Growth, Rhizosphere Carboxylate Exudation, and Arbuscular Mycorrhizal Colonisation in Temperate Perennial Pasture Grasses Varied with Phosphorus Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Species and Soil Material
2.2. Experimental Treatments and Plant Growth Conditions
2.3. Carboxylate Extraction and Analysis
2.4. Plant Harvest and Nutrient Measurements
2.5. Root Morphology
2.6. Arbuscular Mycorrhizal Colonisation
2.7. Statistical Analyses
3. Results
3.1. Plant Growth
3.2. Arbuscular Mycorrhizal Colonisation
3.3. Specific Root Length and Diameter
3.4. Carboxylate Exudation
3.5. Shoot and Root P Accumulation
3.6. Agronomic Phosphorus-Use Efficiency
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Brennan, R.; Bolland, M.; Bowden, J. Potassium deficiency, and molybdenum deficiency and aluminium toxicity due to soil acidification, have become problems for cropping sandy soils in south-western Australia. Aust. J. Exp. Agric. 2004, 44, 1031–1039. [Google Scholar] [CrossRef]
- Singh, B.; Gilkes, R. Phosphorus sorption in relation to soil properties for the major soil types of south-western Australia. Soil Res. 1991, 29, 603–618. [Google Scholar] [CrossRef]
- Simpson, R.J.; Oberson, A.; Culvenor, R.A.; Ryan, M.H.; Veneklaas, E.J.; Lambers, H.; Lynch, J.P.; Ryan, P.R.; Delhaize, E.; Smith, F.A. Strategies and agronomic interventions to improve the phosphorus-use efficiency of farming systems. Plant Soil 2011, 349, 89–120. [Google Scholar] [CrossRef]
- Pang, J.; Tibbett, M.; Denton, M.D.; Lambers, H.; Siddique, K.H.; Bolland, M.D.; Revell, C.K.; Ryan, M.H. Variation in seedling growth of 11 perennial legumes in response to phosphorus supply. Plant Soil 2010, 328, 133–143. [Google Scholar] [CrossRef]
- Rengel, Z.; Marschner, P. Nutrient availability and management in the rhizosphere: Exploiting genotypic differences. New Phytol. 2005, 168, 305–312. [Google Scholar] [CrossRef]
- Simpson, R.J.; Richardson, A.E.; Nichols, S.N.; Crush, J.R. Pasture plants and soil fertility management to improve the efficiency of phosphorus fertiliser use in temperate grassland systems. Crop Pasture Sci. 2014, 65, 556–575. [Google Scholar] [CrossRef]
- Cordell, D.; White, S. Life’s bottleneck: Sustaining the world’s phosphorus for a food secure future. Annu. Rev. Environ. Resour. 2014, 39, 161–188. [Google Scholar] [CrossRef]
- Bovill, W.D.; Huang, C.Y.; McDonald, G.K. Genetic approaches to enhancing phosphorus-use efficiency (PUE) in crops: Challenges and directions. Crop Pasture Sci. 2013, 64, 179–198. [Google Scholar] [CrossRef] [Green Version]
- Hammond, J.P.; Broadley, M.R.; White, P.J.; King, G.J.; Bowen, H.C.; Hayden, R.; Meacham, M.C.; Mead, A.; Overs, T.; Spracklen, W.P. Shoot yield drives phosphorus use efficiency in Brassica oleracea and correlates with root architecture traits. J. Exp. Bot. 2009, 60, 1953–1968. [Google Scholar] [CrossRef] [Green Version]
- Lambers, H.; Shane, M.W.; Cramer, M.D.; Pearse, S.J.; Veneklaas, E.J. Root structure and functioning for efficient acquisition of phosphorus: Matching morphological and physiological traits. Ann. Bot. 2006, 98, 693–713. [Google Scholar] [CrossRef] [Green Version]
- Jones, R.J. Phosphorus and beef production in northern Australia. 1. Phosphorus and pasture productivity—A review. Trop. Grassl. 1990, 24, 131–139. [Google Scholar]
