Korean Wild Soybeans (Glycine soja Sieb & Zucc.): Geographic Distribution and Germplasm Conservation
Abstract
:1. Introduction
2. Role of Wild Soybean in Soybean Improvement Programs
3. Recent Studies on Genome-Wide Patterns of Genetic Diversity in Wild Soybean
4. Distribution and Conservation of Wild Soybean in Korea
4.1. Geographical Distribution of Wild Soybean in Korea
4.2. Archaeological Records and Background
5. Korea: A Region of High Wild Soybean Diversity
6. Collection of Wild Soybean Germplasm in Korea
6.1. Chung’s Wild Legume Germplasm Collection
6.2. In situ Conservation of G. soja at CWLGC
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Availability of Germplasm
References
- Kofsky, J.; Zhang, H.; Song, B.-H. The untapped genetic reservoir: the past, current, and future applications of the wild soybean (Glycine soja). Front. Plant Sci. 2018, 9. [Google Scholar] [CrossRef] [Green Version]
- Nawaz, M.A.; Rehman, H.M.; Imtiaz, M.; Baloch, F.S.; Lee, J.D.; Yang, S.H.; Lee, S.I.; Chung, G. Systems Identification and Characterization of Cell Wall Reassembly and Degradation Related Genes in Glycine max (L.) Merill, a Bioenergy Legume. Sci. Rep. 2017, 7, 10862. [Google Scholar] [CrossRef] [Green Version]
- Lam, H.-M.; Remais, J.; Fung, M.-C.; Xu, L.; Sun, S.S.-M. Food supply and food safety issues in China. The Lancet 2013, 381, 2044–2053. [Google Scholar] [CrossRef] [Green Version]
- Considine, M.J.; Siddique, K.H.; Foyer, C.H. Nature’s pulse power: Legumes, food security and climate change. J. Exp. Bot. 2017, 68, 1815–1818. [Google Scholar] [CrossRef] [PubMed]
- Allender, C. The Second Report on the State of the World’s Plant. Genetic Resources for Food and Agriculture; FAO Commission on Genetic Resources for Food and Agriculture: Rome, Italy, 2010.
- Lin, B.B. Resilience in agriculture through crop diversification: adaptive management for environmental change. BioScience 2011, 61, 183–193. [Google Scholar] [CrossRef] [Green Version]
- Hyten, D.L.; Song, Q.; Zhu, Y.; Choi, I.-Y.; Nelson, R.L.; Costa, J.M.; Specht, J.E.; Shoemaker, R.C.; Cregan, P.B. Impacts of genetic bottlenecks on soybean genome diversity. Proc. Natl. Acad. Sci. USA 2006, 103, 16666–16671. [Google Scholar] [CrossRef] [Green Version]
- Cowling, W.; Li, L.; Siddique, K.; Henryon, M.; Berg, P.; Banks, R.; Kinghorn, B. Evolving gene banks: Improving diverse populations of crop and exotic germplasm with optimal contribution selection. J. Exp. Bot. 2016, 68, 1927–1939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foyer, C.H.; Lam, H.-M.; Nguyen, H.T.; Siddique, K.H.; Varshney, R.K.; Colmer, T.D.; Cowling, W.; Bramley, H.; Mori, T.A.; Hodgson, J.M. Neglecting legumes has compromised human health and sustainable food production. Nat. Plant. 2016, 2, 16112. [Google Scholar] [CrossRef]
- Muñoz, N.; Liu, A.; Kan, L.; Li, M.-W.; Lam, H.-M. Potential uses of wild germplasms of grain legumes for crop improvement. Int. J. Mol. Sci. 2017, 18, 328. [Google Scholar] [CrossRef] [Green Version]
- Chung, G.; Singh, R.J. Broadening the genetic base of soybean: A multidisciplinary approach. Crit. Rev. Plant Sci. 2008, 27, 295–341. [Google Scholar] [CrossRef]
- Ladizinsky, G.; Newell, C.; Hymowitz, T. Wide crosses in soybeans: Prospects and limitations. Euphytica 1979, 28, 421–423. [Google Scholar] [CrossRef]
- Singh, R.; Nelson, R.L. Methodology for creating alloplasmic soybean lines by using Glycine tomentella as a maternal parent. Plant Breed. 2014, 133, 624–631. [Google Scholar] [CrossRef]
- Singh, R.J. Cytogenetics and genetic introgression from wild relatives in soybean. Nucleus 2019, 62, 3–14. [Google Scholar] [CrossRef]
- Singh, R.; Hymowitz, T. The genomic relationship between Glycine max (L.) Merr. and G. soja Sieb. and Zucc. as revealed by pachytene chromosome analysis. Theor. Appl. Genet. 1988, 76, 705–711. [Google Scholar] [CrossRef]
- He, S.-L.; Wang, Y.-S.; Li, D.-Z.; Yi, T.-S. Environmental and historical determinants of patterns of genetic differentiation in wild soybean (Glycine soja Sieb. et Zucc). Sci. Rep. 2016, 6, 22795. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Z.; Jiang, Y.; Wang, Z.; Gou, Z.; Lyu, J.; Li, W.; Yu, Y.; Shu, L.; Zhao, Y.; Ma, Y. Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nat. Biotechnol. 2015, 33, 408–414. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.-x.; Lin, F.-y.; LI, L.-h.; Wei, L.; Zhe, Y.; LUAN, W.-j.; PIAO, R.-h.; Yuan, G.; NING, X.-c.; Li, Z. Genetic diversity center of cultivated soybean (Glycine max) in China–New insight and evidence for the diversity center of Chinese cultivated soybean. J. Integr. Agric. 2016, 15, 2481–2487. [Google Scholar] [CrossRef]
