Recovery of Phosphorus in Soils Amended with Manure for 119 Years
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Long, C.M.; Muenich, R.L.; Kalcic, M.M.; Scavia, D. Use of manure nutrients from concentrated animal feeding operations. J. Great Lakes Res. 2018, 44, 245–252. [Google Scholar] [CrossRef]
- United States Department of Agriculture. Agricultural Statistics. 2018. Available online: https://www.nass.usda.gov/Publications/Ag_Statistics/2018/Complete%20Publication.pdf (accessed on 12 May 2020).
- Zhang, H.; Schroder, J. Animal manure production and utilization in the US. In Applied Manure and Nutrient Chemistry for Sustainable Agriculture and Environment; He, Z., Zhang, H., Eds.; Springer: Amsterdam, The Netherlands, 2004; pp. 1–21. ISBN 978-94-017-8807-6. [Google Scholar]
- Zhang, H.; Johnson, G.; Fram, M. Managing Phosphorus from Animal Manure. 2004. Available online: http://poultrywaste.okstate.edu/Publications/files/f-2249web.pdf (accessed on 25 May 2020).
- Bouwman, A.F.; Beusen, A.H.W.; Lassaletta, L.; Van Apeldoorn, D.F.; Van Grinsven, H.J.M.; Zhang, J.; van Ittersum, M.K. Lessons from temporal and spatial patterns in global use of N and P fertilizer on cropland. Sci. Rep. 2017, 7, 40366. [Google Scholar] [CrossRef] [PubMed]
- Sharpley, A.N.; Chapra, S.C.; Wedepohl, R.; Sims, J.T.; Daniel, T.C.; Reddy, K.R. Managing Agricultural Phosphorus for Protection of Surface Waters: Issues and Options. J. Environ. Qual. 1994, 23, 437–451. [Google Scholar] [CrossRef]
- Sharpley, A.; McDowell, R.W.; Kleinman, P.J.A. Amounts, Forms, and Solubility of Phosphorus in Soils Receiving Manure. Soil Sci. Soc. Am. J. 2004, 68, 2048–2057. [Google Scholar] [CrossRef]
- Smil, V. Phosphorus in theenvironment: Natural flows and human interferences. Annu. Rev. Energy Environ. 2000, 25, 53–88. [Google Scholar] [CrossRef]
- Potter, P.; Ramankutty, N.; Bennett, E.M.; Donner, S.D. Characterizing the Spatial Patterns of Global Fertilizer Application and Manure Production. Earth Interact. 2010, 14, 1–22. [Google Scholar] [CrossRef]
- Bouwman, A.F.; Beusen, A.H.W.; Billen, G. Human alteration of the global nitrogen and phosphorus soil balances for the period 1970–2050. Glob. Biogeochem. Cycles 2009, 23. [Google Scholar] [CrossRef]
- Seitzinger, S.P.; Mayorga, E.; Bouwman, A.F.; Kroeze, C.; Beusen, A.H.W.; Billen, G.; Van Drecht, G.; Dumont, E.; Fekete, B.M.; Garnier, J.; et al. Global river nutrient export: A scenario analysis of past and future trends. Glob. Biogeochem. Cycles 2010, 24. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. A Compilation of Cost Data Associated with the Impacts and Control of Nutrient Pollution. Available online: https://www.epa.gov/nutrient-policy-data/compilation-cost-data-associated-impacts-and-control-nutrient-pollution (accessed on 5 April 2020).
- Parham, J.A.; Deng, S.P.; Raun, W.R.; Johnson, G.V. Long-term cattle manure application in soil: I. Effect on soil phosphorus levels, microbial biomass C, and dehydrogenase and phosphatase activities. Biol. Fertil. Soils 2002, 35, 328–337. [Google Scholar] [CrossRef]
- Van der Bom, F.; McLaren, T.I.; Doolette, A.; Magid, J.; Frossard, E.; Oberson, A.; Jensen, L. Influence of long-term phosphorus fertilisation history on the availability and chemical nature of soil phosphorus. Geoderma 2019, 355, 113909. [Google Scholar] [CrossRef]
- Whalen, J.K.; Chang, C. Phosphorus Accumulation in Cultivated Soils from Long-Term Annual Applications of Cattle Feedlot Manure. J. Environ. Qual. 2001, 30, 229–237. [Google Scholar] [CrossRef] [PubMed]
- Eghball, B.; Gilley, J.E. Phosphorus and Nitrogen in Runoff following Beef Cattle Manure or Compost Application. J. Environ. Qual. 1999, 28, 1201–1210. [Google Scholar] [CrossRef]
- Eghball, B. Leaching of Phosphorus Fractions Following Manure or Compost Application. Commun. Soil Sci. Plant Anal. 2003, 34, 2803–2815. [Google Scholar] [CrossRef]
- Oklahoma Climatological Survey Payne County Climate Summary. Available online: http://climate.ok.gov/county_climate/Products/County_Climatologies/county_climate_payne.pdf (accessed on 27 November 2020).