- Hill, J.O.; Simpson, R.; Wood, J.; Moore, A.D.; Chapman, D. The phosphorus and nitrogen requirements of temperate pasture species and their influence on grassland botanical composition. Aust. J. Agric. Res. 2005, 56, 1027–1039. [Google Scholar] [CrossRef]
- Ryan, P.; Delhaize, E.; Jones, D. Function and mechanism of organic anion exudation from plant roots. Annu. Rev. Plant Biol. 2001, 52, 527–560. [Google Scholar] [CrossRef] [PubMed]
- Pearse, S.J.; Veneklaas, E.J.; Cawthray, G.R.; Bolland, M.D.; Lambers, H. Carboxylate release of wheat, canola and 11 grain legume species as affected by phosphorus status. Plant Soil 2006, 288, 127–139. [Google Scholar] [CrossRef]
- Pearse, S.J.; Veneklaas, E.J.; Cawthray, G.; Bolland, M.D.; Lambers, H. Carboxylate composition of root exudates does not relate consistently to a crop species’ ability to use phosphorus from aluminium, iron or calcium phosphate sources. New Phytol. 2007, 173, 181–190. [Google Scholar] [CrossRef] [PubMed]
- Kidd, D.R.; Ryan, M.H.; Hahne, D.; Haling, R.E.; Lambers, H.; Sandral, G.A.; Simpson, R.J.; Cawthray, G.R. The carboxylate composition of rhizosheath and root exudates from twelve species of grassland and crop legumes with special reference to the occurrence of citramalate. Plant Soil. 2018, 424, 389–403. [Google Scholar] [CrossRef] [Green Version]
- Roelofs, R.; Rengel, Z.; Cawthray, G.; Dixon, K.; Lambers, H. Exudation of carboxylates in Australian Proteaceae: Chemical composition. Plant Cell Environ. 2001, 24, 891–904. [Google Scholar] [CrossRef]
- Kidd, D.R.; Ryan, M.H.; Haling, R.E.; Lambers, H.; Sandral, G.A.; Yang, Z.; Culvenor, R.A.; Cawthray, G.R.; Stefanski, A.; Simpson, R.J. Rhizosphere carboxylates and morphological root traits in pasture legumes and grasses. Plant Soil 2016, 402, 77–89. [Google Scholar] [CrossRef]
- Veneklaas, E.J.; Stevens, J.; Cawthray, G.R.; Turner, S.; Grigg, A.M.; Lambers, H. Chickpea and white lupin rhizosphere carboxylates vary with soil properties and enhance phosphorus uptake. Plant Soil 2003, 248, 187–197. [Google Scholar] [CrossRef]
- Hill, J.O.; Simpson, R.J.; Moore, A.D.; Chapman, D.F. Morphology and response of roots of pasture species to phosphorus and nitrogen nutrition. Plant Soil 2006, 286, 7–19. [Google Scholar] [CrossRef]
- Lynch, J. Root architecture and plant productivity. Plant Physiol. 1995, 109, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Marschner, H. Role of root growth, arbuscular mycorrhiza, and root exudates for the efficiency in nutrient acquisition. Field Crop. Res. 1998, 56, 203–207. [Google Scholar] [CrossRef]
- Smith, S.E.; Jakobsen, I.; Grønlund, M.; Smith, F.A. Roles of arbuscular mycorrhizas in plant phosphorus nutrition: Interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiol. 2011, 156, 1050–1057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ward, P.; Dunin, F.; Micin, S. Water balance of annual and perennial pastures on a duplex soil in a Mediterranean environment. Aust. J. Agric. Res. 2001, 52, 203–209. [Google Scholar] [CrossRef]
- Moore, G.A.; Sanford, P.; Wiley, T. Perennial pastures for Western Australia. In Bulletin 4690; Department of Agriculture and Food, Western Australia: Perth, Australia, 2006. [Google Scholar]