- Leamy, L.J.; Lee, C.R.; Song, Q.; Mujacic, I.; Luo, Y.; Chen, C.Y.; Li, C.; Kjemtrup, S.; Song, B.H. Environmental versus geographical effects on genomic variation in wild soybean (Glycine soja) across its native range in northeast Asia. Ecol. Evolut. 2016, 6, 6332–6344. [Google Scholar] [CrossRef]
- Hay, F.R.; Probert, R.J. Advances in seed conservation of wild plant species: A review of recent research. Conserv. Physiol. 2013, 1. [Google Scholar] [CrossRef]
- Castañeda-Álvarez, N.P.; Khoury, C.K.; Achicanoy, H.A.; Bernau, V.; Dempewolf, H.; Eastwood, R.J.; Guarino, L.; Harker, R.H.; Jarvis, A.; Struik, P.C.; et al. Global conservation priorities for crop wild relatives. Nat. Plant. 2016, 2, 16022. [Google Scholar] [CrossRef]
- Lam, H.-M.; Xu, X.; Liu, X.; Chen, W.; Yang, G.; Wong, F.-L.; Li, M.-W.; He, W.; Qin, N.; Wang, B. Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nat. Genet. 2010, 42, 1053–1059. [Google Scholar] [CrossRef] [PubMed]
- Xie, M.; Chung, C.Y.-L.; Li, M.-W.; Wong, F.-L.; Wang, X.; Liu, A.; Wang, Z.; Leung, A.K.-Y.; Wong, T.-H.; Tong, S.-W. A reference-grade wild soybean genome. Nat. Commun. 2019, 10, 1216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qi, X.; Li, M.-W.; Xie, M.; Liu, X.; Ni, M.; Shao, G.; Song, C.; Yim, A.K.-Y.; Tao, Y.; Wong, F.-L. Identification of a novel salt tolerance gene in wild soybean by whole-genome sequencing. Nat. Commun. 2014, 5. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.; Hyten, D.L.; Niblack, T.L.; Diers, B.W. Stacking resistance alleles from wild and domestic soybean sources improves soybean cyst nematode resistance. Crop Sci. 2011, 51, 934–943. [Google Scholar] [CrossRef] [Green Version]
- Guo, B.; Sleper, D.A.; Nguyen, H.T.; Arelli, P.R.; Shannon, J.G. Quantitative trait loci underlying resistance to three soybean cyst nematode populations in soybean PI 404198A. Crop Sci. 2006, 46, 224–233. [Google Scholar] [CrossRef]
- Zhang, J.; Wen, Z.; Li, W.; Zhang, Y.; Zhang, L.; Dai, H.; Wang, D.; Xu, R. Genome-wide association study for soybean cyst nematode resistance in Chinese elite soybean cultivars. Mol. Breed. 2017, 37, 60. [Google Scholar] [CrossRef]
- Luo, X.; Bai, X.; Sun, X.; Zhu, D.; Liu, B.; Ji, W.; Cai, H.; Cao, L.; Wu, J.; Hu, M. Expression of wild soybean WRKY20 in Arabidopsis enhances drought tolerance and regulates ABA signalling. J. Exp. Bot. 2013, 64, 2155–2169. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.; Xiong, Q.; Cheng, T.; Li, Q.-T.; Liu, X.-L.; Bi, Y.-D.; Li, W.; Zhang, W.-K.; Ma, B.; Lai, Y.-C. A PP2C-1 allele underlying a quantitative trait locus enhances soybean 100-seed weight. Mol. Plant 2017, 10, 670–684. [Google Scholar] [CrossRef] [Green Version]
- Leamy, L.J.; Zhang, H.; Li, C.; Chen, C.Y.; Song, B.-H. A genome-wide association study of seed composition traits in wild soybean (Glycine soja). BMC Genomics 2017, 18, 18. [Google Scholar] [CrossRef] [Green Version]
- Bi, Y.; Li, W.; Xiao, J.; Lin, H.; Liu, M.; Liu, M.; Luan, X.; Zhang, B.; Xie, X.; Guo, D. Heterosis and combining ability estimates in isoflavone content using different parental soybean accessions: Wild soybean, a valuable germplasm for soybean breeding. PLoS ONE 2015, 10, e0114827. [Google Scholar] [CrossRef]
- Panneerselvam, K.; Tsukamoto, C.; Honda, N.; Kikuchi, A.; Lee, J.D.; Yang, S.H.; Chung, G. Saponin polymorphism in the Korean wild soybean (Glycine soja Sieb. and Zucc.). Plant Breed. 2013, 132, 121–126. [Google Scholar] [CrossRef]
- Rehman, H.M.; Nawaz, M.A.; Shah, Z.H.; Yang, S.H.; Chung, G. Functional characterization of naturally occurring wild soybean mutant (sg-5) lacking astringent saponins using whole genome sequencing approach. Plant Sci. 2017. [Google Scholar] [CrossRef] [PubMed]
- Yano, R.; Takagi, K.; Takada, Y.; Mukaiyama, K.; Tsukamoto, C.; Sayama, T.; Kaga, A.; Anai, T.; Sawai, S.; Ohyama, K. Metabolic switching of astringent and beneficial triterpenoid saponins in soybean is achieved by a loss-of-function mutation in cytochrome P450 72A69. Plant J. 2017, 89, 527–539. [Google Scholar] [CrossRef]
- Kim, M.Y.; Lee, S.; Van, K.; Kim, T.-H.; Jeong, S.-C.; Choi, I.-Y.; Kim, D.-S.; Lee, Y.-S.; Park, D.; Ma, J. Whole-genome sequencing and intensive analysis of the undomesticated soybean (Glycine soja Sieb. and Zucc.) genome. Proc. Natl. Acad. Sci. USA 2010, 107, 22032–22037. [Google Scholar] [CrossRef] [Green Version]