- Schepers, J.S.; Francis, D.; Thompson, M. Simultaneous determination of total C, total N, and 15N on soil and plant material. Commun. Soil Sci. Plant Anal. 1989, 20, 949–959. [Google Scholar] [CrossRef]
- Gee, G.W.; Or, D. Particle size analysis. In Methods of Soil Analysis. Part 4. Physical Methods; Dane, G.H., Topp, G.C., Eds.; Soil Science Society of America: Madison, WI, USA, 2002; ISBN 978-0-891-18893-3. [Google Scholar]
- United States Environmental Protection Agency. Method 3050B: Acid Digestion of Sediments, Sludges, and Soils; Revision 2; United States Environmental Protection Agency: Washington, DC, USA, 1996. Available online: https://www.epa.gov/sites/production/files/2015-06/documents/epa-3050b.pdf (accessed on 4 June 2020).
- Pizzeghello, D.; Berti, A.; Nardi, S.; Morari, F. Relationship between soil test phosphorus and phosphorus release to solution in three soils after long-term mineral and manure application. Agric. Ecosyst. Environ. 2016, 233, 214–223. [Google Scholar] [CrossRef]
- Wironen, M.B.; Bennett, E.M.; Erickson, J.D. Phosphorus flows and legacy accumulation in an animal-dominated agricultural region from 1925 to 2012. Glob. Environ. Chang. 2018, 50, 88–99. [Google Scholar] [CrossRef]
- Yan, Z.; Chen, S.; Dari, B.; Sihi, D.; Chen, Q. Phosphorus transformation response to soil properties changes induced by manure application in a calcareous soil. Geoderma 2018, 322, 163–171. [Google Scholar] [CrossRef]
- Sharpley, A.N.; Withers, P.J.A. The environmentally-sound management of agricultural phosphorus. Fertil. Res. 1994, 39, 133–146. [Google Scholar] [CrossRef]
- Smith, K.A.; Chalmers, A.G.; Chambers, B.J.; Christie, P. Organic manure phosphorus accumulation, mobility and management. Soil Use Manag. 1998, 14, 154–159. [Google Scholar] [CrossRef]
- Nair, V.D.; Graetz, D.A.; Reddy, K.R. Dairy Manure Influences on Phosphorus Retention Capacity of Spodosols. J. Environ. Qual. 1998, 27, 522–527. [Google Scholar] [CrossRef]
- Hooda, P.S.; Truesdale, V.; Edwards, A.; Withers, P.; Aitken, M.; Miller, A.; Rendell, A. Manuring and fertilization effects on phosphorus accumulation in soils and potential environmental implications. Adv. Environ. Res. 2001, 5, 13–21. [Google Scholar] [CrossRef]
- James, D.W.; Kotuby-Amacher, J.; Anderson, G.L.; Huber, D.A. Phosphorus Mobility in Calcareous Soils under Heavy Manuring. J. Environ. Qual. 1996, 25, 770–775. [Google Scholar] [CrossRef]
- Schepers, J.S.; Schlemmer, M.R.; Ferguson, R.B. Site-Specific Considerations for Managing Phosphorus. J. Environ. Qual. 2000, 29, 125–130. [Google Scholar] [CrossRef]
- Chardon, W.J.; Oenema, O.; Del Castilho, P.; Vriesema, R.; Japenga, J.; Blaauw, D. Organic Phosphorus in Solutions and Leachates from Soils Treated with Animal Slurries. J. Environ. Qual. 1997, 26, 372–378. [Google Scholar] [CrossRef]
