Effects of Straw-Return Method for the Maize–Rice Rotation System on Soil Properties and Crop Yields
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design and Field Agronomic Management
2.3. Sampling and Analysis
2.4. Statistical Analyses
3. Results
3.1. Soil Property
3.2. Air Temperature and Rainfall
3.3. Soil pH, BD, TOC and TN
3.4. Soil Microbial Community, and the Redundancy Analysis of Soil Microbial Community with Nutrients
3.5. Soil Enzyme Activity
3.6. DOC, MBC, Nmin, Available P, and Exchangeable K
3.7. C Accumulation and N Uptake by Crop
3.8. Crop Yield and Amount of Straw Return
4. Discussion
4.1. Soil pH, BD, TOC, and TN
4.2. Soil Microbial Community
4.3. Soil DOC, MBC, Nmin, Available P, Exchangeable K and Enzyme Activity
4.4. Crop C Accumulation, N Uptake, Yield and Amount of Straw Return
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Haefele, S.M.; Banayo, N.P.M.; Amarante, S.T.; Siopongco, J.D.L.C.; Mabesa, R.L. Characteristics and management options for rice–maize systems in the Philippines. Field Crops Res. 2013, 144, 52–61. [Google Scholar] [CrossRef]
- Seufert, V.; Ramankutty, N.; Foley, J.A. Comparing the yields of organic and conventional agriculture. Nature 2012, 485, 229–232. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.S.; Feng, J.X.; Zhai, S.L.; Dai, Y.J.; Xu, M.M.; Wu, J.S.; Shen, M.X.; Bian, X.M.; Koide, R.T.; Liu, J. Long–term ditch-buried straw return alters soil water potential, temperature, and microbial communities in a rice–wheat rotation system. Soil Tillage Res. 2016, 163, 21–31. [Google Scholar] [CrossRef]
- Haynes, R.J.; Mokolobate, M.S. Amelioration of Al toxicity and P deficiency in acid soils by additions of organic residues: A critical review of the phenomenon and the mechanisms involved. Nutr. Cycl. Agroecosyst. 2001, 59, 47–63. [Google Scholar] [CrossRef]
- Jalota, S.K.; Buttar, G.S.; Sood, A.; Chahal, G.B.S.; Ray, S.S.; Panigrahy, S. Effects of sowing date tillage and residue management on productivity of cotton (Gossypium hirsutum L.) -wheat (Triticum aestivum L.) system in northwest India. Soil Tillage Res. 2008, 99, 76–83. [Google Scholar] [CrossRef]
- Wang, W.Q.; Sardans, J.; Wang, C.; Pan, T.; Zeng, C.S.; Lai, D.Y.F.; Bartrons, M.; Penuelas, J. Straw application strategy to optimize nutrient release in a southeastern China rice cropland. Agronomy 2017, 7, 84. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Zhang, J.B.; Zhao, B.Z.; Yan, P.; Zhou, G.X.; Xin, X.L. Effects of straw amendment and moisture on microbial communities in Chinese fluvo-aquic soil. J. Soils Sediments 2014, 14, 1829–1840. [Google Scholar] [CrossRef]
- Tian, K.; Zhao, Y.C.; Xu, X.H.; Hai, N.; Huang, B.A.; Deng, W.J. Effects of long-term fertilization and residue management on soil organic carbon changes in paddy soils of China: A meta-analysis. Agric. Ecosyst. Environ. 2015, 204, 40–50. [Google Scholar] [CrossRef]
- Lou, Y.L.; Liang, W.J.; Xu, M.G.; He, X.H.; Wang, Y.D.; Zhao, K. Straw coverage alleviates seasonal variability of the topsoil microbial biomass and activity. Catena 2011, 86, 117–120. [Google Scholar] [CrossRef]
- Zeng, J.; Liu, X.J.; Song, L.; Lin, X.G.; Zhang, H.Y.; Shen, C.C.; Chu, H.Y. Nitrogen fertilization directly affects soil bacterial diversity and indirectly affects bacterial community composition. Soil Biol. Biochem. 2016, 92, 41–49. [Google Scholar] [CrossRef]
