountain West: A review and analysis of the literature. Agron. J. 2011, 103, 45–50. [Google Scholar] [CrossRef]
- Koenig, R.; Hurst, C.; Barnhill, J.; Kitchen, B.; Winger, M.; Johnson, M. Fertilizer Management for Alfalfa AG-FG-01; Utah State University Extension; Utah State University: Logan, UT, USA, 1999; pp. 1–5. [Google Scholar]
- Hunsaker, D.J.; French, A.N.; Thorp, K.R. Camelina water use and seed yield response to irrigation scheduling in an arid environment. Irrig. Sci. 2013, 31, 911–929. [Google Scholar] [CrossRef] [Green Version]
- Budin, J.T.; Breene, W.M.; Putnam, D.H. Some compositional properties of camelina (Camelina sativa L. Crantz) seeds and oils. J. Am. Oil Chem. Soc. 1995, 72, 309–315. [Google Scholar] [CrossRef]
- Soroka, J.; Olivier, C.; Grenkow, L.; Séguin-Swartz, G. Interactions between Camelina sativa (Brassicaceae) and insect pests of canola. Can. Entomol. 2015, 147, 193–214. [Google Scholar] [CrossRef]
- Mohammed, Y.A.; Chen, C.; Afshar, R.K. Nutrient requirements of camelina for biodiesel feedstock in central Montana. Agron. J. 2017, 109, 309–316. [Google Scholar] [CrossRef] [Green Version]
- Séguin-Swartz, G.; Eynck, C.; Gugel, R.K.; Strelkov, S.E.; Olivier, C.Y.; Li, J.L.; Klein-Gebbinck, H.; Borhan, H.; Caldwell, C.D.; Falk, K.C. Diseases of Camelina sativa (false flax). Can. J. Plant. Pathol. 2009, 31, 375–386. [Google Scholar] [CrossRef]
- Sintim, H.Y.; Zheljazkov, V.D.; Obour, A.K.; Garcia y Garcia, A.; Foulke, T.K. Influence of nitrogen and sulfur application on camelina performance under dryland conditions. Ind. Crops Prod. 2015, 70, 253–259. [Google Scholar] [CrossRef]
- Wysocki, D.J.; Chastain, T.G.; Schillinger, W.F.; Guy, S.O.; Karow, R.S. Camelina: Seed yield response to applied nitrogen and sulfur. Field Crops Res. 2013, 145, 60–66. [Google Scholar] [CrossRef] [Green Version]
- Sintim, H.Y.; Zheljazkov, V.D.; Obour, A.K.; Garcia y Garcia, A.; Foulke, T.K. Evaluating agronomic responses of camelina to seeding date under rain-fed conditions. Agron. J. 2016, 108, 349–357. [Google Scholar] [CrossRef] [Green Version]
- Neupane, D.; Solomon, J.K.Q.; Mclennon, E.; Davison, J. Sowing date and sowing method influence on camelina cultivars grain yield, oil concentration, and biodiesel production. Food Energy Secur. 2019, 8, e00166. [Google Scholar] [CrossRef] [Green Version]
- Pavlista, A.D.; Isbell, T.A.; Baltensperger, D.D.; Hergert, G.W. Planting date and development of spring-seeded irrigated canola, brown mustard and camelina. Ind. Crops Prod. 2011, 33, 451–456. [Google Scholar] [CrossRef] [Green Version]
- Schillinger, W.F.; Wysocki, D.J.; Chastain, T.G.; Guy, S.O.; Karow, R.S. Camelina: Planting date and method effects on stand establishment and seed yield. Field Crops Res. 2012, 130, 138–144. [Google Scholar] [CrossRef] [Green Version]
