Optimizing Nitrogen Application for Growth and Productivity of Pomegranates
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material and Experimental Design
2.2. Growth Indices
2.3. Water Consumption and Nutrient Uptake
2.4. Leaf Analyses
2.5. Nitrogen Use Efficiency
- PFP Partial factor productivity of applied N = fruit yield (of the treatment)/N application amount;
- NUpE Nitrogen uptake efficiency = N uptake (of the treatment)/N application;
- NUtE Nitrogen utilization efficiency = fruit yield (of the treatment)/N uptake;
2.6. Statistical Analyses
3. Results
3.1. Nitrogen Concentration in the Plant
3.2. Vegetative Growth Indices
3.3. Nitrogen Uptake
3.4. Reproduction Indices
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Figure | Parameter | Year or Month | Equation (Y = …) | R2 | P |
---|---|---|---|---|---|
1 A | Leaf N concentration | 2016-May | 16.65X/(2.502 + X(1 + X/1.421e157)) | 0.6104 | <0.0001 |
2016-Sept. | 14.11X/(3.769 + X(1 + X/58853)) | 0.7716 | <0.0001 | ||
1 B | 2017-May | 22.3X/(6.561 + X(1 + X/9244)) | 0.8788 | <0.0001 | |
2017-Sept. | 18.18X/(5.233 + X(1 + X/1083)) | 0.6329 | <0.0001 | ||
1 C | 2018-May | 20.54X/(4.218 + X(1 + X/4.115e139)) | 0.8169 | <0.0001 | |
2018-Sept. | 18.47X/(4.016 + X(1 + X/48734)) | 0.7763 | <0.0001 | ||
2 A | Leaf chlorophyll content | 2016 | 64.44X/(4.083 + X(1 + X/1.028e104)) | 0.8656 | <0.0001 |
2017 | 62.33X/(5.287 + X(1 + X/6403)) | 0.9335 | <0.0001 | ||
2018 | 68.16X/(2.86 + X(1 + X/1.314e92)) | 0.8459 | <0.0001 | ||
3 A | Canopy volume | 2017 | 16.46X/(24.93 + X(1 + X/131.7)) | 0.7059 | <0.0001 |
2018 | 69.74X/(42.18 + X(1 + X/54.29)) | 0.7463 | <0.0001 | ||
3 B | Pruning branch weight | 2017 | 1434X/(32798 + X(1 + X/0.09584)) | 0.4641 | <0.0001 |
2018 | 8922X/(22432 + X(1 + X/0.1446)) | 0.5911 | <0.0001 | ||
3 C | Leaf density | 2016 | 5.775X/(5.346 + X(1 + X/516.2)) | 0.4807 | <0.0001 |
2017 | 13.47X/(14.42 + X(1 + X/219.3)) | 0.8860 | <0.0001 | ||
2018 | 11.17X/(5.542 + X(1 + X/429.9)) | 0.6508 | <0.0001 | ||
3 D | Annual accumulated water consumption | 2016 | 13.33X/(29.61 + X(1 + X/65.26)) | 0.8095 | <0.0001 |
2017 | 21.75X/(25.09 + X(1 + X/124)) | 0.9315 | <0.0001 | ||
2018 | 105.2X/(107.1 + X(1 + X/23.58)) | 0.9417 | <0.0001 | ||
5 | Fruit yield | 2017–18 | 279X/(27.35 + X(1 + X/132.2)) | 0.7248 | <0.0001 |
Nitrogen uptake | 2017–18 | 10002X/(293.8 + X(1 + X/74.46)) | 0.9336 | <0.0001 | |
Nitrogen utilization efficiency | 2017–18 | 167.5X/(0.4928 + X(1 + X/27.31)) | 0.8354 | <0.0001 |
Figure | Parameter | Year or Month | 5 | 10 | 20 | 40 | 70 | 100 | 150 | 200 |
---|---|---|---|---|---|---|---|---|---|---|
1 A | Leaf N concentration | 2016-May | f | d | c | bc | ab | ab | ab | a |
2016-Sept. | c | c | b | ab | ab | ab | ab | a | ||
1 B | 2017-May | f | e | d | cd | ab | cd | bc | a | |
2017-Sept. | c | b | a | a | ab | a | a | a | ||
1 C | 2018-May | d | d | c | bc | ab | c | bc | a | |
2018-Sept. | d | c | b | b | ab | b | ab | a | ||
2 A | Leaf chlorophyll content | 2016 | d | c | b | b | a | b | a | a |