- Ward, P.; Dunin, F.; Micin, S. Water use and root growth by annual and perennial pastures and subsequent crops in a phase rotation. Agric. Water Manag. 2002, 53, 83–97. [Google Scholar] [CrossRef]
- Tshewang, S.; Rengel, Z.; Siddique, K.H.; Solaiman, Z.M. Growth and nutrient uptake of temperate perennial pastures are influenced by grass species and fertilisation with a microbial consortium inoculant. J. Plant Nutr. Soil Sci. 2020, 183, 530–538. [Google Scholar] [CrossRef]
- Smith, K.F.; Lee, C.K.; Borg, P.T.; Flinn, P.C. Yield, nutritive value, and phenotypic variability of tall wheatgrass grown in a nonsaline environment. Aust. J. Exp. Agric. 1994, 34, 609–614. [Google Scholar] [CrossRef]
- Rossiter, R.C. Studies on Perennial Veldt Grass (Ehrharta calycina Sm.); Council for Scientific and Industrial Research: Melbourne, Australia, 1947. [Google Scholar]
- Searle, P.L. The Berthelot or indophenol reaction and its use in the analytical chemistry of nitrogen. A review. Analyst 1984, 109, 549–568. [Google Scholar] [CrossRef]
- Colwell, J.D. The estimation of the phosphorus fertilizer requirements of wheat in southern New South Wales by soil analysis. Aust. J. Exp. Agric. 1963, 3, 190–197. [Google Scholar] [CrossRef]
- Rayment, G.E.; Higginson, F.R. Australian Laboratory Handbook of Soil and Water Chemical Methods; Inkata Press Pty Ltd: Melbourne, Australia, 1992. [Google Scholar]
- Chen, Y.L.; Dunbabin, V.M.; Diggle, A.J.; Siddique, K.H.; Rengel, Z. Phosphorus starvation boosts carboxylate secretion in P-deficient genotypes of Lupinus angustifolius with contrasting root structure. Crop Pasture Sci. 2013, 64, 588–599. [Google Scholar] [CrossRef]
- Cawthray, G.R. An improved reversed-phase liquid chromatographic method for the analysis of low-molecular mass organic acids in plant root exudates. J. Chromatogr. A 2003, 1011, 233–240. [Google Scholar] [CrossRef]
- Yang, Z.; Culvenor, R.A.; Haling, R.E.; Stefanski, A.; Ryan, M.H.; Sandral, G.A.; Kidd, D.R.; Lambers, H.; Simpson, R.J. Variation in root traits associated with nutrient foraging among temperate pasture legumes and grasses. Grass Forage Sci. 2017, 72, 93–103. [Google Scholar] [CrossRef]
- Haling, R.E.; Richardson, A.E.; Culvenor, R.A.; Lambers, H.; Simpson, R.J. Root morphology, root-hair development and rhizosheath formation on perennial grass seedlings is influenced by soil acidity. Plant Soil 2010, 335, 457–468. [Google Scholar] [CrossRef]
- Giovannetti, M.; Mosse, B. An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol. 1980, 84, 489–500. [Google Scholar] [CrossRef]
- Solaiman, Z.M.; Senoo, K.; Kawaguchi, M.; Imaizumi-Anraku, H.; Akao, S.; Tanaka, A.; Obata, H. Characterization of mycorrhizas formed by Glomus sp. on roots of hypernodulating mutants of Lotus japonicus. J. Plant Res. 2000, 113, 443–448. [Google Scholar] [CrossRef]
- Haling, R.E.; Yang, Z.; Shadwell, N.; Culvenor, R.A.; Stefanski, A.; Ryan, M.H.; Sandral, G.A.; Kidd, D.R.; Lambers, H.; Simpson, R.J. Root morphological traits that determine phosphorus-acquisition efficiency and critical external phosphorus requirement in pasture species. Funct. Plant Biol. 2016, 43, 815–826. [Google Scholar] [CrossRef] [Green Version]
- Bolan, N.; Robson, A.; Barrow, N. Effects of phosphorus application and mycorrhizal inoculation on root characteristics of subterranean clover and ryegrass in relation to phosphorus uptake. Plant Soil. 1987, 104, 294–298. [Google Scholar] [CrossRef]