- Guy, S.O.; Wysocki, D.J.; Schillinger, W.F.; Chastain, T.G.; Karow, R.S.; Garland-Campbell, K.; Burke, I.C. Camelina: Adaptation and performance of genotypes. Field Crops Res. 2014, 155, 224–232. [Google Scholar] [CrossRef]
- Aiken, R.; Baltensperger, D.; Krall, J.; Pavlista, A.; Johnson, J. Planting methods affect emergence, flowering and yield of spring oilseed crops in the US central High Plains. Ind. Crops Prod. 2015, 69, 273–277. [Google Scholar] [CrossRef]
- McVay, K.A.; Khan, Q.A. Camelina yield response to different plant populations under dryland conditions. Agron. J. 2011, 103. [Google Scholar] [CrossRef]
- Obou, A.K.; Obeng, E.; Mohammed, Y.A.; Ciampitti, I.A.; Durrett, T.P.; Aznar-Moreno, J.A.; Chen, C. Camelina seed yield and fatty acids as influenced by genotype and environment. Agron. J. 2017, 109. [Google Scholar] [CrossRef] [Green Version]
- Mohammed, Y.A.; Chen, C.; Lamb, P.; Afshar, R.K. Agronomic evaluation of Camelina (Camelina sativa L. Crantz) cultivars for biodiesel feedstock. Bioenergy Res. 2017, 10, 792–799. [Google Scholar] [CrossRef]
- Obour, A.K.; Sintim, H.Y.; Obeng, E.; Jeliazkov, D.V. Oilseed camelina (Camelina sativa L Crantz): Production systems, prospects and challenges in the USA Great Plains. Adv. Plants Ag. Res. 2015, 2, 00042. [Google Scholar] [CrossRef] [Green Version]
- Pavlista, A.D.; Hergert, G.W.; Margheim, J.M.; Isbell, T.A. Growth of spring camelina (Camelina sativa) under deficit irrigation in Western Nebraska. Ind. Crops Prod. 2016, 83, 118–123. [Google Scholar] [CrossRef] [Green Version]
- Hunsaker, D.J.; French, A.N.; Clarke, T.R.; El-Shikha, D.M. Water use, crop coefficients, and irrigation management criteria for camelina production in arid regions. Irrig. Sci. 2011, 29, 27–43. [Google Scholar] [CrossRef]
- Neupane, D.; Solomon, J.K.Q.; Mclennon, E.; Davison, J.; Lawry, T. Camelina production parameters response to different irrigation regimes. Ind. Crops Prod. 2020, 148. [Google Scholar] [CrossRef]
- George, N.; Hollingsworth, J.; Yang, W.-R.; Kaffka, S. Canola and camelina as new crop options for cool-season production in California. Crop. Sci. 2017, 57, 693–712. [Google Scholar] [CrossRef] [Green Version]
- Neupane, D.; Solomon, J.K.Q.; Davison, J.; Lawry, T. Nitrogen source and rate effects on grain and potential biodiesel production of camelina in the semiarid environment of northern Nevada. Glob. Chang. Biol. Bioenergy 2018, 10, 861–876. [Google Scholar] [CrossRef] [Green Version]
- Soil Survey Staff. Natural Resources Conservation Service, United States Department of Agriculture. Available online: https://websoilsurvey.sc.egov.usda.gov/ (accessed on 11 May 2018).
- WRCC, D. Western Regional Climate Center, Desert Research Institute Weather Station. Available online: https://wrcc.dri.edu/ (accessed on 15 February 2020).