- Chung, W.-H.; Jeong, N.; Kim, J.; Lee, W.K.; Lee, Y.-G.; Lee, S.-H.; Yoon, W.; Kim, J.-H.; Choi, I.-Y.; Choi, H.-K. Population structure and domestication revealed by high-depth resequencing of Korean cultivated and wild soybean genomes. DNA Res. 2013, 21, 153–167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiu, J.; Wang, Y.; Wu, S.; Wang, Y.-Y.; Ye, C.-Y.; Bai, X.; Li, Z.; Yan, C.; Wang, W.; Wang, Z. Genome re-sequencing of semi-wild soybean reveals a complex Soja population structure and deep introgression. PLoS ONE 2014, 9, e108479. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.-h.; Zhou, G.; Ma, J.; Jiang, W.; Jin, L.-g.; Zhang, Z.; Guo, Y.; Zhang, J.; Sui, Y.; Zheng, L. De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits. Nat. Biotechnol. 2014, 32, 1045–1052. [Google Scholar] [CrossRef] [Green Version]
- Park, G.T.; Sundaramoorthy, J.; Lee, S.; Lee, J.-D.; Kim, J.H.; Park, S.-K.; Seo, H.S.; Chung, G.; Song, J.T. Color Variation in a Novel Glycine soja Mutant W4-S1 with Pinkish-White Flowers Is Controlled by a Single Recessive Allele at the W4 Locus. Crop Sci. 2017, 57, 3112–3121. [Google Scholar] [CrossRef]
- Sundaramoorthy, J.; Park, G.T.; Chang, J.H.; Lee, J.-D.; Kim, J.H.; Seo, H.S.; Chung, G.; Song, J.T. Identification and molecular analysis of four new alleles at the W1 locus associated with flower color in soybean. PLoS ONE 2016, 11, e0159865. [Google Scholar] [CrossRef] [Green Version]
- Park, G.T.; Sundaramoorthy, J.; Lee, S.; Lee, J.-D.; Kim, J.H.; Park, S.-K.; Seo, H.S.; Chung, G.; Song, J.T. Color Variation in a Novel Mutant with Pinkish-White Flowers Is Controlled by a Single Recessive Allele at the Locus. Crop Sci. 2017, 57, 3112–3121. [Google Scholar] [CrossRef]
- Asekova, S.; Kulkarni, K.P.; Patil, G.; Kim, M.; Song, J.T.; Nguyen, H.T.; Shannon, J.G.; Lee, J.-D. Genetic analysis of shoot fresh weight in a cross of wild (G. soja). Mol. Breed. 2016, 36, 1–15. [Google Scholar] [CrossRef]
- Muñoz, N.; Qi, X.; Li, M.; Xie, M.; Gao, Y.; Cheung, M.; Wong, F.; Lam, H. Improvement in nitrogen fixation capacity could be part of the domestication process in soybean. Heredity 2016, 117, 84–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fehr, W.; Cianzio, S.; Welke, G. Registration of’SS202’soybean. Crop Sci. 1990, 30. [Google Scholar] [CrossRef]
- Concibido, V.; La Vallee, B.; Mclaird, P.; Pineda, N.; Meyer, J.; Hummel, L.; Yang, J.; Wu, K.; Delannay, X. Introgression of a quantitative trait locus for yield from Glycine soja into commercial soybean cultivars. Theor. Appl. Genet. 2003, 106, 575–582. [Google Scholar] [CrossRef]
- Wang, D.; Graef, G.; Procopiuk, A.; Diers, B. Identification of putative QTL that underlie yield in interspecific soybean backcross populations. Theor. Appl. Genet. 2004, 108, 458–467. [Google Scholar] [CrossRef]
- Li, D.; Pfeiffer, T.; Cornelius, P. Soybean QTL for yield and yield components associated with alleles. Crop Sci. 2008, 48, 571–581. [Google Scholar] [CrossRef]
- Wang, W.; Li, X.; Chen, S.; Song, S.; Gai, J.; Zhao, T. Using presence/absence variation markers to identify the QTL/allele system that confers the small seed trait in wild soybean (Glycine soja Sieb. & Zucc.). Euphytica 2016, 208, 101–111. [Google Scholar]
- Kulkarni, K.P.; Asekova, S.; Lee, D.-H.; Bilyeu, K.; Song, J.T.; Lee, J.-D. Mapping QTLs for 100-seed weight in an interspecific soybean cross of Williams 82 (Glycine max) and PI 366121 (Glycine soja). Crop Pasture Sci. 2017, 68, 148–155. [Google Scholar] [CrossRef]
- Zhang, H.; Li, C.; Davis, E.L.; Wang, J.; Griffin, J.D.; Kofsky, J.; Song, B.-H. Genome-wide association study of resistance to soybean cyst nematode (Heterodera glycines) HG Type 2.5. 7 in wild soybean (Glycine soja). Front. Plant Sci. 2016, 7, 1214. [Google Scholar]
- Winter, S.M.; Shelp, B.J.; Anderson, T.R.; Welacky, T.W.; Rajcan, I. QTL associated with horizontal resistance to soybean cyst nematode in Glycine soja PI464925B. Theor. Appl. Genet. 2007, 114, 461–472. [Google Scholar] [CrossRef]
- Yu, N.; Diers, B.W. Fine mapping of the SCN resistance QTL cqSCN-006 and cqSCN-007 from Glycine soja PI 468916. Euphytica 2017, 213, 54. [Google Scholar] [CrossRef]
- Wang, D.; Diers, B.W.; Arelli, P.; Shoemaker, R. Loci underlying resistance to race 3 of soybean cyst nematode in Glycine soja plant introduction 468916. Theor. Appl. Genet. 2001, 103, 561–566. [Google Scholar] [CrossRef]
- Carter, T.E.; Huei, E.; Burton, J.; Farmer, F.; Gizlice, Z. Registration of ‘Pearl’soybean. Crop Sci. 1995, 35, 1713. [Google Scholar] [CrossRef]