2017 | f | e | d | c | bc | abc | a | ab | ||
2018 | d | d | c | bc | ab | ab | ab | a | ||
3 A | Canopy volume | 2017 | d | c | ab | ab | a | ab | b | b |
2018 | e | d | abc | a | ab | bc | bc | cd | ||
3 B | Pruning branch weight | 2017 | d | cd | bc | a | ab | ab | bc | abc |
2018 | e | de | b | bc | a | ab | cd | cd | ||
3 C | Leaf density | 2016 | d | bc | bc | a | a | b | bc | ab |
2017 | e | d | bc | ab | a | c | c | c | ||
2018 | d | c | c | a | ab | bc | c | c | ||
3 D | Annual accumulated water consumption | 2016 | e | d | b | b | a | c | c | c |
2017 | f | e | c | a | b | b | bc | d | ||
2018 | e | d | b | a | a | a | c | d | ||
5 | Fruit yield | 2017–18 | d | c | ab | a | a | ab | ab | b |
Nitrogen uptake | 2017–18 | e | e | d | c | b | a | a | a | |
Nitrogen utilization efficiency | 2017–18 | a | a | b | c | cd | d | cd | d |
References
- Bernardi, A.C.D.C.; Carmello, Q.A.D.C.; Carvalho, S.A.D.; Machado, E.C.; Medina, C.L.; Gomes, M.D.M.D.A.; Lima, D.M. Nitrogen, phosphorus and potassium fertilization interactions on the photosynthesis of containerized citrus nursery trees. J. Plant. Nutr. 2015, 38, 1902–1912. [Google Scholar] [CrossRef]
- Bonner, J.; Varner, J.E. Plant Biochemistry; Academic Press: New York, NY, USA, 2012. [Google Scholar]
- Lea, P.J.; Morot-Gaudry, J.F. Plant Nitrogen; Springer Science & Business Media and INRA: Paris, France, 2013. [Google Scholar]
- Lin, Y.L.; Tsay, Y.F. Influence of differing nitrate and nitrogen availability on flowering control in Arabidopsis. J. Exp. Bot. 2017, 68, 2603–2609. [Google Scholar] [CrossRef] [PubMed]
- Huett, D. Prospects for manipulating the vegetative-reproductive balance in horticultural crops through nitrogen nutrition: A review. Aust. J. Agric. Res. 1996, 47, 47–66. [Google Scholar] [CrossRef]
- Natale, W.; Rozane, D.E.; de Medeiros Corrêa, M.C.; Parent, L.E.; de Deus, J.A.L. Diagnosis and management of nutrient constraints in guava. Fruit Crop. 2020, 711–722. [Google Scholar]
- Zipori, I.; Erel, R.; Yermiyahu, U.; Ben-Gal, A.; Dag, A. Sustainable Management of Olive Orchard Nutrition: A Review. Agriculture 2020, 10, 11. [Google Scholar] [CrossRef]
- De Araujo, Q.R.; De, A.; Loureiro, G.A.; Ahnert, D.; Escalona-Valdez, R.A.; Baligar, V.C. Interactions between Soil, Leaves and Beans Nutrient Status and Dry Biomass of Beans and Pod Husk of Forastero Cacao: An Exploratory Study. Commu. Soil Sci. Plant Anal. 2020, 1–15. [Google Scholar]
- Zhai, Y.; Lei, Y.; Wu, J.; Teng, Y.; Wang, J.; Zhao, X.; Pan, X. Does the groundwater nitrate pollution in China pose a risk to human health? A critical review of published data. Environ. Sci.. Pollut. Res. 2017, 24, 3640–3653. [Google Scholar] [CrossRef]
- Zhai, Y.; Zhao, X.; Teng, Y.; Li, X.; Zhang, J.; Wu, J.; Zuo, R. Groundwater nitrate pollution and human health risk assessment by using HHRA model in an agricultural area, NE China. Ecotoxicol. Environ. Saf. 2017, 137, 130–142. [Google Scholar] [CrossRef]