- Yobi, A.; Schlauch, K.A.; Perryman, B.; Oliver, M.J.; Cushman, J.C. Biomass production, nutritional and mineral content of desiccation-sensitive and desiccation-tolerant species of Sporobolus under multiple irrigation regimes. J. Agron. Crop. Sci. 2013, 199, 309–320. [Google Scholar] [CrossRef]
- Gesch, R.W.; Johnson, J.M.F. Water use in camelina-soybean dual cropping systems. Agron. J. 2015, 107, 1098–1104. [Google Scholar] [CrossRef]
- Kemp, W.H. Biodiesel: Basics and Beyond: A Comprehensive Guide to Production and Use for the Home and Farm; Aztext Press: Tamworth, ON, Canada, 2006. [Google Scholar]
- SAS Institute, Inc. Base SAS® 9.4 Procedures Guide. SAS Institute, Inc.: Cary, NC, USA, 2015. [Google Scholar]
- Stroup, W.W.; Milliken, G.A.; Claassen, E.A.; Wolfinger, R.D. SAS® for Mixed Models: Introduction and Basic Applications; SAS Institute Inc.: Cary, NC, USA, 2018. [Google Scholar]
- Kupzyk, K.A. The Effects of Simplifying Assumptions in Power Analysis. Ph.D. Thesis, University of Nebraska–Lincoln, Lincoln, NE, USA, 2011. [Google Scholar]
- Gent, D.H.; Esker, P.D.; Kriss, A.B. Statistical power in plant pathology research. Phytopathology 2018, 108, 15–22. [Google Scholar] [CrossRef] [Green Version]
- Stroup, W.W. Power analysis based on spatial effects mixed models: A tool for comparing design and analysis strategies in the presence of spatial variability. J. Agric. Biol. Environ. Stat. 2002, 7, 491–511. [Google Scholar] [CrossRef]
- Piepho, H.P.; Michel, V.; Williams, E. Neighbor balance and evenness of distribution of treatment replications in row-column designs. Biom. J. 2018, 60, 1172–1189. [Google Scholar] [CrossRef]
- Dai, A.; Zhao, T.; Chen, J. Climate change and drought: A precipitation and evaporation perspective. Curr. Clim. Chang. Rep. 2018, 4, 301–312. [Google Scholar] [CrossRef]
- Barnett, T.P.; Adam, J.C.; Lettenmaier, D.P. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 2005, 438, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Challinor, A.J.; Watson, J.; Lobell, D.B.; Howden, S.M.; Smith, D.R.; Chhetri, N. A meta-analysis of crop yield under climate change and adaptation. Nat. Clim. Chang. 2014, 4, 287–291. [Google Scholar] [CrossRef]
- NOAA. National Weather Service. Available online: http://www.nws.noaa.gov/climate/index.php?wfo=rev (accessed on 15 February 2020).
- Kamkar, B.; Daneshmand, A.R.; Ghooshchi, F.; Shiranirad, A.H.; Langeroudi, A.R.S. The effects of irrigation regimes and nitrogen rates on some agronomic traits of canola under a semiarid environment. Agric. Water Manag. 2011, 98, 1005–1012. [Google Scholar] [CrossRef]