- Lee, J.S.; Yoo, M.-h.; Jung, J.K.; Bilyeu, K.D.; Lee, J.-D.; Kang, S. Detection of novel QTLs for foxglove aphid resistance in soybean. Theor. Appl. Genet. 2015, 128, 1481–1488. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Zhang, Z.; Wen, Z.; Gu, C.; An, Y.-Q.C.; Bales, C.; DiFonzo, C.; Song, Q.; Wang, D. Fine mapping of the soybean aphid-resistance genes Rag6 and Rag3c from Glycine soja 85-32. Theor. Appl. Genet. 2017, 130, 2601–2615. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, Z.; Bales, C.; Gu, C.; DiFonzo, C.; Li, M.; Song, Q.; Cregan, P.; Yang, Z.; Wang, D. Mapping novel aphid resistance QTL from wild soybean, Glycine soja 85-32. Theor. Appl. Genet. 2017, 130, 1941–1952. [Google Scholar] [CrossRef]
- Hill, C.B.; Li, Y.; Hartman, G.L. Resistance of Glycine species and various cultivated legumes to the soybean aphid (Homoptera: Aphididae). J. Econ. Entomol. 2004, 97, 1071–1077. [Google Scholar] [CrossRef]
- Iquira, E.; Humira, S.; François, B. Association mapping of QTLs for sclerotinia stem rot resistance in a collection of soybean plant introductions using a genotyping by sequencing (GBS) approach. BMC Plant Biol. 2015, 15, 5. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Song, B.-H. RNA-seq data comparisons of wild soybean genotypes in response to soybean cyst nematode (Heterodera glycines). Genomics Data 2017, 14, 36–39. [Google Scholar] [CrossRef]
- Zhang, H.; Song, Q.; Griffin, J.D.; Song, B.-H. Genetic architecture of wild soybean (Glycine soja) response to soybean cyst nematode (Heterodera glycines). Mol. Genet. Genomics 2017, 292, 1257–1265. [Google Scholar] [CrossRef]
- Rani, A.; Kumar, V.; Gill, B.; Shukla, S.; Rathi, P.; Singh, R. Mapping of duplicate dominant genes for Mungbean yellow mosaic India virus resistance in Glycine soja. Crop Sci. 2018, 58, 1566–1574. [Google Scholar] [CrossRef]
- Tucker, D.; Maroof, S.; Mideros, S.; Skoneczka, J.; Nabati, D.; Buss, G.; Hoeschele, I.; Tyler, B.; St Martin, S.; Dorrance, A. Mapping quantitative trait loci for partial resistance to Phytophthora sojae in a soybean interspecific cross. Crop Sci. 2010, 50, 628–635. [Google Scholar] [CrossRef]
- Luo, Q.; Yu, B.; Liu, Y. Differential sensitivity to chloride and sodium ions in seedlings of Glycine max and G. soja under NaCl stress. J. Plant Physiol. 2005, 162, 1003–1012. [Google Scholar] [CrossRef]
- Lee, J.-D.; Shannon, J.G.; Vuong, T.D.; Nguyen, H.T. Inheritance of salt tolerance in wild soybean (Glycine soja Sieb. and Zucc.) accession PI483463. J. Hered. 2009, 100, 798–801. [Google Scholar] [CrossRef]
- Tuyen, D.; Lal, S.; Xu, D. Identification of a major QTL allele from wild soybean (Glycine soja Sieb. & Zucc.) for increasing alkaline salt tolerance in soybean. Theor. Appl. Genet. 2010, 121, 229–236. [Google Scholar] [PubMed]
- Ha, B.-K.; Vuong, T.D.; Velusamy, V.; Nguyen, H.T.; Shannon, J.G.; Lee, J.-D. Genetic mapping of quantitative trait loci conditioning salt tolerance in wild soybean (Glycine soja) PI 483463. Euphytica 2013, 193, 79–88. [Google Scholar] [CrossRef]
- Kilen, T.C.; He, G. Identification and inheritance of metribuzin tolerance in wild soybean. Crop Sci. 1992, 32, 684–685. [Google Scholar] [CrossRef]
- Manavalan, L.P.; Prince, S.J.; Musket, T.A.; Chaky, J.; Deshmukh, R.; Vuong, T.D.; Song, L.; Cregan, P.B.; Nelson, J.C.; Shannon, J.G. Identification of novel QTL governing root architectural traits in an interspecific soybean population. PLoS ONE 2015, 10, e0120490. [Google Scholar] [CrossRef] [Green Version]
- Prince, S.J.; Song, L.; Qiu, D.; dos Santos, J.V.M.; Chai, C.; Joshi, T.; Patil, G.; Valliyodan, B.; Vuong, T.D.; Murphy, M. Genetic variants in root architecture-related genes in a Glycine soja accession, a potential resource to improve cultivated soybean. BMC Genomics 2015, 16, 132. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Wang, J.; Jiang, W.; Liu, J.; Yang, S.; Gai, J.; Li, Y. Identification and analysis of NaHCO3 stress responsive genes in wild soybean (Glycine soja) roots by RNA-seq. Front. Plant Sci. 2016, 7, 1842. [Google Scholar] [CrossRef] [Green Version]
- Ning, W.; Zhai, H.; Yu, J.; Liang, S.; Yang, X.; Xing, X.; Huo, J.; Pang, T.; Yang, Y.; Bai, X. Overexpression of Glycine soja WRKY20 enhances drought tolerance and improves plant yields under drought stress in transgenic soybean. Mol. Breed. 2017, 37, 19. [Google Scholar] [CrossRef]
- Diers, B.W.; Keim, P.; Fehr, W.; Shoemaker, R. RFLP analysis of soybean seed protein and oil content. Theor. Appl. Genet. 1992, 83, 608–612. [Google Scholar] [CrossRef]
- Pantalone, V.; Rebetzke, G.; Burton, J.; Wilson, R. Genetic regulation of linolenic acid concentration in wild soybean Glycine soja accessions. J. Am. Oil Chem. Soc. 1997, 74, 159–163. [Google Scholar] [CrossRef]