- Baram, S.; Couvreur, V.; Harter, T.; Read, M.; Brown, P.; Kandelous, M.; Smart, D.R.; Hopmans, J.W. Estimating nitrate leaching to groundwater from orchards: Comparing crop nitrogen excess, deep vadose zone data-driven estimates, and HYDRUS modeling. Vadose Zone J. 2016, 15. [Google Scholar] [CrossRef]
- Boyle, E. Nitrogen pollution knows no bounds. Science 2017, 356, 700–701. [Google Scholar] [CrossRef]
- Cameira, M.; Mota, M. Nitrogen related diffuse pollution from horticulture production—mitigation practices and assessment strategies. Horticulturae 2017, 3, 25. [Google Scholar] [CrossRef]
- Erel, R.; Yermiyahu, U.; Van Opstal, J.; Ben-Gal, A.; Schwartz, A.; Dag, A. The importance of olive (Olea europaea L.) tree nutritional status on its productivity. Sci. Hortic. 2013, 159, 8–18. [Google Scholar] [CrossRef]
- Fernández-Escobar, R. Use and abuse of nitrogen in olive fertilization. Acta Hortic. 2011, 888, 249–257. [Google Scholar] [CrossRef]
- Zaman, Q.; Schumann, A.; Miller, W. Variable rate nitrogen application in Florida citrus based on ultrasonically-sensed tree size. Appl. Eng. Agric. 2005, 21, 331–335. [Google Scholar] [CrossRef]
- Nava, G.; Dechen, A.R.; Nachtigall, G.R. Nitrogen and potassium fertilization affect apple fruit quality in southern Brazil. Commun. Soil Sci. Plant Anal. 2007, 39, 96–107. [Google Scholar] [CrossRef]
- Sperling, O.; Karuanakaran, R.; Erel, R.; Yasuor, H.; Klipcan, L.; Yermiyahu, U. Excessive nitrogen impairs hydraulics, limits photosynthesis, and alters the metabolic composition of almond trees. Plant Physiol. Biochem. 2019, 143, 265–274. [Google Scholar] [CrossRef] [PubMed]
- Haberman, A.; Dag, A.; Shtern, N.; Zipori, I.; Erel, R.; Ben-Gal, A.; Yermiyahu, U. Significance of proper nitrogen fertilization for olive productivity in intensive cultivation. Sci. Hortic. 2019, 246, 710–717. [Google Scholar] [CrossRef]
- Muñoz-Huerta, R.; Guevara-Gonzalez, R.; Contreras-Medina, L.; Torres-Pacheco, I.; Prado-Olivarez, J.; Ocampo-Velazquez, R. A review of methods for sensing the nitrogen status in plants: Advantages, disadvantages and recent advances. Sensors 2013, 13, 10823–10843. [Google Scholar]
- Babu, D. Floral biology of pomegranate (Punica granatum L.). Pomegranate 2010, 4, 45–50. [Google Scholar]
- Romano, K.R.; Finco, F.D.B.A.; Rosenthal, A.; Finco, M.V.A.; Deliza, R. Willingness to pay more for value-added pomegranate juice (Punica granatum L.): An open-ended contingent valuation. Food Res. Int. 2016, 89, 359–364. [Google Scholar] [CrossRef]
- Holland, D.; Hatib, K.; Bar-Ya’akov, I. Pomegranate: Botany, Horticulture, Breeding. Hortic. Rev. 2009, 35, 127–191. [Google Scholar]
- Venkataramudu, K.; Naik, S.R.; Viswanath, M.; Chandramohan, G. Packaging and storage of pomegranate fruits and arils: A review. Int. J. Chem. 2018, 6, 1964–1967. [Google Scholar]
- Rodríguez, P.; Mellisho, C.; Conejero, W.; Cruz, Z.; Ortuno, M.; Galindo, A.; Torrecillas, A. Plant water relations of leaves of pomegranate trees under different irrigation conditions. Environ. Exp. Bot. 2012, 77, 19–24. [Google Scholar] [CrossRef]