- Hergert, G.W.; Margheim, J.F.; Pavlista, A.D.; Martin, D.L.; Isbell, T.A.; Supalla, R.J. Irrigation response and water productivity of deficit to fully irrigated spring camelina. Agric. Water Manag. 2016, 177, 46–53. [Google Scholar] [CrossRef] [Green Version]
- Santos, R.F.; Bassegio, D.; Almeida Silva, M.D. Productivity and production components of safflower genotypes affected by irrigation at phenological stages. Agric. Water Manag. 2017, 186, 66–74. [Google Scholar] [CrossRef]
- Torrion, J.A.; Stougaard, R.N. Impacts and limits of irrigation water management on wheat yield and quality. Crop. Sci. 2017, 57, 3239–3251. [Google Scholar] [CrossRef]
- Davison, J.; Solomon, J.; Lawry, T. Alfalfa Variety Trial in Western Nevada, Initial Results; University of Nevada Cooperative Extension; University of Nevada: Reno, NV, USA, 2016; pp. 1–7. [Google Scholar]
Montds | Total Precipitation (mm) | Mean Air Temperature (°C) | ||||||||||
2011 | 2012 | 2013 | 2014 | 2015 | 29-Year | 2011 | 2012 | 2013 | 2014 | 2015 | 29-Year | |
March | 32.51 | 2.79 | 7.37 | 2.03 | 0.25 | 8.99 | 15.0 | 15.0 | 15.6 | 13.3 | 18.3 | 15.4 |
April | 2.79 | 1.78 | 5.84 | 7.87 | 8.89 | 5.44 | 16.7 | 21.7 | 19.4 | 17.8 | 18.3 | 18.8 |
May | 10.16 | 7.62 | 17.02 | 13.72 | 25.65 | 14.83 | 18.9 | 23.3 | 22.2 | 22.8 | 23.9 | 22.2 |
June | 34.29 | 0.00 | 4.06 | 0.00 | 23.62 | 12.40 | 26.1 | 26.7 | 29.4 | 26.1 | 30.0 | 27.7 |
Seasonal precipitation | 79.76 | 12.19 | 34.29 | 23.62 | 58.42 | 41.66 | ||||||
Supplemental irrigation | 176.4 | 250 | 296.3 | 385 | 353 | |||||||
Total water applied | 256.2 | 262.2 | 330.6 | 408.6 | 411.4 | |||||||
Months | Solar Radiation (KW m−2) | GDD | ||||||||||
2011 | 2012 | 2013 | 2014 | 2015 | 2011 | 2012 | 2013 | 2014 | 2015 | 29-Year | ||
March | 133.7 | 143.4 | 145.3 | 144.1 | 141.6 | 9.6 | 32.8 | 76.2 | 69.0 | 124.2 | 111.5 | |
April | 170.6 | 171.2 | 193.4 | 185.1 | 177.0 | 86.5 | 142.6 | 138.6 | 158.3 | 134.6 | 203.4 | |
May | 143.0 | 121.3 | 189.8 | 192.9 | 173.3 | 164.1 | 70.0 | 193.2 | 235.3 | 261.2 | 346.9 | |
June | 210.6 | 238.0 | 212.1 | 230.9 | 217.7 | 340.5 | 390.7 | 408.3 | 408.3 | 471.0 | 458.3 | |
Total | 600.7 | 636.1 | 816.3 | 870.9 | 991.0 | 1120.1 |
p-Value | |||||||
---|---|---|---|---|---|---|---|
Effect | df | Seed Yield | Biomass Yield | Harvest Index | Oil Content | Oil Yield | Biodiesel Yield |
Cultivar | 7 | 0.88 | 0.960 | 0.059 | 0.80 | 0.86 | 0.86 |
Year | 4 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Cultivar × Year | 28 | 0.113 | 0.827 | <0.0001 | <0.0001 | 0.049 | 0.049 |
Cultivar | Seed Yield | Biomass Yield | Harvest Index | Oil Content | Oil Yield | Biodiesel Yield |
---|---|---|---|---|---|---|
(kg ha−1) | (Mg ha−1) | (kg ha−1/kg ha−1) | (%) | (kg ha−1) | (L ha−1) | |
Columbia | 910 | 4.25 | 0.147 | 29.2 | 273.4 | 86.4 |
Cheyenne | 774 | 4.15 | 0.132 | 28.9 | 233.2 | 73.7 |