- Zhao, F.Z.; Ren, C.J.; Zhang, L.; Han, X.H.; Yang, G.H.; Wang, J. Changes in soil microbial community are linked to soil carbon fractions after afforestation. Eur. J. Soil Sci. 2018, 69, 370–379. [Google Scholar] [CrossRef]
- Wei, T.; Zhang, P.; Wang, K.; Ding, R.X.; Yang, B.P.; Nie, J.F.; Jia, Z.K.; Han, Q.F. Effects of wheat straw incorporation on the availability of soil nutrients and enzyme activities in semiarid areas. PLoS ONE 2015, 10, e0120994. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zha, L.Y.; Qiu, Z.Q.; Wang, X.H.; Wu, J.; Zhu, L.Q.; Bian, X.M.; Cao, W.Z.; Du, L. Study on feasibility of straw concentrated ditch-buried returning field using machine. Acta Agric. Zhejiangensis 2013, 25, 135–141. [Google Scholar]
- Yang, H.S.; Xu, M.M.; Koide, R.T.; Liu, Q.; Dai, Y.J.; Liu, L.; Bian, X.M. Effect of ditch-buried straw return on water percolation, nitrogen leaching and crop yields in a rice-wheat rotation system. J. Sci. Food Agric. 2016, 96, 1141–1149. [Google Scholar] [CrossRef]
- Xu, Y.Z.; Nie, L.X.; Buresh, R.J.; Huang, J.L.; Cui, K.H.; Xu, B.; Gong, W.H.; Peng, S.B. Agronomic performance of late-season rice under different tillage, straw, and nitrogen management. Field Crops Res. 2010, 115, 79–84. [Google Scholar] [CrossRef]
- Zhu, L.Q.; Hu, N.J.; Zhang, Z.W.; Xu, J.L.; Tao, B.R.; Meng, Y.L. Short-term responses of soil organic carbon pool management index to different annual straw return rates in a rice-wheat. Catena 2015, 135, 283–289. [Google Scholar] [CrossRef]
- Brar, B.S.; Singh, K.; Dheri, G.S.; Kumar-Balwinder. Carbon sequestration and soil carbon pools in a rice-wheat cropping system: Effect of long-term use of inorganic fertilizers and organic manure. Soil Tillage Res. 2013, 128, 30–36. [Google Scholar] [CrossRef]
- Lu, R.K. Methods for Soil Agricultural and Chemical Analysis, 1st ed.; Agricultural Science Press: Beijing, China, 1999; pp. 80–82. [Google Scholar]
- Bao, S.D. Methods for Soil Agricultural and Chemical Analysis, 2nd ed.; Agriculture Press: Beijing, China, 2000; pp. 79–97. [Google Scholar]
- Jiang, P.K.; Xu, Q.F.; Xu, Z.H.; Cao, Z. Seasonal changes in soil labile organic carbon pools within a Phyllostachys praecox stand under high rate fertilization and winter mulch in subtropical China. Forest Ecol. Manag. 2006, 236, 30–36. [Google Scholar] [CrossRef]
- Vance, E.D.; Brookes, P.C.; Jenkinson, D.S. An extraction method for measuring soil microbial biomass-C. Soil Biol. Biochem. 1987, 19, 703–707. [Google Scholar] [CrossRef]
- Jenkinson, D.S.; Brookes, P.C.; Powlson, D.S. Measuring soil microbial biomass. Soil Biol. Biochem. 2004, 36, 5–7. [Google Scholar] [CrossRef]
- Guan, S.Y. Soil Enzymes and Its Methodology; Agricultural Press: Beijing, China, 1986; pp. 274–340. [Google Scholar]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Pena, A.G.; Goodrich, J.K.; Gordon, J.I.; et al. QIME allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oksanen, J.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.R. Vegan: Community Ecology Package; R Package Version 2.0-6. CRAN. R-Project. 2013. Available online: http://CRAN.R-project.org/package=vegan (accessed on 20 February 2020).