- Sulochanamma, B.; Yellamanda Reddy, T.; Subbi Reddy, G. Effect of basin and drip irrigation on growth, yield and water use efficiency in pomegranate cv. Ganesh. Acta Hortic. 2005, 696, 277–279. [Google Scholar] [CrossRef]
- Mellisho, C.; Egea, I.; Galindo, A.; Rodríguez, P.; Rodríguez, J.; Conejero, W.; Romojaro, F.; Torrecillas, A. Pomegranate (Punica granatum L.) fruit response to different deficit irrigation conditions. Agric. Water Manag. 2012, 114, 30–36. [Google Scholar] [CrossRef]
- Glozer, K.; Ferguson, L. Pomegranate Production in Afghanistan; UCDAVIS College of Agricultural and Environmental Sciences: Davis, CA, USA, 2008. [Google Scholar]
- Ayars, J.E.; Phene, C.J.; Phene, R.C.; Gao, S.; Wang, D.; Day, K.R.; Makus, D.J. Determining pomegranate water and nitrogen requirements with drip irrigation. Agric. Water Manag. 2017, 187, 11–23. [Google Scholar] [CrossRef]
- Carranca, C.; Brunetto, G.; Tagliavini, M. Nitrogen nutrition of fruit trees to reconcile productivity and environmental concerns. Plants 2018, 7, 4. [Google Scholar] [CrossRef]
- Dhillon, W.; Gill, P.; Singh, N. Effect of nitrogen, phosphorus and potassium fertilization on growth, yield and quality of pomegranate ‘Kandhari’. Acta Hortic. 2011, 890, 327–332. [Google Scholar] [CrossRef]
- Wang, D.; Ayars, J.; Tirado-Corbala, R.; Makus, D.; Phene, C.; Phene, R. Water and nitrogen management of young and maturing pomegranate trees; III International Symposium on Pomegranate and Minor. Mediterranean Fruits. ISHS Acta Hortic. 2013, 1089, 395–401. [Google Scholar]
- Nerya, O.; Levin, A. Innovative treatment of pomegranates from harvest to market; III International Symposium on Pomegranate and Minor. Mediterranean Fruits. ISHS Acta Hortic. 2013, 1089, 489–493. [Google Scholar]
- Easlon, H.M.; Bloom, A.J. Easy Leaf Area: Automated digital image analysis for rapid and accurate measurement of leaf area. Appl. Plant Sci. 2014, 2. [Google Scholar] [CrossRef] [PubMed]
- Fallahi, E.; Fallahi, B.; Kiester, M.J. Evapotranspiration-based irrigation systems and nitrogen effects on yield and fruit quality at harvest in fully mature ‘Fuji’apple trees over four years. HortScience 2018, 53, 38–43. [Google Scholar] [CrossRef]
- Nirgude, V.; Misra, K.; Singh, P.; Singh, A.; Singh, N. NPK fertigation of stone fruit crops: A review. Int. J. Chem. Stud. 2018, 6, 3134–3142. [Google Scholar]
- Zhang, L.; Gao, Y.; Zhang, Y.; Liu, J.; Yu, J. Changes in bioactive compounds and antioxidant activities in pomegranate leaves. Sci. Hortic. 2010, 123, 543–546. [Google Scholar] [CrossRef]
- Muhammad, S.; Sanden, B.L.; Lampinen, B.D.; Saa, S.; Siddiqui, M.I.; Smart, D.R.; Olivos, A.; Shackel, K.A.; DeJong, T.; Brown, P.H. Seasonal changes in nutrient content and concentrations in a mature deciduous tree species: Studies in almond (Prunus dulcis (Mill.) DA Webb). Eur. J. Agron. 2015, 5, 52–68. [Google Scholar] [CrossRef]