- Boitt, G.; Schmitt, D.E.; Gatiboni, L.C.; Wakelin, S.A.; Black, A.; Sacomori, W.; Cassol, P.C.; Condron, L.M. Fate of phosphorus applied to soil in pig slurry under cropping in southern Brazil. Geoderma 2018, 321, 164–172. [Google Scholar] [CrossRef]
- Shepherd, M.; Withers, P. Applications of poultry litter and triple superphosphate fertilizer to a sandy soil: Effects on soil phosphorus status and profile distribution. Nutr. Cycl. Agroecosyst. 1999, 54, 233–242. [Google Scholar] [CrossRef]
- Pheav, S.; Bell, R.W.; White, P.F.; Kirk, G.J.D. Phosphorus Mass Balances for Successive Crops of Fertilised Rainfed Rice on a Sandy Lowland Soil. Nutr. Cycl. Agroecosyst. 2005, 73, 277–292. [Google Scholar] [CrossRef]
- Lemming, C.; Oberson, A.; Magid, J.; Bruun, S.; Scheutz, C.; Frossard, E.; Jensen, L. Residual phosphorus availability after long-term soil application of organic waste. Agric. Ecosyst. Environ. 2019, 270–271, 65–75. [Google Scholar] [CrossRef]
- Fan, J.; McConkey, B.; Wang, H.; Janzen, H. Root distribution by depth for temperate agricultural crops. Field Crop. Res. 2016, 189, 68–74. [Google Scholar] [CrossRef]
- Walsh, O.S.; Klatt, A.R.; Solie, J.B.; Godsey, C.B.; Raun, W.R. Use of soil moisture data for refined GreenSeeker sensor based nitrogen recommendations in winter wheat (Triticum aestivum L.). Precis. Agric. 2013, 14, 343–356. [Google Scholar] [CrossRef]
- Khan, A.; Lu, G.; Ayaz, M.; Zhang, H.; Wang, R.; Lv, F.; Yang, X.; Sun, B.; Zhang, S. Phosphorus efficiency, soil phosphorus dynamics and critical phosphorus level under long-term fertilization for single and double cropping systems. Agric. Ecosyst. Environ. 2018, 256, 1–11. [Google Scholar] [CrossRef]
- Batjes, N.H. A world dataset of derived soil properties by FAO–UNESCO soil unit for global modelling. Soil Use Manag. 1997, 13, 9–16. [Google Scholar] [CrossRef]
- Dhillon, J.; Torres, G.; Driver, E.; Figueiredo, B.; Raun, W.R. World Phosphorus Use Efficiency in Cereal Crops. Agron. J. 2017, 109, 1670–1677. [Google Scholar] [CrossRef]
Treatment | Depth | pHw | TN | OC | Sand | Silt | Clay |
---|---|---|---|---|---|---|---|
(cm) | -------------------------------- (%) ---------------------------------- | ||||||
CK | 0–15 | 5.86B | 0.06A | 0.60A | 42.50 | 37.93 | 19.60 |
15–30 | 5.88A | 0.05A | 0.56A | 39.17 | 38.33 | 22.50 | |
30–60 | 6.65A | 0.06A | 0.59A | 32.50 | 34.60 | 32.93 | |
60–90 | 7.02A | 0.04A | 0.35A | 31.67 | 30.43 | 37.93 | |
MT | 0–15 | 6.91A | 0.10C | 0.96B | 40.00 | 41.30 | 18.80 |
15–30 | 6.95B | 0.08B | 0.81B | 38.33 | 40.03 | 21.70 | |
30–60 | 7.10B | 0.07A | 0.67A | 30.00 | 34.63 | 35.47 | |
60–90 | 7.39A | 0.04A | 0.35A | 30.00 | 30.83 | 39.17 | |
PF | 0–15 | 5.86B | 0.07B | 0.71A | 41.67 | 40.87 | 17.53 |
15–30 | 6.11A | 0.06AB | 0.64AB | 40.00 | 38.77 | 21.27 | |
30–60 | 6.65A | 0.06A | 0.58A | 30.83 | 37.93 | 31.27 | |
60–90 | 6.96A | 0.04A | 0.35A | 33.33 | 32.53 | 34.20 | |
NPK | 0–15 | 4.78C | 0.11C | 1.11B | 40.83 | 40.00 | 19.17 |