Calena | 741 | 4.66 | 0.127 | 29.3 | 224.3 | 70.9 |
Blaine Creek | 743 | 4.74 | 0.11 | 29.1 | 224.7 | 71 |
Yellowstone | 703 | 4.3 | 0.116 | 28.7 | 214.6 | 67.8 |
Suneson | 692 | 3.95 | 0.131 | 29 | 206.9 | 65.4 |
Ligena | 659 | 4.23 | 0.126 | 28.8 | 197.8 | 62.5 |
Celine | 656 | 4.24 | 0.113 | 28.6 | 192.6 | 60.9 |
1SEM | 127 | 0.47 | 0.01 | 0.32 | 40.4 | 12 |
p-value | 0.88 | 0.96 | 0.059 | 0.8 | 0.86 | 0.86 |
Power | 0.30 | 0.20 | 0.77 | 0.33 | 0.32 | 0.32 |
Cultivar | Seed Yield (kg ha−1) | Biomass Yield (Mg ha−1) | Harvest Index (kg ha−1/kg ha−1) | Oil Content (%) | Oil Yield (kg ha−1) | Biodiesel Yield (L ha−1) |
---|---|---|---|---|---|---|
2011 | 751 1c ± 41 | 3.93 b ± 0.12 | 0.157 b ± 0.006 | 29.1 c ± 0.10 | 219.4 c ± 12.0 | 69.4 c ± 3.8 |
2012 | 76 e± 8 | 2.76 c ± 0.21 | 0.027 d ± 0.002 | 26.6 e ± 0.25 | 20.1 e ± 2.0 | 6.3 e± 0.6 |
2013 | 269 d ± 47 | 4.52 c ± 0.35 | 0.044 c ± 0.04 | 28.0 d ± 0.26 | 75.4 d ± 13.2 | 23.8 d ± 4.2 |
2014 | 998 b ±116 | 3.64 b ± 0.36 | 0.211 a ± 0.013 | 30.1 b ± 0.28 | 298.4 b ± 34.7 | 94.3 b ± 11.0 |
2015 | 1589 a ± 134 | 6.77 a ± 0.46 | 0.186 a ± 0.006 | 30.8 a ± 0.14 | 490.3 a ± 41.3 | 155.0 a ± 13.1 |
p-value | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Seed Yield (kg ha−1) | |||||
---|---|---|---|---|---|
3Cultivar | Year | ||||
2011 | 2012 | 2013 | 2014 | 2015 | |
Columbia | 1204 1ABa | 87 D2ab | 333 CD | 1004 BC | 1921 A |
Cheyenne | 766 Bb | 66 Cb | 132 C | 1070 B | 1781 A |
Calena | 803 Bb | 89C ab | 231 C | 832 B | 1753 A |
Blaine Creek | 653 BCbc | 52 Cb | 241 C | 1213 AB | 1555 A |
Yellowstone | 571 BCbc | 84 Cab | 274 C | 1254 AB | 1459 A |
Suneson | 758 ABb | 68 Cb | 490B C | 954 AB | 1191 A |
Ligena | 412 BCc | 34 Cb | 196 C | 995 B | 1657 A |
Celine | 839 ABb | 126 Ba | 253 B | 720 AB | 1343 A |
4SEM | 116 | 21 | 133 | 323 | 376 |
p-value | 0.001 | 0.075 | 0.213 | 0.93 | 0.69 |
Power | 0.98 | 0.71 | 0.53 | 0.14 | 0.24 |
Biomass Yield (Mg ha−1) | |||||
3Cultivar | Year | ||||
2011 | 2012 | 2013 | 2014 | 2015 | |
Blaine Creek | 3.95 1B | 3.12 B | 4.20 B | 4.11 B | 8.34 A |
Calena | 4.34 B | 3.47 B | 4.35 B | 2.92 B | 8.22 A |
Yellowstone | 4.44 | 2.57 | 4.61 | 3.81 | 6.05 |
Columbia | 3.64 BC | 2.44 C | 5.10 AB | 4.27 ABC | 5.79 A |
Celine | 4.10 A | 3.03 A | 4.45 A | 3.67 A | 5.96 A |
Ligena | 3.54 B | 2.31 B | 4.55 B | 2.96 B | 7.80 A |
Cheyenne | 4.00A | 2.52 | 3.46 | 4.09 | 6.54 |
Suneson | 3.47 AB | 2.64 B | 5.40 A | 3.30 AB | 4.95 AB |
4SEM | 0.35 | 0.61 | 1.01 | 1.04 | 1.33 |
p-value | 0.177 | 0.159 | 0.347 | 0.885 | 0.252 |
Power | 0.56 | 0.58 | 0.43 | 0.16 | 0.49 |
Cultivars’ mean | 3.93 B | 2.76 C | 4.52 B | 3.64 B | 6.77 A |
3Cultivar | Year | ||||
---|---|---|---|---|---|
2011 | 2012 | 2013 | 2014 | 2015 | |