- Wang, X.J.; Jia, Z.K.; Liang, L.Y.; Zhao, Y.F.; Yang, B.P.; Ding, R.X.; Wang, J.P.; Nie, J.F. Changes in soil characteristics and maize yield under straw returning system in dryland farming. Field Crops Res. 2018, 218, 11–17. [Google Scholar] [CrossRef]
- Mousavi, S.F.; Moazzeni, M.; Mostafazadeh-Fard, B.; Yazdani, M.R. Effects of rice straw incorporation on some physical characteristics of paddy soils. J. Agric. Sci. Technol. 2012, 14, 1173–1183. [Google Scholar]
- Zhao, J.; Ni, T.; Li, J.; Lu, Q.; Fang, Z.Y.; Huang, Q.W.; Zhang, R.F.; Li, R.; Shen, B.; Shen, Q.R. Effects of organic-inorganic compound fertilizer with reduced chemical fertilizer application on crop yields, soil biological activity and bacterial community structure in a rice-wheat cropping system. Appl. Soil Ecol. 2016, 99, 1–12. [Google Scholar] [CrossRef]
- Liu, X.; Herbert, S.J.; Hashemi, A.M.; Zhang, X.; Ding, G. Effects of agricultural management on soil organic matter and carbon transformation—A review. Plant Soil Environ. 2006, 52, 531–543. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, J.; McCarthy, J.F.; Perfect, E.; Mayer, L.M.; Jastrow, J.D. Soil water hysteresis in water-stable microaggregates as affected by organic matter. Soil Sci. Soc. Am. J. 2008, 72, 212–220. [Google Scholar] [CrossRef] [Green Version]
- Nie, J.; Zhou, J.M.; Wang, H.Y.; Chen, X.Q.; Du, C.W. Effect of long-term rice straw return on soil glomalin, carbon and nitrogen. Pedosphere 2007, 17, 295–302. [Google Scholar] [CrossRef]
- Malhi, S.S.; Nyborg, M.; Solberg, E.D.; Mcconkey, B.; Dyck, M.; Puurveen, D. Long-term straw management and N fertilizer rate effects on quantity and quality of organic C and N and some chemical properties in two contrasting soils in Western Canada. Biol. Fert. Soils 2011, 47, 785–800. [Google Scholar] [CrossRef]
- Tan, D.S.; Jin, J.Y.; Huang, S.W.; Li, S.T.; He, P. Effect of long-term application of K fertilizer and wheat straw to soil on crop yield and soil K under different planting systems. Agric. Sci. China 2007, 6, 200–207. [Google Scholar]
- Liu, C.; Lu, M.; Cui, J.; Li, B.; Fang, C.M. Effects of straw carbon input on carbon dynamics in agricultural soils: A meta-analysis. Glob. Chang. Biol. 2014, 20, 1366–1381. [Google Scholar] [CrossRef]
- Zhang, P.; Wei, T.; Li, Y.L.; Wang, K.; Jia, Z.K.; Han, Q.F.; Ren, X.L. Effects of straw incorporation on the stratification of the soil organic C, total N and C:N ratio in a semiarid region of China. Soil Tillage Res. 2015, 153, 28–35. [Google Scholar] [CrossRef]
- Zhu, J.; Peng, H.; Ji, X.H.; Li, C.J.; Li, S.N. Effects of reduced inorganic feretilization and rice straw recovery on soil enzyme activities and bacterial community in double-rice paddy soils. Eur. J. Soil Biol. 2019, 94, 103116. [Google Scholar] [CrossRef]
- Fu, X.; Wang, J.; Sainju, U.M.; Zhao, F.Z.; Liu, W.Z. Soil microbial community and carbon and nitrogen fractions responses to mulching under winter wheat. Appl. Soil Ecol. 2019, 139, 64–68. [Google Scholar] [CrossRef]
- Fierer, N.; Lauber, C.L.; Ramirez, K.S.; Zaneveld, J.; Bradford, M.A.; Knight, R. Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. ISME J. 2012, 6, 1007–1017. [Google Scholar] [CrossRef] [Green Version]