- Evans, P.S. Comparative root morphology of some pasture grasses and clovers. N. Z. J. Agric. Res. 1977, 20, 331–335. [Google Scholar] [CrossRef]
- Nye, P. The Relation Between the Radius of a Root and its Nutrient-absorbing Power [α] Some theoretical considerations. J. Exp. Bot. 1973, 24, 783–786. [Google Scholar] [CrossRef]
- Eissenstat, D.M. Costs and benefits of constructing roots of small diameter. J. Plant Nutr. 1992, 15, 763–782. [Google Scholar] [CrossRef]
- Schroeder, M.S.; Janos, D.P. Plant growth, phosphorus nutrition, and root morphological responses to arbuscular mycorrhizas, phosphorus fertilization, and intraspecific density. Mycorrhiza 2005, 15, 203–216. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Shen, J.; Tang, C.; Rengel, Z. Root morphology, proton release, and carboxylate exudation in lupin in response to phosphorus deficiency. J. Plant Nutr. 2008, 31, 557–570. [Google Scholar] [CrossRef]
- Crush, J.R.; Boulesteix-Coutelier, A.R.L.; Ouyang, L. Phosphate uptake by white clover (Trifolium repens L.) genotypes with contrasting root morphology. N. Z. J. Agric. Res. 2008, 51, 279–285. [Google Scholar] [CrossRef]
- Suriyagoda, L.D.; Ryan, M.H.; Renton, M.; Lambers, H. Multiple adaptive responses of Australian native perennial legumes with pasture potential to grow in phosphorus-and moisture-limited environments. Ann. Bot. 2010, 105, 755–767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Schöll, L.; Hoffland, E.; van Breemen, N. Organic anion exudation by ectomycorrhizal fungi and Pinus sylvestris in response to nutrient deficiencies. New Phytol. 2006, 170, 153–163. [Google Scholar] [CrossRef]
- Lambers, H.; Juniper, D.; Cawthray, G.R.; Veneklaas, E.J.; Martínez-Ferri, E. The pattern of carboxylate exudation in Banksia grandis (Proteaceae) is affected by the form of phosphate added to the soil. Plant Soil 2002, 238, 111–122. [Google Scholar] [CrossRef]
- Jones, D.L. Organic acids in the rhizosphere–a critical review. Plant Soil 1998, 205, 25–44. [Google Scholar] [CrossRef]
- Kirk, G.; Santos, E.; Santos, M. Phosphate solubilization by organic anion excretion from rice growing in aerobic soil: Rates of excretion and decomposition, effects on rhizosphere pH and effects on phosphate solubility and uptake. New Phytol. 1999, 142, 185–200. [Google Scholar] [CrossRef]
- Bolan, N. A critical review on the role of mycorrhizal fungi in the uptake of phosphorus by plants. Plant Soil 1991, 134, 189–207. [Google Scholar] [CrossRef]
- Hill, J.O.; Simpson, R.J.; Ryan, M.H.; Chapman, D.F. Root hair morphology and mycorrhizal colonisation of pasture species in response to phosphorus and nitrogen nutrition. Crop Pasture Sci. 2010, 61, 122–131. [Google Scholar] [CrossRef]
- Ryan, M.; Small, D.; Ash, J. Phosphorus controls the level of colonisation by arbuscular mycorrhizal fungi in conventional and biodynamic irrigated dairy pastures. Aust. J. Exp. Agric. 2000, 40, 663–670. [Google Scholar] [CrossRef]
- Schweiger, P.; Robson, A.; Barrow, N. Root hair length determines beneficial effect of a Glomus species on shoot growth of some pasture species. New Phytol. 1995, 131, 247–254. [Google Scholar] [CrossRef]