Columbia | 0.245 1Aa | 0.039 C2a | 0.053 C | 0.169 B | 0.238 Aa |
Cheyenne | 0.162 1Bb | 0.032 C2a | 0.034 C | 0.224 A | 0.205 Aab |
Suneson | 0.180 Ab | 0.027 Babc | 0.054 B | 0.204 A | 0.190 Abc |
Calena | 0.154 Bbc | 0.025 Cabc | 0.038 C | 0.236 A | 0.179 Bbc |
Ligena | 0.103 BCd | 0.016 Cc | 0.039 C | 0.293 A | 0.178 Bbc |
Yellowstone | 0.110 Bcd | 0.029 Cabc | 0.050 C | 0.216 A | 0.181 Abc |
Celine | 0.170 Ab | 0.040 Ba | 0.045 B | 0.154 A | 0.159 Abc |
Blaine Creek | 0.142 Bbcd | 0.017 Cbc | 0.038 C | 0.199 A | 0.153 ABc |
3SEM | 0.016 | 0.005 | 0.012 | 0.036 | 0.016 |
p-value | <0.0001 |
3Cultivar | Year | ||||
---|---|---|---|---|---|
2011 | 2012 | 2013 | 2014 | 2015 | |
Calena | 29.38 1B2bc | 26.54 C | 27.84 BCbc | 31.50 A | 31.06 Aab |
Columbia | 29.91 ABa | 28.40 CD | 27.42 Dbcd | 29.36 BC | 30.73 Abc |
Blaine Creek | 28.84 Bde | 25.90 C | 28.89 Bab | 30.50 A | 31.27 Aab |
Suneson | 29.88 Bab | 25.65 B | 29.74 Aa | 29.36 A | 30.23 Acd |
Cheyenne | 29.17 Bcde | 26.65 C | 26.29 Cd | 30.87 A | 31.35 Aab |
Ligena | 27.43 Cf | 26.80 C | 29.60 Ba | 28.27 BC | 31.85 Aa |
Yellowstone | 28.71 Be | 26.50 C | 27.52 Cbcd | 30.66 A | 30.22 Acd |
Celine | 29.25 Acd | 26.73 B | 27.06 Bcd | 29.92 A | 29.80 Ad |
3SEM | 0.26 | 0.71 | 0.75 | 0.79 | 0.39 |
p-value | <0.0001 |
Oil Yield (kg ha−1) | |||||
---|---|---|---|---|---|
3Cultivar | Year | ||||
2011 | 2012 | 2013 | 2014 | 2015 | |
Columbia | 360.2 1B2a | 23.9 D | 94.1 CD | 294.3 BC | 594.3 A |
Cheyenne | 223.6 BCb | 17.6 D | 34.4 CD | 332.1 B | 566.8 A |
Blaine Creek | 188.0 BCbc | 13.2 C | 69.2 C | 367.3 AB | 485.5 A |
Calena | 235.5 Bb | 23.5 C | 57.4 C | 262.2 B | 542.7 A |
Yellowstone | 163.9 BCbc | 22.1 C | 79.0 C | 369.3 AB | 442.1 A |
Suneson | 225.8 ABb | 17.0 C | 144.6 BC | 284.5 AB | 362.7 A |
Ligena | 113.2 BCc | 9.1 C | 58.0 C | 281.3 B | 527.8 A |
Celine | 245.4 ABb | 34.1 B | 68.5 B | 215.4 AB | 400.8 A |
3SEM | 34.0 | 5.5 | 37.4 | 96.8 | 115.6 |
p-value | 0.049 | ||||
Biodiesel Yield (L ha−1) | |||||
3Cultivar | Year | ||||
2011 | 2012 | 2013 | 2014 | 2015 | |
Columbia | 113.8 1B2a | 7.6 D | 29.8 CD | 93.0 BC | 187.9 A |
Cheyenne | 70.7 BCb | 5.6 D | 10.9 CD | 105.0 B | 179.1 A |
Blaine Creek | 59.4 BCbc | 4.2 C | 21.9 C | 116.1 AB | 153.5 A |
Calena | 74.4 Bb | 7.4 C | 18.1 C | 82.9 B | 171.5 A |
Yellowstone | 51.8 BCbc | 7.0 C | 25.0 C | 114.0 AB | 139.7 A |
Suneson | 71.4 ABb | 5.4 Cb | 45.7 BC | 89.9 AB | 114.6 A |
Ligena | 35.8 BCc | 2.9 C | 18.3 C | 88.8 B | 166.8 A |
Celine | 77.5 ABb | 10.8 B | 20.9 B | 68.4 AB | 126.7 A |
3SEM | 10.7 | 1.75 | 11.8 | 30.6 | 36.5 |
p-value | 0.049 |
Location | Number of Years (Trials) | Year Range | Mean Annual Precipitation (mm) | Seasonal Precipitation and Irrigation (mm) | Nitrogen Applied (kg ha−1) | Seed Yield Range (kg ha−1) | Mean Seed Yield (kg ha−1) | Citation |