15–30 | 5.01C | 0.08B | 0.73AB | 40.00 | 39.60 | 20.43 | |
30–60 | 6.23C | 0.07A | 0.64A | 32.50 | 37.53 | 30.03 | |
60–90 | 6.80A | 0.04A | 0.32A | 30.83 | 34.60 | 34.60 |
Treatment | P Input | Average Yield | Grain-P | Grain-P Removal | Net P Input | ||||
---|---|---|---|---|---|---|---|---|---|
(kg P ha−1 year−1) | (kg ha−1 year−1) | (mg P kg−1) | (kg P ha−1 year−1) | (kg P ha−1 year−1) | |||||
1930–1966 | 1967–2018 | 1930–1966 | 1967–2018 | 1930–1966 | 1967–2018 | 1930–1966 | 1967–2018 | ||
CK | 0.00 | 0.00 | 864.2A | 1002.8A | 3860.6 | 3.3 | 3.9 | −3.34 | −3.87 |
MT | 10.19 | 20.38 | 1328.1B | 1916.0B | 3860.6 | 5.1 | 7.4 | 1.73 | 9.11 |
PF | 14.68 | 14.68 | 1157.0A | 1104.1A | 3860.6 | 4.5 | 4.3 | 6.87 | 6.54 |
NPK | 14.68 | 14.68 | 1342.1B | 2073.7B | 3860.6 | 5.2 | 8.0 | 6.16 | 3.33 |
Year | Depth | Total P (mg P kg−1 Soil) in Treatment Specified | |||
---|---|---|---|---|---|
CK | MT | PF | NPK | ||
1998 | 0–15 cm | 189.0A | 218.6B | 310.4C | 266.4D |
15–30 cm | 151.3A | 191.7AB | 223.7B | 202.3B | |
1999 | 0–15 cm | 185.4A | 236.0B | 307.1C | 283.4D |
2000 | 0–15 cm | 186.3A | 254.5B | 298.1C | 308.6C |
2006 | 0–15 cm | 208.0A | 279.5B | 321.8B | 332.8B |
15–30 cm | 186.4A | 225.7A | 225.3A | 210.0A | |
30–60 cm | 152.1A | 166.4A | 158.3A | 154.1A | |
60–120 cm | 105.1A | 127.1A | 109.9A | 104.6A | |
2018 | 0–15 cm | 196.7A | 353.3B | 396.7BC | 406.7C |
15–30 cm | 180.0A | 250.0B | 286.7B | 283.3B | |
30–60 cm | 166.7A | 183.3A | 170.0A | 180.0A | |
60–90 cm | 126.7A | 133.3A | 136.7A | 126.7A |
Year | Depth | % P Recovery in Treatment Specified | ||
---|---|---|---|---|
MT | PF | NPK | ||
1998 | 0–15 cm | 17.5 | 50.5 | 48.2 |
1999 | 27.1 | 50.5 | 56.6 | |
2000 | 44.1 | 45.8 | 69.9 | |
2006 | 45.3 | 48.1 | 70.4 | |
2018 | 56.8 | 63.4 | 90.7 | |
Mean ± SE | (38.2 ± 7.0) | (51.6 ± 3.1) | (67.2 ± 7.2) | |
1998 | 0–30 cm | 35.9 | 79.6 | 79.9 |
2006 | 64.4 | 66.8 | 91.0 | |
2018 | 84.7 | 97.1 | 126.3 | |
Mean ± SE | (61.7 ± 14.2) | (81.1 ± 8.8) | (99.1 ± 14.0) | |
2006 | 0–90 cm | 96.0 | 91.6 | 105.2 |
2018 | 108.2 | 110.7 | 129.3 | |
Mean ± SE | (102.1 ± 6.1) | (101.2 ± 9.6) | (117.2 ± 12.0) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pasket, A.; Zhang, H.; Raun, W.; Deng, S. Recovery of Phosphorus in Soils Amended with Manure for 119 Years. Agronomy 2020, 10, 1947. https://doi.org/10.3390/agronomy10121947
Pasket A, Zhang H, Raun W, Deng S. Recovery of Phosphorus in Soils Amended with Manure for 119 Years. Agronomy. 2020; 10(12):1947. https://doi.org/10.3390/agronomy10121947
Chicago/Turabian StylePasket, Amber, Hailin Zhang, William Raun, and Shiping Deng. 2020. "Recovery of Phosphorus in Soils Amended with Manure for 119 Years" Agronomy 10, no. 12: 1947. https://doi.org/10.3390/agronomy10121947
APA StylePasket, A., Zhang, H., Raun, W., & Deng, S. (2020). Recovery of Phosphorus in Soils Amended with Manure for 119 Years. Agronomy, 10(12), 1947. https://doi.org/10.3390/agronomy10121947