- Bustan, A.; Avni, A.; Yermiyahu, U.; Ben-Gal, A.; Riov, J.; Erel, R.; Zipori, I.; Dag, A. Interactions between fruit load and macroelement concentrations in fertigated olive (Olea europaea L.) trees under arid saline conditions. Sci. Hortic. 2013, 152, 44–55. [Google Scholar] [CrossRef]
- Stateras, D.C.; Moustakas, N.K. Seasonal changes of macro-and micro-nutrients concentration in olive leaves. J. Plant Nutr. 2018, 41, 186–196. [Google Scholar] [CrossRef]
- Lazare, S.; Haberman, A.; Yermiyahu, U.; Erel, R.; Simenski, E.; Dag, A. Avocado rootstock influences scion leaf mineral content. Arch. Agron. Soil Sci. 2019, 1–11. [Google Scholar] [CrossRef]
- Rubio-Covarrubias, O.A.; Brown, P.H.; Weinbaum, S.A.; Johnson, R.S.; Cabrera, R.I. Evaluating foliar nitrogen compounds as indicators of nitrogen status in Prunus persica trees. Sci. Hortic. 2009, 120, 27–33. [Google Scholar] [CrossRef]
- Fox, R.H.; Walthall, C.L. Crop monitoring technologies to assess nitrogen status. Nitrogen Agric. Syst. 2008, 647–674. [Google Scholar] [CrossRef]
- Di Gioia, F.; Gonnella, M.; Buono, V.; Ayala, O.; Cacchiarelli, J.; Santamaria, P. Calcium cyanamide effects on nitrogen use efficiency, yield, nitrates, and dry matter content of lettuce. Agron. J. 2017, 109, 354–362. [Google Scholar] [CrossRef]
- Neto, C.; Carranca, C.; de Varennes, A.; Oliveira, C.; Clemente, J.; Sobreiro, J. Nitrogen Use Efficiency of Drip-irrigated ‘Rocha’ Pear Trees. Acta Hortic. 2006, 721, 337. [Google Scholar] [CrossRef]
- Xu, G.; Fan, X.; Miller, A.J. Plant nitrogen assimilation and use efficiency. Annu. Rev. Plant Biol. 2012, 63, 153–182. [Google Scholar] [CrossRef]
- Glass, A.D. Nitrogen use efficiency of crop plants: Physiological constraints upon nitrogen absorption. Crit. Rev. Plant Sci. 2003, 22, 453–470. [Google Scholar] [CrossRef]
- Kahramanoglu, I.; Usanmaz, S. Pomegranate Production and Marketing; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Blumenfeld, A.; Shaya, F.; Hillel, R. Cultivation of pomegranate. Options Méd. Ser. 2000, 42, 143–147. [Google Scholar]
- Khattab, M.M.; Shaban, A.E.; El-Shrief, A.H.; El-Deen, M.A. Growth and productivity of pomegranate trees under different irrigation levels. I: Vegetative growth and fruiting. J. Hortic. Sci. Ornam. Plants 2011, 3, 194–198. [Google Scholar]
- Intrigliolo, D.; Nicolas, E.; Bonet, L.; Ferrer, P.; Alarcón, J.; Bartual, J. Water relations of field grown Pomegranate trees (Punica granatum) under different drip irrigation regimes. Agric. Water Manag. 2011, 98, 691–696. [Google Scholar] [CrossRef]
- Quiñones, A.; Martínez-Alcántara, B.; Primo-Millo, E.; Legaz, F. Fertigation: Concept and application in citrus. In Advances in Citrus Nutrition; Springer: Dordrecht, The Netherlands, 2012; pp. 281–301. [Google Scholar]
- Gabriel, J.L.; Quemada, M. Water Management for Enhancing Crop Nutrient Use Efficiency and Reducing Losses. In Advances in Research on Fertilization Management of Vegetable Crops; Springer: Dordrecht, The Netherlands, 2017; pp. 247–265. [Google Scholar]
Periods of Time | N Concentration in Irrigation (mg L−1) | |||||||
---|---|---|---|---|---|---|---|---|
5 | 10 | 20 | 40 | 70 | 100 | 150 | 200 | |