---|---|---|---|---|---|---|---|---|
Hays, KS | 3 (3) | 2013–2015 | 541.0 | 350.5 * | 56.0 | 447.2 | 447.2 | [32] |
Hays, KS | 2 (2) | 2014–2015 | 431.8 | 353.1 * | 44.8 | 424–908 | 666.9 | [12] |
Reno, NV | 5 (40) | 2011–2015 | 165.1 | 337.8 | 52.5 | 76–1586 | 736.4 | This study |
Sheridan, WY | 2 (2) | 2014–2015 | 513.1 | 251.5 * | 44.8 | 852–975 | 913.5 | [12] |
Scottsbluff, NE | 2 (4) | 2005–2006 | 401.3 | 431.8 | 44.8 | 555–1454 | 1061.4 | [27] |
Maricopa, AZ | 2 (4) | 2006–2007 | 137.2 | 342.9 | 49.9 | 1026–1221 | 1135.4 | [36] |
Mocccasin/Pendroy, MT | 3 (7) | 2013–2015 | 386.1 | 223.5 * | 44.8 | 1095–1258 | 1212.8 | [33] |
Sheridan, WY | 2 (2) | 2013–2014 | 411.5 | 228.6 * | 44.8 | 988.6 | 988.6 | [25] |
Sheridan, WY | 3 (3) | 2013–2015 | 414.0 | 248.9 * | 56.0 | 789–1539 | 1107.4 | [23] |
Huntley, MT | 2 (2) | 2008–2009 | 393.7 | 226.1 * | 34.0 | 972–1684 | 1327.1 | [31] |
Pendleton, OR | 3 (6) | 2008–2010 | 421.6 | 198.1 * | 44.8 | 1296–1769 | 1543.4 | [28] |
Corvallis, OR | 3 (3) | 2008–2010 | 990.6 | 320.0 * | 44.8 | 1561–1593 | 1577.0 | [24] |
Pendleton, OR | 3 (3) | 2008–2010 | 421.6 | 188.0 * | 45.0 | 1628–1707 | 1658.3 | [29] |
Moscow, ID/Pullman, WA | 3 (3) | 2008–2010 | 736.6 | 322.6 * | 44.8 | 1658–1697 | 1677.9 | [24] |
Pendleton, OR | 3 (3) | 2008–2010 | 421.6 | 215.9 * | 50.0 | 1760–1791 | 1775.5 | [24] |
Scottsbluff/Sidney, NE | 2 (4) | 2007–2008 | 360.7 | 431.8 | 41.9 | 2538.7 | 2538.7 | [35] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lohaus, R.H.; Neupane, D.; Mengistu, M.A.; Solomon, J.K.Q.; Cushman, J.C. Five-Year Field Trial of Eight Camelina sativa Cultivars for Biomass to be Used in Biofuel under Irrigated Conditions in a Semi-Arid Climate. Agronomy 2020, 10, 562. https://doi.org/10.3390/agronomy10040562
Lohaus RH, Neupane D, Mengistu MA, Solomon JKQ, Cushman JC. Five-Year Field Trial of Eight Camelina sativa Cultivars for Biomass to be Used in Biofuel under Irrigated Conditions in a Semi-Arid Climate. Agronomy. 2020; 10(4):562. https://doi.org/10.3390/agronomy10040562
Chicago/Turabian StyleLohaus, Richard H., Dhurba Neupane, Mitiku A. Mengistu, Juan K.Q. Solomon, and John C. Cushman. 2020. "Five-Year Field Trial of Eight Camelina sativa Cultivars for Biomass to be Used in Biofuel under Irrigated Conditions in a Semi-Arid Climate" Agronomy 10, no. 4: 562. https://doi.org/10.3390/agronomy10040562
APA StyleLohaus, R. H., Neupane, D., Mengistu, M. A., Solomon, J. K. Q., & Cushman, J. C. (2020). Five-Year Field Trial of Eight Camelina sativa Cultivars for Biomass to be Used in Biofuel under Irrigated Conditions in a Semi-Arid Climate. Agronomy, 10(4), 562. https://doi.org/10.3390/agronomy10040562