- Eilers, K.G.; Lauber, C.L.; Knight, R.; Fierer, N. Shifts in bacterial community structure associated with inputs of low molecular weight carbon compounds to soil. Soil Biol. Biochem. 2010, 42, 896–903. [Google Scholar] [CrossRef]
- Trivedi, P.; Rochester, I.J.; Trivedi, C.; Nostrand, J.D.V.; Zhou, J.; Karunaratne, S.; Anderson, I.C.; Singh, B.K. 2015. Soil aggregate size mediates the impacts of cropping regimes on soil carbon and microbial communities. Soil Biol. Biochem. 2015, 91, 169–181. [Google Scholar] [CrossRef]
- Dai, J.; Hu, J.L.; Zhu, A.N.; Lin, X.G. No-tillage with half-amount residue retention enhances microbial functional diversity, enzyme activity and glomalin-related soil protein content within soil aggregates. Soil Use Manag. 2017, 33, 153–162. [Google Scholar] [CrossRef] [Green Version]
- Ren, C.J.; Zhao, F.Z.; Kang, D.; Yang, G.H.; Han, Z.H.; Tong, X.G.; Feng, Y.Z.; Ren, G.X. Linkages of C:N:P stoichiometry and bacterial community in soil following afforestation of former farmand. For. Ecol. Manag. 2016, 376, 59–66. [Google Scholar] [CrossRef]
- Roper, M.M.; Gupta, V.V.S.R.; Murphy, D.V. Tillage practices altered labile soil organic carbon and microbial function without affecting crop yields. Aust. J. Soil Res. 2010, 48, 274–285. [Google Scholar] [CrossRef]
- Singh, V.K.; Dwivedi, B.S.; Mishra, R.P.; Shukla, A.K.; Timsina, J.; Upadhyay, P.K.; Shekhawat, K.; Majundar, K.; Panwar, A.S. Yields, soil health and fram profits under a rice-wheat system: Long-term effect of fertilizers and organic manures applied alone and in combination. Agronomy 2019, 9, 1. [Google Scholar] [CrossRef] [Green Version]
- Jastrow, J.D. Soil aggregate formation and the accrual of particulate and mineral associated organic matter. Soil Biol. Biochem. 1996, 28, 656–676. [Google Scholar] [CrossRef]
- Siwik-Ziomek, A.; Szczepanek, M. Soil extracellular enzyme activities and uptake of N by Oilseed Rape depending on fertilization and seaweed biostimulant application. Agronomy 2019, 9, 480. [Google Scholar] [CrossRef] [Green Version]
- Huang, Q.R.; Hu, F.; Huang, S.; Li, H.X.; Yuan, Y.H.; Pan, G.X.; Zhang, W.J. Effect of long-term fertilization on organic carbon and nitrogen in a subtropical paddy soil. Pedosphere 2009, 19, 727–734. [Google Scholar] [CrossRef]
- Wang, X.Y.; Sun, B.; Mao, J.D.; Sui, Y.Y.; Cao, X.Y. Structural convergence of maize and wheat straw during two-year decomposition under different climate conditions. Environ. Sci. Technol. 2012, 46, 7159–7165. [Google Scholar] [CrossRef]
- Witt, C.; Cassman, K.G.; Olk, D.C.; Biker, U.; Liboon, S.P.; Samson, M.I.; Ottow, J.C.G. Crop rotation and residue management effects on carbon sequestration, nitrogen cycling and productivity of irrigated rice systems. Plant Soil 2000, 225, 263–278. [Google Scholar] [CrossRef]
- Bradford, J.M.; Peterson, G.A. Conservation tillage. In Handbook of Soil Science; Sumner, M.E., Ed.; CRC Press: Boca Raton, FL, USA, 2000; pp. 247–269. [Google Scholar]
- Sardans, J.; Peñuelas, J.; Estiarte, M. Changes in soil enzymes related to C and N cycle and in soil C and N content under prolonged warming and drought in a Mediterranean shrubland. Appl. Soil Ecol. 2008, 39, 223–235. [Google Scholar] [CrossRef]