2016/2017 | 211% d | 249% c | 281% bc | 286% bc | 329% a | 310% ab | 287% bc | 272% bc |
2017/2018 | 137% b | 152% a | 148% a | 144% ab | 148% a | 150% a | 145% ab | 144% ab |
2018/2019 | 125% b | 125% b | 131% ab | 140% a | 127% b | 128% b | 128% b | 125% b |
Year | N in Irrigation (mg N L−1) | Yield (kg tree−1) | Fruit Per Tree | N app. Amount (g tree−1) | N Uptake (g tree−1) | N Ratio Uptake/Application | PFP (kg kg−1) | NUtE (kg kg−1) | Volume of Irrigation (m3 tree−1) | WUE (kg m−3) | WUpE (kg m−3) |
---|---|---|---|---|---|---|---|---|---|---|---|
2017 | 5 | 3.4 c | 7 c | 33 | 27 f | 0.81 a | 101.2 bc | 124 b | 6.6 | 0.51 c | 1.25 c |
10 | 19.4 b | 34 b | 121 | 104 ef | 0.86 a | 160.2 a | 186 a | 12.1 | 1.60 b | 3.03 b | |
20 | 43.4 a | 75 a | 309 | 255 de | 0.82 a | 140.3 ab | 170 ab | 15.5 | 2.81 a | 4.66 a | |
40 | 48.2 a | 80 a | 623 | 355 d | 0.57 b | 77.4 cd | 139 ab | 15.6 | 3.09 a | 4.14 ab | |
70 | 43.6 a | 75 a | 1203 | 694 c | 0.58 b | 36.3 de | 63 c | 17.2 | 2.54 a | 4.25 ab | |
100 | 38.2 a | 65 a | 1588 | 822 bc | 0.52 b | 24.1 e | 47 c | 15.9 | 2.41 ab | 3.72 ab | |
150 | 44.9 a | 77 a | 2305 | 957 ab | 0.42 c | 19.5 e | 48 c | 15.4 | 2.92 a | 4.5 ab | |
200 | 36.8 a | 66 a | 2737 | 1037 a | 0.38 c | 13.4 e | 38 c | 13.7 | 2.69 a | 4.74 a | |
2018 | 5 | 15.8 d | 29 c | 48 | 48 e | 1.00 a | 333.3 a | 333 a | 9.5 | 1.67 c | 3.95 e |
10 | 51.2 c | 85 b | 179 | 179 e | 1.00 a | 287.7 a | 287 a | 17.8 | 2.88 b | 5.57 bcd | |
20 | 89.0 ab | 147 a | 502 | 468 d | 0.93 a | 177.3 b | 190 b | 25.1 | 3.55 ab | 5.96 abc | |
40 | 92.8 ab | 159 a | 1170 | 801 bc | 0.69 b | 79.3 c | 118 bc | 29.2 | 3.17 ab | 4.9 cde | |
70 | 97.3 a | 177 a | 2065 | 749 c | 0.36 d | 47.1 c | 131 bc | 29.5 | 3.30 ab | 5.18 cde | |
100 | 79.8 ab | 137 a | 2824 | 1294 a | 0.46 c | 28.3 c | 64 c | 28.2 | 2.83 b | 4.39 de | |
150 | 89.8 ab | 177 a | 3549 | 922 bc | 0.26 e | 25.3 c | 100 c | 23.7 | 3.79 a | 7.44 a | |
200 | 71.6 bc | 140 a | 3991 | 947 b | 0.24 e | 17.9 c | 78 c | 20.0 | 3.59 ab | 7.03 ab |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lazare, S.; Lyu, Y.; Yermiyahu, U.; Heler, Y.; Ben-Gal, A.; Holland, D.; Dag, A. Optimizing Nitrogen Application for Growth and Productivity of Pomegranates. Agronomy 2020, 10, 366. https://doi.org/10.3390/agronomy10030366
Lazare S, Lyu Y, Yermiyahu U, Heler Y, Ben-Gal A, Holland D, Dag A. Optimizing Nitrogen Application for Growth and Productivity of Pomegranates. Agronomy. 2020; 10(3):366. https://doi.org/10.3390/agronomy10030366
Chicago/Turabian StyleLazare, Silit, Yang Lyu, Uri Yermiyahu, Yehuda Heler, Alon Ben-Gal, Doron Holland, and Arnon Dag. 2020. "Optimizing Nitrogen Application for Growth and Productivity of Pomegranates" Agronomy 10, no. 3: 366. https://doi.org/10.3390/agronomy10030366
APA StyleLazare, S., Lyu, Y., Yermiyahu, U., Heler, Y., Ben-Gal, A., Holland, D., & Dag, A. (2020). Optimizing Nitrogen Application for Growth and Productivity of Pomegranates. Agronomy, 10(3), 366. https://doi.org/10.3390/agronomy10030366