- Park, J.; Kim, J.H.; Krishnamurthy, P.; Tsukamoto, C.; Song, J.T.; Chung, G.; Shannon, J.G.; Lee, J.-D. Characterization of a New Allele of the Saponin-Synthesizing Gene in Soybean. Crop Sci. 2016, 56, 385–391. [Google Scholar] [CrossRef]
- Li, M.-W.; Muñoz, N.B.; Wong, C.-F.; Wong, F.-L.; Wong, K.-S.; Wong, J.W.-H.; Qi, X.; Li, K.-P.; Ng, M.-S.; Lam, H.-M. QTLs regulating the contents of antioxidants, phenolics, and flavonoids in soybean seeds share a common genomic region. Front. Plant Sci. 2016, 7. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.D.; Shannon, J.; Vuong, T.; Moon, H.; Nguyen, H.; Tsukamoto, C.; Chung, G. Genetic diversity in wild soybean (Glycine soja Sieb. and Zucc.) accessions from southern islands of Korean peninsula. Plant Breed. 2010, 129, 257–263. [Google Scholar] [CrossRef]
- Nawaz, M.A.; Yang, S.H.; Rehman, H.M.; Baloch, F.S.; Lee, J.D.; Park, J.H.; Chung, G. Genetic diversity and population structure of Korean wild soybean (Glycine soja Sieb. and Zucc.) inferred from microsatellite markers. Biochem. Syst. Ecol. 2017, 71, 87–96. [Google Scholar] [CrossRef]
- Carter, T.; Nelson, R.; Sneller, C.; Cui, Z. Genetic diversity in soybean. Soybean Monogr. Am. Soc. Agron. Madison Wis. USA 2004. [Google Scholar]
- Li, M.-W.; Wang, Z.; Jiang, B.; Kaga, A.; Wong, F.-L.; Zhang, G.; Han, T.; Chung, G.; Nguyen, H.; Lam, H.-M. Impacts of genomic research on soybean improvement in East Asia. Theor. Appl. Genet. 2019, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Lee, G.-A.; Crawford, G.W.; Liu, L.; Sasaki, Y.; Chen, X. Archaeological soybean (Glycine max) in East Asia: Does size matter? PLoS ONE 2011, 6, e26720. [Google Scholar] [CrossRef]
- Crawford, G.W.; Lee, G.-A. Agricultural origins in the Korean Peninsula. Antiquity 2003, 77, 87. [Google Scholar] [CrossRef]
- Barnes, G.L. Archaeology of East. Asia: The Rise of Civilization in China, Korea and Japan; Oxbow Books: Oxford, UK; Casemate Publishing: Pennsylvania, PA, USA, 2015. [Google Scholar]
- Fujita, R.; Ohara, M.; Okazaki, K.; Shimamoto, Y. The extent of natural cross-pollination in wild soybean (Glycine soja). J. Hered. 1997, 88, 124–128. [Google Scholar] [CrossRef] [Green Version]
- Kuroda, Y.; Kaga, A.; Tomooka, N.; Vaughan, D.A. Gene flow and genetic structure of wild soybean (Glycine soja) in Japan. Crop Sci. 2008, 48, 1071–1079. [Google Scholar] [CrossRef]
- Wang, Y.; Shahid, M.Q.; BALOCH, F.S. Phylogeographical studies of Glycine soja: Implicating the refugium during the quaternary glacial period and large-scale expansion after the last glacial maximum. Turk. J. Agric. For. 2016, 40, 825–838. [Google Scholar] [CrossRef]
- Lu, H.; Yi, S.; Xu, Z.; Zhou, Y.; Zeng, L.; Zhu, F.; Feng, H.; Dong, L.; Zhuo, H.; Yu, K. Chinese deserts and sand fields in Last Glacial Maximum and Holocene Optimum. Chin. Sci. Bull. 2013, 58, 2775–2783. [Google Scholar] [CrossRef] [Green Version]
- Park, H.; Hur, S. Growth habit and protein content of various wild soybean strains. Korean J. Bot. 1979. [Google Scholar]
- Yu, H.; Kiang, Y.-T. Genetic variation in South Korean natural populations of wild soybean (Glycine soja). Euphytica 1993, 68, 213–221. [Google Scholar] [CrossRef]
- Kim, K.-U.; Gang, T.-D.; Lee, J.-H.; Lee, I.-J.; Shin, D.-H.; Hwang, Y.-H.; Kim, S.-U.; Kim, H.-M. Physio-ecological characteristics of wild soybeans (Glycine soja) collected throughout Korea and their response to glyphosate. Korean J. Weed Sci. 2003, 23, 153–159. [Google Scholar]
- Kim, K.C.; Park, E.-H. Variation of protein, oil contents and fatty acid composition of Korean wild soybean (Glycine soja Sieb. & Zucc.) seeds. Korean J. Crop Sci. 2005, 50, 118–122. [Google Scholar]
- Lee, J.-D.; Yoon, Y.-H.; Chung, I.-K.; Park, S.-K.; Hwang, Y.-H. A new Glycine soja germplasm accession with green seed-coat color. Breed. Sci. 2005, 55, 21–25. [Google Scholar] [CrossRef] [Green Version]
- Yun, H.-T.; Seo, M.-J.; Kim, S.-L.; An, S.-O.; Kim, S.-J. Variation of seed component contents in wild soybean (Glycine soja Sieb. & Zucc.). Korean J. Crop Sci. 2005, 50, 108–111. [Google Scholar]
- Choi, I.-Y.; Kang, J.-H.; Song, H.-S.; Kim, N.-S. Genetic diversity measured by simple sequence repeat variations among the wild soybean, Glycine soja, collected along the riverside of five major rivers in Korea. Genes Genet. Syst. 1999, 74, 169–177. [Google Scholar] [CrossRef] [Green Version]
- Cho, Y.; Yoon, M.; Lee, J.; Baek, H.; Kim, C.; Kim, T.; Cho, E.; Lee, H. Diversity and geographical relationships by SSR marker in subgenus soja originated from Korea. Korean J. Crop Sci. 2006, 51, 239–247. [Google Scholar]