- Zibilske, L.M.; Bradford, J.M.; Smart, J.R. Conservation tillage induced changes in organic carbon: Total nitrogen and available phosphorus in a semi-arid alkaline subtropical soil. Soil Tillage Res. 2002, 66, 153–163. [Google Scholar] [CrossRef]
- Braschi, I.; Ciavatta, C.; Giovannini, C.; Gessa, C. Combined effect of water and organic matter on phosphorus availability in calcareous soils. Nutr. Cycl. Agroecosyst. 2003, 67, 67–74. [Google Scholar] [CrossRef]
- Zhu, J.; Qu, B.; Li, M. Phosphorus mobilization in the Yeyahu Wetland: Phosphatase enzyme activities and organic phosphorus fractions in the rhizosphere soils. Int. Biodeter. Biodegr. 2017, 124, 304–313. [Google Scholar] [CrossRef]
- Boring, T.J.; Thelen, K.D.; Board, J.E.; De Bruin, J.L.; Lee, C.D.; Naeve, S.L.; Ross, W.J.; Kent, W.A.; Ries, L.L. Phosphorus and potassium fertilizer application strategies in Corn-Soybean rotations. Agronomy 2018, 8, 195. [Google Scholar] [CrossRef] [Green Version]
- Sui, N.; Zhou, Z.G.; Yu, C.R.; Liu, R.X.; Yang, C.Q.; Zhang, F.; Song, G.L.; Meng, Y.L. Yield and potassium use efficiency of cotton with wheat straw incorporation and potassium fertilization on soils with various conditions in the wheat–cotton rotation system. Field Crops Res. 2015, 172, 132–144. [Google Scholar] [CrossRef]
- Singh, V.K.; Dwivedi, B.S.; Singh, Y.; Singh, S.K.; Mishra, R.P.; Shukla, A.K.; Rathore, S.S.; Shekhawat, K.; Majumdar, K.; Jat, M.L. Effect of tillage and crop establishment, residue management and K fertilization on yield, K use efficiency and apparent K balance under rice-maize system in north-western India. Field Crops Res. 2018, 224, 1–12. [Google Scholar] [CrossRef]
- Zhao, Y.C.; Wang, P.; Li, J.L.; Chen, Y.R.; Ying, X.Z.; Liu, S.Y. The effects of two organic manures on soil properties and crop yields on a temperate calcareous soil under a wheat–maize cropping system. Eur. J. Agron. 2009, 31, 36–42. [Google Scholar] [CrossRef]
- Li, X.K.; Zhang, Y.Y.; Wang, W.N.; Khan, M.R.; Cong, R.H.; Lu, J.W. Establishing grading indices of available soil potassium on paddy soils in Hubei province, China. Sci. Rep. 2018, 8, e16381. [Google Scholar] [CrossRef]
- Islam, S.; Timsina, J.; Salim, M.; Majumdar, K.; Gathala, M.K. Potassium supplying capacity of diverse soils and K-use efficiency of maize in South Asia. Agronomy 2018, 8, 121. [Google Scholar] [CrossRef] [Green Version]
- Shadrack, B.D.; Chen, Z.D.; Rattan, L.; Zhang, H.L.; Chen, F. Changes in soil organic carbon and nitrogen as affected by tillage and residue management under wheat–maize cropping system in the North China Plain. Soil Tillage Res. 2014, 144, 110–118. [Google Scholar]
- Zhu, H.H.; Wu, J.S.; Huang, D.Y.; Zhu, Q.H.; Liu, S.L.; Su, Y.R.; Wei, W.X.; Syers, J.K.; Li, Y. Improving fertility and productivity of a highly-weathered upland soil in subtropical China by incorporating rice straw. Plant Soil 2010, 331, 427–437. [Google Scholar] [CrossRef]
- Singh, B.; Shan, Y.H.; Johnson–Beebout, S.E.; Singh, Y.; Buresh, R.J. Crop residue management for lowland rice-based cropping systems in Asia. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Pittsburgh, PA, USA, 2008; pp. 117–199. [Google Scholar]