- Pellet, D.; El-Sharkawy, M.A. Cassava varietal response to phosphorus fertilization. II. Phosphorus uptake and use efficiency. Field Crop. Res. 1993, 35, 13–20. [Google Scholar] [CrossRef]
- Haling, R.E.; Yang, Z.; Shadwell, N.; Culvenor, R.A.; Stefanski, A.; Ryan, M.H.; Sandral, G.A.; Kidd, D.R.; Lambers, H.; Simpson, R.J. Growth and root dry matter allocation by pasture legumes and a grass with contrasting external critical phosphorus requirements. Plant Soil 2016, 407, 67–79. [Google Scholar] [CrossRef] [Green Version]
Variable | Species | P Rates | Species x P Rates |
---|---|---|---|
Shoot dry weight (g plant−1) | *** | *** | NS |
Root dry weight (g plant−1) | *** | *** | NS |
Arbuscular mycorrhiza colonisation (%) | NS | *** | *** |
Specific root length (m g−1) | *** | *** | NS |
Average root diameter (mm) | *** | * | NS |
Acetate exudation (µmol g−1 dry root) | NS | *** | NS |
Citrate exudation (µmol g−1 dry root) | *** | ** | NS |
Malonate exudation (µmol g−1 dry root) | NS | ** | NS |
Total carboxylates exuded (µmol g−1 dry root) | *** | ** | NS |
Shoot P concentration (g kg−1 dry weight) | NS | *** | NS |
Shoot P content (mg plant−1) | *** | ** | NS |
Root P concentration (g kg−1 dry weight) | ** | *** | NS |
Root P content (mg plant−1) | *** | ** | NS |
Agronomic PUE (g shoot dry weight g−1 P applied) | *** | *** | *** |
Shoot P | Root P | |||
---|---|---|---|---|
Species | Concentration (g kg−1 Dry Weight) | Content (mg Plant−1) | Concentration (g kg−1 Dry Weight) | Content (mg Plant−1) |
Tall fescue | 5.14 | 4.59 ± 0.7b | 3.04 ± 0.5a | 0.90 ± 0.2b |
Veldt grass | 5.38 | 6.71 ± 1.3a | 2.61 ± 0.3ab | 0.94 ± 0.1ab |
Tall wheatgrass | 4.68 | 4.50 ± 0.8b | 2.24 ± 0.3b | 1.19 ± 0.2a |
P rates (mg kg−1 soil) | ||||
0 | 2.54 ± 0.1d | 0.43 ± 0.3d | 1.29 ± 0.1d | 0.04 ± 0.01e |
10 | 3.05 ± 0.4d | 2.7 ± 0.6c | 1.26 ± 0.1d | 0.49 ± 0.02d |
20 | 4.87 ± 0.4c | 6.08 ± 1.0b | 2.29 ± 0.2c | 1.06 ± 0.07c |
50 | 6.36 ± 0.3b | 7.96 ± 0.8ab | 3.35 ± 0.2b | 1.44 ± 0.05b |
100 | 8.77 ± 0.5a | 8.71 ± 0.6a | 4.53 ± 0.3a | 1.70 ± 0.2a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tshewang, S.; Rengel, Z.; Siddique, K.H.M.; Solaiman, Z.M. Growth, Rhizosphere Carboxylate Exudation, and Arbuscular Mycorrhizal Colonisation in Temperate Perennial Pasture Grasses Varied with Phosphorus Application. Agronomy 2020, 10, 2017. https://doi.org/10.3390/agronomy10122017
Tshewang S, Rengel Z, Siddique KHM, Solaiman ZM. Growth, Rhizosphere Carboxylate Exudation, and Arbuscular Mycorrhizal Colonisation in Temperate Perennial Pasture Grasses Varied with Phosphorus Application. Agronomy. 2020; 10(12):2017. https://doi.org/10.3390/agronomy10122017
Chicago/Turabian StyleTshewang, Sangay, Zed Rengel, Kadambot H. M. Siddique, and Zakaria M. Solaiman. 2020. "Growth, Rhizosphere Carboxylate Exudation, and Arbuscular Mycorrhizal Colonisation in Temperate Perennial Pasture Grasses Varied with Phosphorus Application" Agronomy 10, no. 12: 2017. https://doi.org/10.3390/agronomy10122017
APA StyleTshewang, S., Rengel, Z., Siddique, K. H. M., & Solaiman, Z. M. (2020). Growth, Rhizosphere Carboxylate Exudation, and Arbuscular Mycorrhizal Colonisation in Temperate Perennial Pasture Grasses Varied with Phosphorus Application. Agronomy, 10(12), 2017. https://doi.org/10.3390/agronomy10122017