- Lee, J.-D.; Yu, J.-K.; Hwang, Y.-H.; Blake, S.; So, Y.-S.; Lee, G.-J.; Nguyen, H.; Shannon, J.G. Genetic Diversity of Wild Soybean (Glycine soja Sieb. and Zucc.) Accessions from South Korea and Other Countries. Crop Sci. 2008, 48, 606–616. [Google Scholar] [CrossRef]
- He, S.; Wang, Y.; Volis, S.; Li, D.; Yi, T. Genetic diversity and population structure: Implications for conservation of wild soybean (Glycine soja Sieb. et Zucc) based on nuclear and chloroplast microsatellite variation. Int. J. Mol. Sci. 2012, 13, 12608–12628. [Google Scholar] [CrossRef] [Green Version]
- Frankham, R. Relationship of genetic variation to population size in wildlife. Conserv. Biol. 1996, 10, 1500–1508. [Google Scholar] [CrossRef] [Green Version]
- Frankham, R. Do island populations have less genetic variation than mainland populations? Heredity 1997, 78, 311–327. [Google Scholar] [CrossRef] [Green Version]
- Frankham, R. Inbreeding and extinction: Island populations. Conserv. Boil. 1998, 12, 665–675. [Google Scholar] [CrossRef]
- Maxted, N.; Kell, S. Establishment of a global network for the in situ conservation of crop wild relatives: Status and needs. FAO Comm. Genet. Resour. Food Agric. Rome 2009, 266, 509. [Google Scholar]
- Kim, M.Y.; Van, K.; Kang, Y.J.; Kim, K.H.; Lee, S.-H. Tracing soybean domestication history: From nucleotide to genome. Breed. Sci. 2012, 61, 445–452. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Kim, J.-H.; Sundaramoorthy, J.; Park, G.T.; Lee, J.-D.; Kim, J.H.; Chung, G.; Seo, H.S.; Song, J.T. Identification of GmSALT3 haplotypes and development of molecular markers based on their diversity associated with salt tolerance in soybean. Mol. Breed. 2018, 38, 86. [Google Scholar] [CrossRef]
- Krishnamurthy, P.; Lee, J.M.; Tsukamoto, C.; Takahashi, Y.; Singh, R.J.; Lee, J.D.; Chung, G. Evaluation of genetic structure of Korean wild soybean (Glycine soja) based on saponin allele polymorphism. Genet. Res. Crop Evol. 2014, 61, 1121–1130. [Google Scholar] [CrossRef]
- Krishnamurthy, P.; Tsukamoto, C.; Singh, R.J.; Lee, J.-D.; Kim, H.-S.; Yang, S.-H.; Chung, G. The Sg-6 saponins, new components in wild soybean (Glycine soja Sieb. and Zucc.): polymorphism, geographical distribution and inheritance. Euphytica 2014, 198, 413–424. [Google Scholar] [CrossRef]
- Krishnamurthy, P.; Tsukamoto, C.; Takahashi, Y.; Hongo, Y.; Singh, R.J.; Lee, J.D.; Chung, G. Comparison of saponin composition and content in wild soybean (Glycine soja Sieb. and Zucc.) before and after germination. Biosci. Biotechnol. Biochem. 2014, 78, 1988–1996. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sundaramoorthy, J.; Park, G.T.; Mukaiyama, K.; Tsukamoto, C.; Chang, J.H.; Lee, J.-D.; Kim, J.H.; Seo, H.S.; Song, J.T. Molecular elucidation of a new allelic variation at the Sg-5 gene associated with the absence of group A saponins in wild soybean. PLoS ONE 2018, 13, e0192150. [Google Scholar] [CrossRef] [Green Version]
- Krishnamurthy, P.; Lee, J.D.; Ha, B.K.; Chae, J.H.; Song, J.T.; Tsukamoto, C.; Singh, R.J.; Chung, G. Genetic characterization of group A acetylsaponin-deficient mutants from wild soybean (Glycine soja Sieb. and Zucc.). Plant Breed. 2015, 134, 316–321. [Google Scholar] [CrossRef]
- Rehman, H.M.; Nawaz, M.A.; Shah, Z.H.; Chung, G.; Yang, S.H. Molecular Elucidation of Two Novel Seed Specific Flavonoid Glycosyltransferases in Soybean. J. Plant Biol. 2018, 61, 320–329. [Google Scholar] [CrossRef]
- Krishnamurthy, P.; Singh, R.J.; Tsukamoto, C.; Park, J.H.; Lee, J.D.; Chung, G. Kunitz trypsin inhibitor polymorphism in the Korean wild soybean (Glycine soja Sieb. & Zucc.). Plant Breed. 2013, 132, 311–316. [Google Scholar]
- Nawaz, M.A.; Golokhvast, K.S.; Rehman, H.M.; Tsukamoto, C.; Kim, H.-S.; Yang, S.H.; Chung, G. Soyisoflavone diversity in wild soybeans (Glycine soja Sieb. & Zucc.) from the main centres of diversity. Biochem. Syst. Ecol. 2018, 77, 16–21. [Google Scholar]
- Tsukamoto, C.; Nawaz, M.A.; Kurosaka, A.; Le, B.; Lee, J.D.; Son, E.; Yang, S.H.; Kurt, C.; BALOCH, F.S.; Chung, G. Isoflavone profile diversity in Korean wild soybeans (Glycine soja Sieb. & Zucc.). Turk. J. Agric. For. 2018, 42, 248–261. [Google Scholar]
- Chae, J.-H.; Ha, B.-K.; Chung, G.; Park, J.-E.; Park, E.; Ko, J.-M.; Shannon, J.G.; Song, J.T.; Lee, J.-D. Identification of environmentally stable wild soybean genotypes with high alpha-linolenic acid concentration. Crop Sci. 2015, 55, 1629–1636. [Google Scholar] [CrossRef]