- Zhang, P.; Wei, T.; Jia, Z.K.; Han, Q.F.; Ren, X.L. Soil aggregate and crop yield changes with different rates of straw incorporation in semiarid areas of northwest China. Geoderma 2014, 230, 41–49. [Google Scholar] [CrossRef]
Property | Soil Layer (cm) | Measurement Method | |
---|---|---|---|
0–10 | 10–20 | ||
Soil texture | Anthrosols | Anthrosols | Hydrometer Method |
pH | 6.91 | 7.14 | By pH meter |
Bulk density (g cm−3) | 1.21 | 1.32 | Core sampler method |
TOC (g kg−1) | 16.05 | 11.22 | By CHNOS elemental analyzer |
TN (g kg−1) | 1.69 | 1.29 | By CHNOS elemental analyzer |
Available P (mg kg−1) | 16.85 | 10.14 | By 0.5 M NaHCO3 extraction |
Exchangeable K (mg kg−1) | 230 | 172 | By 1 M ammonium acetate extraction |
pH | Bulk Density (g cm−3) | TOC (g kg−1) | TN (g kg−1) | ||||
---|---|---|---|---|---|---|---|
0–20 cm | 0–10 cm | 10–20 cm | 0–10 cm | 10–20 cm | 0–10 cm | 10–20 cm | |
2016 R-H | |||||||
CK | 6.70 a | 1.24 a | 1.33 a | 15.47 a | 11.27 a | 1.64 a | 1.30 a |
M0Ri | 6.73 a | 1.23 a | 1.36 a | 15.52 a | 11.36 a | 1.70 a | 1.31 a |
MiRi | 6.77 a | 1.24 a | 1.37 a | 15.57 a | 11.36 a | 1.69 a | 1.34 a |
MmRi | 6.77 a | 1.24 a | 1.35 a | 15.61 a | 11.33 a | 1.73 a | 1.36 a |
2017 R-H | |||||||
CK | 6.68 c | 1.22 a | 1.30 a | 15.81 a | 11.20 a | 1.64 bc | 1.31 a |
M0Ri | 6.76 bc | 1.24 a | 1.35 a | 16.02 a | 11.05 a | 1.62 c | 1.33 a |
MiRi | 7.00 a | 1.19 a | 1.34 a | 16.27 a | 10.87 a | 1.70 ab | 1.32 a |
MmRi | 6.90 ab | 1.22 a | 1.36 a | 15.94 a | 11.32 a | 1.71 a | 1.33 a |
2018 R-H | |||||||
CK | 6.53 b | 1.24 a | 1.34 a | 15.41 b | 11.32 a | 1.70 b | 1.29 a |
M0Ri | 6.51 b | 1.22 ab | 1.37 a | 16.62 a | 11.42 a | 1.69 b | 1.33 a |
MiRi | 6.81 a | 1.17 b | 1.41 a | 16.86 a | 11.32 a | 1.83 ab | 1.35 a |
MmRi | 6.70 a | 1.19 b | 1.40 a | 16.98 a | 11.97 a | 1.90 a | 1.36 a |
Source of variation | |||||||
Year (Y) | * | ns | ns | ** | ns | ** | ns |
Treatment (T) | ns | ns | ns | ** | ns | ** | ns |
Y×T | ns | ns | ns | ** | ns | ns | ns |
Year | Season | Treatment | DOC (mg kg−1) | MBC (mg kg−1) | Nmin (mg kg−1) | Available P (mg kg−1) | Exchangeable K (mg kg−1) |
---|---|---|---|---|---|---|---|
2016 | Rice | CK | 203.94 b | 174.00 c | 8.55 a | 12.23 c | 152.23 b |
M0Ri | 220.56 b | 181.52 c | 8.31 a | 12.51 c | 158.14 ab | ||
MiRi | 290.77 a | 240.68 b | 8.35 a | 14.35 b | 158.06 ab | ||
MmRi | 313.75 a | 266.60 a | 8.43 a | 15.21 a | 166.07 a | ||
2017 | Maize | CK | 225.33 d | 206.89 c | 18.81c | 13.48 d | 157.04 c |
M0Ri | 266.71 c | 236.87 b | 19.11 c | 14.78 c | 165.72 b | ||
MiRi | 317.79 b | 254.93 a | 19.81 b | 16.12 b | 169.67 b | ||
MmRi | 339.66 a | 269.03 a | 21.00 a | 18.14 a | 180.98 a | ||
Rice | CK | 232.57 d | 235.67 c | 19.99 b | 14.38 d | 167.88 d | |
M0Ri | 271.13 c | 262.06 c | 20.50 b | 15.82 c | 176.99 c | ||
MiRi | 332.08 b | 300.18 b | 20.44 b | 17.57 b | 191.65 b | ||
MmRi | 362.20 a | 333.98 a | 22.23 a | 19.83 a | 205.65 a | ||
2018 | Maize | CK | 251.74 d | 328.72 d | 20.27 d | 14.54 d | 167.55 b |
M0Ri | 316.24 c | 388.69 c | 23.99 c | 16.54 c | 169.07 b | ||