- Ali, M.; Krishnamurthy, P.; El-Hadary, M.; Kim, J.; Nawaz, M.; Yang, S.; Chung, G. Identification and expression profiling of a new β-amyrin synthase gene (GmBAS3) from soybean. Russ. J. Plant physiol. 2016, 63, 383–390. [Google Scholar] [CrossRef]
- Fang, C.; Ma, Y.; Yuan, L.; Wang, Z.; Yang, R.; Zhou, Z.; Liu, T.; Tian, Z. Chloroplast DNA Underwent Independent Selection from Nuclear Genes during Soybean Domestication and Improvement. J. Genet. Genomics = Yi Chuan Xue Bao 2016, 43, 217. [Google Scholar] [CrossRef] [PubMed]
- Asaf, S.; Khan, A.L.; Khan, M.A.; Imran, Q.M.; Kang, S.-M.; Al-Hosni, K.; Jeong, E.J.; Lee, K.E.; Lee, I.-J. Comparative analysis of complete plastid genomes from wild soybean (Glycine soja) and nine other Glycine species. PLoS ONE 2017, 12, e0182281. [Google Scholar] [CrossRef] [PubMed]
Trait | Gene/QTL | Chromosome/Locus Group | Source (accession) | Reference |
---|---|---|---|---|
Yield Related Traits | ||||
Flower color | Dihydroflavonol-4-reductase 4 (w4-s1 allele) (DFR) | B2 (Ch 14) | WS (CW13133) | [39] |
Flavonoid 3′5′-hydroxylase (F3′5′H) and DFR | B2 (Ch 14) | WS (CW12700 and CW13381) | [40] | |
DFR2 (w4-s1) | B2 (Ch 14) | WS (CW13133) × CS (IT182932) | [41] | |
Oil and local breeding related traits | QTLs | 3, 8, 13, 17, | WS × CS | [17] |
Shoot fresh weight | QTLs | 6, 15, 19 | WS (PI 483463) × CS (Hutcheson) | [42] |
Biological nitrogen fixation related traits | QTLs | 7,8,12,17,18 | WS (W05) × CS (C08) | [43] |
Small seed, Yellow seed color, Soy sprout | WS (PI135624) | [44] | ||
High yield | B2 (U26) | WS (PI 407305) | [45] | |
Yield, height and maturity | QTLs | C2, E, K and M | WS × CS | [46] |
Seed yield, 100-seed weight, seed filling period, maturity, height, lodging | QTLs | A1, J, N, H, F, L | WS × CS | [47] |
QTLs | Multiple | CS (NN86-4) × WS (PI342618B) | [48] | |
QTLs | 1, 2, 6, 8, 13, 14, 17, 20 | CS (Williams 82) × WS (PI 366121) | [49] | |
Biotic Stress Tolerance | ||||
Soybean cyst nematode resistance | Rhg1, Rhg4 locus and QTLs | G, A2, B1 | CS (Magellan) × WS (PI 404198A) | [26] |
Glyma18g196200, Glyma18g077900, Glyma18g078000, Glyma18g106800, Glyma18g107000, Glyma18g107100 | Ch18 | WS | [50] | |
Glyma18g106800, Glyma18g064100 | ||||
QTLs (cqSCN-006, cqSCN-007) | I, J, K, O | WS (PI 468916, 464925B) | [51,52] | |
Markers (A245_1 and Satt598) | 15, 18 | WS (PI 468916) | [53] | |
Resistance to southern root knot nematode | WS | [54] | ||
Foxglove aphid resistance (Aulacorthum solani) | Raso2 | 7 | CS (Williams 82) × CS (PI 366121) | [55] |
Aphid resistance (Aphis glycines) | Rag3c and Rag6 | 8, 16 | WS (85-32) | [56] |
QTLs | 8, 16, | WS WS (PI 518282) | [57] [58] | |
Sclerotinia stem rot | QTLs | 3, 8, 20 | WS × CS | [59,60,61] |
Resistance to Mung bean yellow mosaic India virus | Ch 8 and 14 | WS (PI 393551) | [62] | |
Resistance to Phtophthora soja | QTLs | J, I, G (Ch 16, 18, 20) | WS (PI 407162) × CS (V71-370) | [63] |
Abiotic Stress Tolerance | ||||
Salt tolerance | WS (N23232 BB52) | [64] | ||
Allele (Ncl locus) | WS (PI 483463) | [65] | ||
QTLs | D2 (Ch 17) | WS (JWS156-1) | [66] | |
QTLs | 3 | WS | [67] | |
RLKs CaMs, JA/SA Signaling genes, MAPKs, WRKYs | [60,61] | |||
Tolerance to herbicide metribuzin | WS (PI 245331, PI 163453) | [68] | ||
Root traits | QTLs | 8, 12 | WS (PI 326582A) × CS (PI 552538) | [69] |
Root architecture | Glyma15g42220, Glyma06g46210, Glyma06g45910, Glyma06g45920, Glyma07g32480 | 6, 7, 15 | WS (PI 407162) × CS (V71-370) | [70] |
Alkalinity tolerance | ALMT, LEA, ABC transporter, GLR, NRT/POT and SLAH genes | Multiple | WS (N24852) | [71] |
Drought tolerance | GsWRKY20 | [72] | ||
Nutrition | ||||
Seed protein content | Marker pA-245 | C | CS (A81-356022) × WS (PI 468916) | [73] |
Seed saturated fatty acid contents | SNPs | GS | [30] | |
Glyma14g121400, Glyma16g068500 | 14, 16 | |||
Seed unsaturated fatty acids | Glyma16g014000, Glyma07g112100 | 7, 16 | ||
Linolenic acid | QTLs | Multiple | WS × CS | [74] |
Pearl Japanese fermented product (Natto) | WS | [54] | ||
Protein, oil, palmitic acid, stearic acid, oleic acid, linoleic acid, lenolenic acid | QTLs | 2, 7, 14, 16 | WS | [30] |
Saponin A | Sg-1 | Ch 7 | WS | [58,75] |
Sg-5 (Glyma15g39090) | Ch 15 | WS × CS | [34,62] | |
Glyma15g39090 | Ch 15 | WS | [33] | |
Seed antioxidant, phenolics, and flavonoids | GmMATE1,2,4 | Ch 18,19 | WS (W05) × CS (C08) | [76] |
Instcode | Institute | No. of Accessions | % | WS | LR | BL | AC | OT |
---|---|---|---|---|---|---|---|---|
CHN001 | ICGR-CAAS | 32,021 | 14 | 21 | 79 | |||
USA033 | SOY | 21,075 | 9 | 10 | 80 | 5 | 4 | 1 |
KOR011 | RDAGB-GRD | 17,644 | 8 | <1 | 45 | 5 | 1 | 50 |
TWN001 | AVRDC | 15,314 | 7 | <1 | <1 | 100 | ||
BRA014 | CNPSO | 11,800 | 5 | 100 | ||||
JPN003 | NIAS | 11,473 | 5 | 5 | 33 | 21 | 40 | |
RUS001 | VIR | 6439 | 3 | 9 | 40 | 41 | 11 | |
IND016 | AICRP-Soybean | 4022 | 2 | <1 | 100 | |||
CIV005 | IDESSA | 3727 | 2 | 100 | ||||
TWN006 | TARI | 2745 | 1 | 100 | ||||
DEU146 | IPK | 2661 | 1 | 1 | 23 | 53 | 23 | |
ZWE003 | CBICAU | 2236 | 1 | 100 | ||||
IDN182 | ICRR | 2198 | 1 | <1 | 100 | |||
AUS048 | ATCFC | 2121 | 1 | 3 | <1 | 38 | 52 | 6 |
NGA039 | IITA | 1909 | 1 | 5 | 4 | 1 | 90 | |
FRA060 | AMFO | 1582 | 1 | 100 | ||||
THA005 | FCRI-DA/TH | 1510 | 1 | 100 | ||||
MEX001 | INIA-Iguala | 1500 | 1 | 100 | ||||
PHL130 | IPB-UPLB | 1381 | 1 | 100 | ||||
UKR001 | IR | 1288 | 1 | 3 | 1 | 21 | 72 | 3 |
COL017 | ICA/REGION 1 | 1235 | 1 | <1 | 64 | 13 | 22 | |
SRB002 | IFVCNS | 1200 | 1 | 100 | ||||
ROM002 | ICCPT Fundul | 1024 | <1 | 62 | 38 | <1 | ||
Others (166) | 81,839 | 36 | 11 | 4 | 27 | 51 | ||
Total | 229,944 | 100 | 6 | 17 | 7 | 13 | 56 | |
ICGR-CAAS | Institute of Crop Germplasm Resources, Chinese Academy of Agricultural Sciences | |||||||
SOY | Soybean Germplasm Collection, United States Department of Agriculture, Agricultural Research Services | |||||||
RDAGB-GRD | Genetic Resources Division, National Institute of Agricultural Biotechnology, Rural Development Administration (Korea) | |||||||
AVRDC | World Vegetable Centre (former Asian Vegetable Research and Development Centre) | |||||||
CNPSO | Embrapa Soja (Brazil) | |||||||
NIAS | National Institute of Agrobiological Sciences (Japan) | |||||||
VIR | N.I. Vavilov All-Russian Scientific Research Institute of Plant Industry (Russian Federation) | |||||||
AICRP-Soybean | All India Coordinated Research Project on Soybean (India) | |||||||
IDESSA | Institut des Savanes (Côte d’Ivoire) | |||||||
TARI | Taiwan Agricultural Research Institute | |||||||
IPK | Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (Germany) | |||||||
CBICAU | Crop Breeding Institute (Zimbabwe) | |||||||
ICRR | Indonesian Centre for Rice Research | |||||||
ATCFC | Australian Tropical Crops & Forages Genetic Resources Centre | |||||||
IITA | International Institute of Tropical Agriculture | |||||||
AMFO | G.I.E. Amelioration Fourragère (France) | |||||||
FCRI-DA/TH | Field Crops Research Institute–Department of Agriculture (Thailand) | |||||||
INIA-Iguala | Estación de Iguala, Instituto Nacional de Investigaciones Agrícolas (Mexico) | |||||||
IPB-UPLB | Institute of Plant Breeding, College of Agriculture, University of the Philippines, Los Baños College (Philippines) | |||||||
IR | Institute of Plant Production n.a. V.Y. Yurjev of UAAS (Ukraine) | |||||||
ICA/REGION 1 | Corporación Colombiana de Investigación Agropecuaria Tibaitata (Colombia) | |||||||
IFVCNS | Institute for Field and Vegetable Crops (Serbia) | |||||||
ICCPT Fundul | Research Institute for Cereals and Technical Plants Fundulea (Romania) |
Species | No. of Accessions |
---|---|
Glycine max (L.) Merr | 600 |
Glycine soja | 6232 |
Amphicarpaea edgeworthii | 1300 |
Vigna vexillata | 810 |
Rhynchosia volubilis | 225 |
Phaseolus nipponensis | 700 |
Other wild legumes Dunbaria villosa (Thunb.) Makino Vigna umbellate (Thumb.) Ohwi & Ohashi Vigna angularis var. nipponensis (ohwi) ohwi & ohashi Vigna angularis (Willd.) Ohwi & Ohashi | 700 |
Total | 10,567 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nawaz, M.A.; Lin, X.; Chan, T.-F.; Ham, J.; Shin, T.-S.; Ercisli, S.; Golokhvast, K.S.; Lam, H.-M.; Chung, G. Korean Wild Soybeans (Glycine soja Sieb & Zucc.): Geographic Distribution and Germplasm Conservation. Agronomy 2020, 10, 214. https://doi.org/10.3390/agronomy10020214
Nawaz MA, Lin X, Chan T-F, Ham J, Shin T-S, Ercisli S, Golokhvast KS, Lam H-M, Chung G. Korean Wild Soybeans (Glycine soja Sieb & Zucc.): Geographic Distribution and Germplasm Conservation. Agronomy. 2020; 10(2):214. https://doi.org/10.3390/agronomy10020214
Chicago/Turabian StyleNawaz, Muhammad Amjad, Xiao Lin, Ting-Fung Chan, Junghee Ham, Tai-Sun Shin, Sezai Ercisli, Kirill S. Golokhvast, Hon-Ming Lam, and Gyuhwa Chung. 2020. "Korean Wild Soybeans (Glycine soja Sieb & Zucc.): Geographic Distribution and Germplasm Conservation" Agronomy 10, no. 2: 214. https://doi.org/10.3390/agronomy10020214
APA StyleNawaz, M. A., Lin, X., Chan, T. -F., Ham, J., Shin, T. -S., Ercisli, S., Golokhvast, K. S., Lam, H. -M., & Chung, G. (2020). Korean Wild Soybeans (Glycine soja Sieb & Zucc.): Geographic Distribution and Germplasm Conservation. Agronomy, 10(2), 214. https://doi.org/10.3390/agronomy10020214