MiRi | 386.55 b | 453.40 b | 28.04 b | 18.91 b | 192.85 a | ||
MmRi | 409.60 a | 471.56 a | 32.40 a | 20.31 a | 191.24 a | ||
Rice | CK | 252.26 d | 347.80 d | 19.17 b | 14.82 d | 160.82 b | |
M0Ri | 319.17 c | 424.77 c | 19.85 b | 17.73 c | 172.63 b | ||
MiRi | 398.25 b | 465.77 b | 20.56 b | 19.86 b | 193.22 a | ||
MmRi | 426.24 a | 499.40 a | 22.53 a | 21.58 a | 198.00 a | ||
Source of variation | |||||||
Year (Y) | ** | ** | ** | ** | ** | ||
Season (S) | ** | ** | ** | ** | ** | ||
Treatment (T) | ** | ** | ** | ** | ** | ||
Y × S | ns | ** | ** | ns | ** | ||
Y × T | ** | ** | ** | ** | ** | ||
S × T | * | * | ** | * | * | ||
Y × S × T | ns | ** | ** | ns | ns |
Treatment | C Accumulation (kg ha−1) | N Uptake (kg ha−1) | ||||
---|---|---|---|---|---|---|
Maize | Rice | Annual | Maize | Rice | Annual | |
CK | 6121 c | 6069 b | 12190 d | 173 c | 170 c | 344 c |
M0Ri | 6475 b | 6152 b | 12627 c | 183 b | 170 c | 353 c |
MiRi | 6532 b | 6646 a | 13179 b | 185 b | 198 b | 383 b |
MmRi | 6930 a | 6748 a | 13678 a | 198 a | 213 a | 411 a |
Year | Treatment | Crop Yield (Mg ha−1) | Straw Return (Mg ha−1) | ||||
---|---|---|---|---|---|---|---|
Maize | Rice | Annual | Maize | Rice | Annual | ||
2016 | CK | 7.40 a | 6.47 b | 13.87 a | - | - | - |
M0Ri | 7.54 a | 6.30 b | 13.84 a | - | 8.38 a | 8.38 b | |
MiRi | 7.57 a | 7.01 ab | 14.58 a | 5.27 a | 8.99 a | 14.26 a | |
MmRi | 7.35 a | 7.36 a | 14.71 a | 5.27 a | 8.13 a | 13.40 a | |
2017 | CK | 7.49 b | 6.63bc | 14.12 c | - | - | - |
M0Ri | 8.32a | 6.37 c | 14.70 c | - | 5.39 a | 5.39 b | |
MiRi | 8.33a | 7.09 ab | 15.41 b | 4.87 a | 5.39 a | 10.25 a | |
MmRi | 8.62 a | 7.64 a | 16.26 a | 5.14 a | 5.84 a | 10.98 a | |
2018 | CK | 8.67 c | 9.52 b | 18.20 b | - | - | - |
M0Ri | 9.04 bc | 9.44 b | 18.49 b | - | 5.42 b | 5.42 b | |
MiRi | 9.65 a | 10.68 a | 20.33 a | 5.13 a | 6.51 a | 11.65 a | |
MmRi | 9.30 ab | 11.25 a | 20.55 a | 5.27 a | 6.50 a | 11.77 a | |
Source of variation | |||||||
Year (Y) | ** | ** | ** | - | - | - | |
Treatment (T) | ** | ** | ** | - | - | - | |
Y × T | ** | ns | ns | - | - | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, Y.; Ma, W.; Zhou, B.; Yang, X.; Salah, A.; Li, C.; Cao, C.; Zhan, M.; Zhao, M. Effects of Straw-Return Method for the Maize–Rice Rotation System on Soil Properties and Crop Yields. Agronomy 2020, 10, 461. https://doi.org/10.3390/agronomy10040461
Han Y, Ma W, Zhou B, Yang X, Salah A, Li C, Cao C, Zhan M, Zhao M. Effects of Straw-Return Method for the Maize–Rice Rotation System on Soil Properties and Crop Yields. Agronomy. 2020; 10(4):461. https://doi.org/10.3390/agronomy10040461
Chicago/Turabian StyleHan, Yuling, Wei Ma, Baoyuan Zhou, Xiaolong Yang, Akram Salah, Congfeng Li, Cougui Cao, Ming Zhan, and Ming Zhao. 2020. "Effects of Straw-Return Method for the Maize–Rice Rotation System on Soil Properties and Crop Yields" Agronomy 10, no. 4: 461. https://doi.org/10.3390/agronomy10040461
APA StyleHan, Y., Ma, W., Zhou, B., Yang, X., Salah, A., Li, C., Cao, C., Zhan, M., & Zhao, M. (2020). Effects of Straw-Return Method for the Maize–Rice Rotation System on Soil Properties and Crop Yields. Agronomy, 10(4), 461. https://doi.org/10.3390/agronomy10040461